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The NA62 experiment at CERN reports searches for K + → μ+N and K + → μ+ν X decays, where N
and X are massive invisible particles, using the 2016–2018 data set. The N particle is assumed to be a 
heavy neutral lepton, and the results are expressed as upper limits of O(10−8) of the neutrino mixing 
parameter |Uμ4|2 for N masses in the range 200–384 MeV/c2 and lifetime exceeding 50 ns. The X particle 
is considered a scalar or vector hidden sector mediator decaying to an invisible final state, and upper 
limits of the decay branching fraction for X masses in the range 10–370 MeV/c2 are reported for the first 
time, ranging from O(10−5) to O(10−7). An improved upper limit of 1.0 × 10−6 is established at 90% CL 
on the K + → μ+ννν̄ branching fraction.
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0. Introduction

All Standard Model (SM) fermions except neutrinos are known 
to exhibit both chiralities. The existence of right-handed neutrinos, 
or heavy neutral leptons (HNLs), is hypothesised in many SM ex-
tensions to generate non-zero masses of the SM neutrinos via the 
seesaw mechanism [1]. For example, the Neutrino Minimal Stan-
dard Model [2] accounts for dark matter, baryogenesis, neutrino 
masses and oscillations by postulating two HNLs in the MeV–GeV 
mass range and a third HNL at the keV mass scale, which is a dark 
matter candidate.

Mixing between HNLs (denoted N below) and active neutri-
nos gives rise to HNL production in meson decays. The expected 
branching fraction of the K + → μ+N decay is [3]

B(K + → μ+N) = B(K + → μ+ν) · ρμ(mN) · |Uμ4|2,
where B(K + → μ+ν) is the measured branching fraction of 
the SM leptonic decay [4], |Uμ4|2 is the mixing parameter, and 
ρμ(mN ) is a kinematic factor which depends on the HNL mass 
mN :

ρμ(mN) = (x + y) − (x − y)2

x(1 − x)2
· λ1/2(1, x, y), (1)

with x = (mμ/mK )2, y = (mN/mK )2 and λ(1, x, y) = 1 + x2 + y2 −
2(x + y +xy). The factor ρμ(mN ) increases from unity at mN = 0 to 
a maximum of 4.13 at mN = 263 MeV/c2, and decreases to zero at 
the kinematic limit mN = mK −mμ . Assuming that the HNL decays 
exclusively to SM particles, its lifetime in the mass range mN <

mK exceeds 10−4/|U4|2 μs, where |U4|2 is the largest of the three 
coupling parameters |U�4|2 (� = e, μ, τ ) [5]. Therefore under the 
above assumption, and additionally assuming conservatively that 

|U�4|2 < 10−4, the HNL can be considered stable in production-
search experiments.

A new light gauge boson has been proposed as an explana-
tion to the muon g − 2 anomaly [6]. A particular scenario, which 
also accommodates dark matter (DM) freeze-out, involves a scalar 
or vector hidden sector mediator X coupling preferentially to the 
muon. This mediator is expected to be produced in K + → μ+ν X
decays with an estimated branching fraction of O(10−8) in case 
mX < mK − mμ , and is expected to decay promptly with a sizeable 
invisible branching fraction [7]. In the light DM freeze-out model, 
the X → χχ̄ decay is expected, where χ is the DM particle.

The K + → μ+ννν̄ decay occurs within the SM at second order 
in the Fermi constant G F , and the expected branching fraction at 
leading order in chiral perturbation theory, BSM = 1.62 ×10−16 [8], 
is experimentally out of reach. The strongest upper limit to date, 
B(K + → μ+ννν̄) < 2.4 × 10−6 at 90% CL, has been established by 
the BNL-E949 experiment [9].

The K + → μ+N , K + → μ+ν X and K + → μ+ννν̄ decays with 
invisible N and X particles are characterised by a single muon and 
missing energy in the final state. Searches for these decays using 
the data collected by the NA62 experiment at CERN in 2016–2018 
are reported here. The N particle is interpreted as a HNL, and the 
results are presented as upper limits of the extended neutrino mix-
ing matrix element |Uμ4|2 for mN in the range 200–384 MeV/c2, 
with the assumption that the HNL lifetime exceeds 50 ns. For the 
K + → μ+ν X decays (in a number of mX hypotheses within the 
range 10–370 MeV/c2) and the K + → μ+ννν̄ decay, upper limits 
on the branching fractions are reported.

1. Beam, detector and data sample

The layout of the NA62 beamline and detector [10] is shown 
schematically in Fig. 1. An unseparated secondary beam of π+
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Fig. 1. Schematic side view of the NA62 beamline and detector.

(70%), protons (23%) and K + (6%) is created by directing 400 GeV/c
protons extracted from the CERN SPS onto a beryllium target in 
spills of 3 s effective duration. The central beam momentum is 
75 GeV/c, with a momentum spread of 1% (rms).

Beam kaons are tagged with 70 ps time resolution by a differ-
ential Cherenkov counter (KTAG) using as radiator nitrogen gas at 
1.75 bar pressure contained in a 5 m long vessel. Beam particle po-
sitions, momenta and times (to better than 100 ps resolution) are 
measured by a silicon pixel spectrometer consisting of three sta-
tions (GTK1,2,3) and four dipole magnets. A muon scraper (SCR) 
is installed between GTK1 and GTK2. A 1.2 m thick steel colli-
mator (COL) with a central aperture of 76 × 40 mm2 and outer 
dimensions of 1.7 × 1.8 m2 is placed upstream of GTK3 to absorb 
hadrons from upstream K + decays (a variable aperture collimator 
of 0.15 × 0.15 m2 outer dimensions was used up to early 2018). 
Inelastic interactions of beam particles in GTK3 are detected by 
an array of scintillator hodoscopes (CHANTI). The beam is deliv-
ered into a vacuum tank evacuated to a pressure of 10−6 mbar, 
which contains a 75 m long fiducial decay volume (FV) starting 
2.6 m downstream of GTK3. The beam divergence at the FV en-
trance is 0.11 mrad (rms) in both horizontal and vertical planes. 
Downstream of the FV, undecayed beam particles continue their 
path in vacuum.

Momenta of charged particles produced by K + decays in the FV 
are measured by a magnetic spectrometer (STRAW) located in the 
vacuum tank downstream of the FV. The spectrometer consists of 
four tracking chambers made of straw tubes, and a dipole magnet 
(M) located between the second and third chambers that provides 
a horizontal momentum kick of 270 MeV/c. The momentum reso-
lution achieved is σp/p = (0.30 ⊕ 0.005p)%, where the momentum 
p is expressed in GeV/c.

A ring-imaging Cherenkov detector (RICH), consisting of a 
17.5 m long vessel filled with neon at atmospheric pressure (with 
a Cherenkov threshold for muons of 9.5 GeV/c), is used for the 
identification of charged particles and for time measurement with 
70 ps precision for particles well above the threshold. Two scin-
tillator hodoscopes (CHOD), which include a matrix of tiles and 
two planes of slabs arranged in four quadrants downstream of the 
RICH, provide trigger signals and time measurements with 200 ps 
precision.

A 27X0 thick quasi-homogeneous liquid krypton (LKr) electro-
magnetic calorimeter is used for particle identification and pho-
ton detection. The calorimeter has an active volume of 7 m3, is 
segmented in the transverse direction into 13248 projective cells 
of approximately 2×2 cm2, and provides an energy resolution 
σE/E = (4.8/

√
E ⊕ 11/E ⊕ 0.9)%, where E is expressed in GeV. To 

achieve hermetic acceptance for photons emitted in the FV by K +
decays at angles up to 50 mrad to the beam axis, the LKr calorime-
ter is supplemented by annular lead glass detectors (LAV) installed 
in 12 positions inside and downstream of the vacuum tank, and 

two lead/scintillator sampling calorimeters (IRC, SAC) located close 
to the beam axis. An iron/scintillator sampling hadronic calorime-
ter formed of two modules (MUV1,2) and a muon detector (MUV3) 
consisting of 148 scintillator tiles located behind an 80 cm thick 
iron wall are used for particle identification.

The data sample used for this analysis is obtained from 
0.92 × 106 SPS spills recorded during 410 days of operation in 
2016–2018, with the typical beam intensity increasing over time 
from 1.3 × 1012 to 2.2 × 1012 protons per spill. The latter value 
corresponds to a mean instantaneous beam particle rate at the 
FV entrance of 500 MHz, and a mean K + decay rate in the FV 
of 3.7 MHz. Data recorded with a minimum-bias trigger based on 
CHOD signals [11], downscaled by a factor of 400, is used for the 
analysis. This trigger is 99% efficient for single charged particles in 
the CHOD acceptance.

2. Measurement principles and event selection

The rates of the signal processes are measured with respect to 
the K + → μ+ν decay rate. This approach benefits from first-order 
cancellations of residual detector inefficiencies not fully accounted 
for in simulations, as well as trigger inefficiencies and random veto 
losses common to signal and normalization modes.

Candidate signal decays, as well as the K + → μ+ν decay, are 
characterised by a single muon and no other detectable particles 
in the final state. Backgrounds are due to beam particle decays 
upstream of the vacuum tank, decays to multiple detectable par-
ticles, and inelastic interactions of beam particles in GTK3. Event 
selection is optimized to suppress these backgrounds. The princi-
pal selection criteria are listed below.

• A positively charged muon track is required to be recon-
structed in the STRAW spectrometer with momentum in the 
range 5–70 GeV/c. The track’s trajectory through the STRAW 
chambers and its extrapolation to the LKr calorimeter, CHOD 
and MUV3 should be within the geometrical acceptance of 
these detectors. The muon time is evaluated using the RICH 
and CHOD signals spatially associated with the track.

• Particle identification criteria are applied to the STRAW track 
to suppress the backgrounds due to misidentification. The ra-
tio of the energy deposited in the LKr calorimeter, E , to the 
momentum, p, measured by the STRAW spectrometer is re-
quired to be E/p < 0.2. For tracks with momentum below 
30 GeV/c, a particle identification algorithm is applied based 
on the RICH signal pattern within 3 ns of the CHOD time. In 
particular, tracks with momenta below the muon Cherenkov 
threshold must not be identified as positrons. At least one sig-
nal in the MUV3 detector must be within 3 ns of the muon 
time and spatially consistent with the projected track impact 
point in the MUV3 front plane.
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Fig. 2. Left: reconstructed m2
miss distributions for data and the estimated background. The full uncertainties (±1σ ) in each mass bin of the background spectrum for m2

miss > 0

are shown with a contour. The boundaries of the SM signal region |m2
miss| < 0.01 GeV2/c4 used for normalisation are indicated with arrows. Top-right: the region m2

miss >

0.03 GeV2/c4, with simulated hypothetical K + → μ+ν X (scalar mediator model, two mX values) and K + → μ+ννν̄ signals with branching fractions of 10−4. Bottom-right: 
ratio of data and simulated spectra in the region m2

miss > 0.03 GeV2/c4 with the full uncertainties. Systematic components of the uncertainties are correlated among the bins.

• Backgrounds from K + → μ+ν decays upstream of the KTAG 
and π+ → μ+ν decays upstream of GTK3, in coincidence with 
a beam pion or proton track in the GTK, are suppressed by 
requiring a kaon signal in the KTAG detector within 1 ns of 
the muon time.

• The decay vertex is defined as the point of closest approach of 
the K + track in the GTK and the muon track in the STRAW, 
taking into account the stray magnetic field in the vacuum 
tank. Identification of the K + track in the GTK relies on the 
time difference, 
tGK, between a GTK track and the KTAG sig-
nal, and spatial compatibility of the GTK and STRAW tracks 
quantified by the distance, d, of closest approach. A discrim-
inant D(
tGK, d) is defined using the 
tGK and d distribu-
tions measured with K + → π+π+π− decays [12]. Among 
GTK tracks with |
tGK| < 0.5 ns, the track of the parent kaon 
is assumed to be the one with the D value most consistent 
with a K + → μ+ decay. It is required that d < 7 mm to re-
duce the background from upstream decays.

• Background from K + → μ+ν decays between KTAG and GTK3 
with pileup in the GTK is suppressed by geometrical condi-
tions. The reconstructed K + decay vertex is required to be 
located in the FV at a minimum distance from the start of 
the FV, varying from 8 m to 35 m depending on the angle 
between the K + momentum in the laboratory frame and the 
muon momentum in the K + rest frame.

• Backgrounds from K + decays to multiple detectable particles 
are suppressed by veto conditions. The muon track must not 
form a vertex with any additional STRAW track segment. En-
ergy deposits are not allowed in the LKr calorimeter that are 
spatially incompatible with the muon track within 12 ns of 
the muon time. No activity is allowed in the large-angle (LAV) 
or small-angle (SAC, IRC) photon veto detectors within 3 ns 
of the muon time, or in the CHANTI detector within 4 ns of 
the muon time. No more than two signals in the CHOD tiles 
within 6 ns of the muon time, and no more than three sig-
nals in the RICH PMTs within 3 ns of the muon time, spatially 
incompatible with the muon track, are allowed. Data loss due 
to the veto conditions from accidental activity (random veto) 
averaged over the data sample is measured to be about 30%.

The squared missing mass is computed as m2
miss = (P K − Pμ)2, 

where P K and Pμ are the kaon and muon 4-momenta, obtained 
from the 3-momenta measured by the GTK and STRAW spectrom-
eters under the K + and μ+ mass hypotheses.

Monte Carlo simulations of particle interactions with the de-
tector and its response are performed with a software package 
based on the Geant4 toolkit [13]. The m2

miss spectra of the se-
lected events from data and simulated samples, and their ratio, 
are displayed in Fig. 2. The signal from the SM leptonic decay 
K + → μ+ν is observed as a peak at m2

miss = 0 with a reso-
lution of 1.5 × 10−3 GeV2/c4, and the SM signal region is de-
fined in terms of the reconstructed squared missing mass as 
|m2

miss| < 0.01 GeV2/c4. In contrast, the K + → μ+N , K + → μ+ν X
and K + → μ+ννν̄ decays are characterised by larger m2

miss values.

3. Normalisation to the K + → μ+ν decay

The effective number of K + decays in the FV, denoted NK , 
is evaluated using the number of K + → μ+ν candidates recon-
structed in the data sample. The quantity NK is not corrected for 
trigger inefficiency and random veto effects, which cancel between 
signal and normalisation thus making the NK value specific to 
this analysis. The background in the SM signal region is negligi-
ble (Fig. 2). It is found that

NK = NSM

ASM · B(K + → μ+ν)
= (1.14 ± 0.02) × 1010,

where NSM = 2.19 × 109 is the number of selected data events in 
the SM signal region, ASM = 0.302 ± 0.005 is the acceptance of the 
selection for the K + → μ+ν decay evaluated using simulations, 
and B(K + → μ+ν) = 0.6356 ± 0.0011 is the branching fraction of 
this decay [4]. The uncertainty of ASM, which dominates that of 
NK , is mainly systematic due to the accuracy of the simulation, 
and is evaluated by variation of the selection criteria including the 
algorithm used for identification of the K + track in the GTK.

3
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Fig. 3. HNL mass resolution σm (left) and acceptance AN of the selection (right) evaluated from simulations as functions of the HNL mass. Boundaries of the HNL search 
region are indicated by vertical arrows.

4. Background evaluation with simulations

The main backgrounds to the potential signals at large m2
miss

values are due to the K + → μ+νγ , K + → π0μ+ν (π0 → γ γ ) 
and K + → π+π+π− decays inside and upstream of the vac-
uum tank. Their contributions are estimated with simulations. The 
K + → μ+νγ decay is simulated including inner bremsstrahlung 
(IB) and structure-dependent processes, and the interference be-
tween these processes [14].

The K + → μ+νγ and K + → π0μ+ν backgrounds arise from 
the photon detection inefficiency in the hermetic NA62 photon 
veto system, and photon conversions in the STRAW and RICH de-
tectors. Photon detection inefficiency is modelled for the simu-
lated events using the LAV, LKr, IRC and SAC inefficiencies mea-
sured as functions of photon energy using a K + → π+π0 decay 
sample [15]. To evaluate the systematic uncertainties in the back-
ground estimates, an alternative photon veto response model is 
used for the simulated events involving photon detector inefficien-
cies increased by one sigma of the measurements, and a conserva-
tive assumption that photons converting upstream of the STRAW 
spectrometer dipole magnet are not detected in the LAV, IRC and 
SAC systems. The latter assumption accounts for the different pho-
ton veto conditions used in this analysis with respect to those 
used for the inefficiency measurements [15]. The resulting system-
atic uncertainty of the estimated background comes mainly from 
the limited accuracy of the LAV inefficiency measurements. In par-
ticular, the LAV inefficiency is measured to be (0.30 ± 0.06)% for 
photons in the 0.3–3 GeV energy range, which contains most pho-
tons from K + → μ+νγ decays intercepting the LAV geometrical 
acceptance.

The accuracy of the description of the non-Gaussian m2
miss tails 

of the K + → μ+ν(γ ) decay is affected by the limited precision 
in the simulation of beam particle pileup and inefficiency in the 
GTK. This leads to a deficit of simulated events in the negative tail 
of the m2

miss distribution populated by the K + → μ+ν(γ ) decays 
only (Fig. 2). For example, a 40% deficit is observed in the region 
m2

miss < −0.05 GeV2/c4. To account for the missing component 
in the positive tail, it is assumed that the non-Gaussian tails of 
the m2

miss spectrum are left-right symmetrical. A “tail” component 
(shown separately in Fig. 2) is added to the estimated background 
in each m2

miss bin in the region m2
miss > 0 equal to the difference 

between the data and simulated spectra in the symmetric mass 
bin with respect to m2

miss = 0. A 100% uncertainty is conservatively 
assigned to this component to account for the above assumption.

The composition of the estimated background in the kinematic 
region m2

miss > 0.1 GeV2/c4 is reported in Table 1. The largest com-

Table 1
Estimated backgrounds in the kinematic region m2

miss > 0.1 GeV2/c4 with their 
uncertainties. The uncertainties labelled “PV” are systematic due to the accu-
racy of the photon veto efficiency modelling (positively correlated among the 
background sources), and the one labelled “tail” is systematic and accounts for 
the accuracy of the non-Gaussian m2

miss tail simulation.

Background source Estimated background

K + → μ+νγ 6224 ± 105stat ± 333PV ± 780tail

K + → π0μ+ν 1016 ± 47stat ± 178PV

K + → π+π+π− 309 ± 32stat

Total background 7549 ± 119stat ± 920syst

ponent is the radiative K + → μ+νγ (IB) tail, and its uncertainty 
is dominated by a contribution due to the accuracy of the de-
scription of the non-Gaussian tail. Further systematic uncertainties 
due to beam tuning, calibrations, trigger and reconstruction effi-
ciency are negligible compared with the overall systematic uncer-
tainty from the sources considered. The background represents an 
O(10−6) fraction of the number of reconstructed SM K + → μ+ν
candidates. Within the region m2

miss > 0.03 GeV2/c4, the estimated 
background agrees with the data within uncertainties (taking into 
account bin-to-bin correlations of the systematic uncertainties) as 
shown in Fig. 2.

5. Search for K + → μ+N decays

The K + → μ+N process is investigated in 269 mass hypothe-
ses, mN , within the HNL search region 200–384 MeV/c2. Distances 
between adjacent mN values considered are 1 (0.5) MeV/c2 be-
low (above) the mass of 300 MeV/c2. The decay is characterised 
by a narrow peak in the reconstructed missing mass (mmiss) spec-
trum. Therefore the K + → μ+N event selection requires that 
|mmiss − mN | < 1.5σm for each mass hypothesis mN , where σm

is the mass resolution evaluated with simulations, as shown in 
Fig. 3 (left). The resolution improves by a factor of three with re-
spect to the NA62 2015 data sample collected without the GTK 
spectrometer [16].

Considering the peaking nature of the K + → μ+N signal, the 
background in each mN hypothesis is evaluated using sidebands 
in the reconstructed mmiss spectrum of the data events. This 
method is more precise than one based on simulation. Sidebands 
are defined in each mass hypothesis as 1.5σm < |mmiss − mN | <
11.25σm , additionally requiring that mmiss is within the range 
188–386 MeV/c2. The number of expected background events, 
Nexp, within the ±1.5σm signal window is evaluated with a 

4
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Fig. 4. Left: observed number of events Nobs, observed upper limit at 90% CL of the number of signal events NS , and expected ±1σ and ±2σ bands of the upper limit in 
the null hypothesis for each HNL mass value considered. Right: single event sensitivity values of BSES(K + → μ+N) (dashed line) and |Uμ4|2SES (solid line) as functions of the 
assumed HNL mass. Boundaries of the HNL search region are indicated by vertical arrows.

Fig. 5. Upper limits at 90% CL of |Uμ4|2 obtained for each assumed HNL mass, 
compared to the upper limits established by earlier HNL production searches in 
K + → μ+N decays at NA62 [16], BNL-E949 [19], OKA [20] and KEK [21]. The lower 
boundary of |Uμ4|2 imposed by the BBN constraint [22] is shown by a dashed line.

second-order polynomial fit to the sideband data of the mmiss spec-
trum, where the bin size is 0.75σm . The uncertainty, δNexp, in the 
number of expected background events includes statistical and sys-
tematic components. The former comes from the uncertainties in 
the fit parameters, while the latter is evaluated as the difference 
between values of Nexp obtained from fits using second and third 
order polynomials. The dominant contribution to δNexp is statisti-
cal, although systematic uncertainties become comparable as mN

approaches the boundaries of the HNL search region. Systematic 
errors due to possible HNL signals in the sidebands are found to be 
negligible; this check is made assuming |Uμ4|2 to be equal to the 
expected sensitivity of the analysis. The uncertainty in the back-
ground estimate, δNexp/Nexp, increases from 1–2% for mN below 
300 MeV/c2 to 10% at the upper limit of the HNL search region.

The signal selection acceptance, AN , as a function of mN ob-
tained with simulations assuming infinite HNL lifetime is displayed 
in Fig. 3 (right). The acceptance for a mean lifetime of 50 ns (con-
sidering decays to detectable particles) is lower by O(1%) in rela-
tive terms, making the results of the search valid for lifetimes in 
excess of 50 ns. For shorter lifetimes, the HNL mean decay length 
in the laboratory frame becomes comparable to or smaller than 

Fig. 6. Summary of upper limits at 90% CL of |Ue4|2 (red solid lines) and |Uμ4|2
(blue solid lined) obtained from HNL production searches in K + decays: this anal-
ysis, NA62 [16,17], BNL-E949 [19], OKA [20], KEK [21]; and in π+ decays: TRI-
UMF [23], PIENU [24]. The lower boundaries of |Ue4|2 and |Uμ4|2 imposed by the 
BBN constraint [22] are shown by the lower and upper dashed lines, respectively.

the length of the apparatus. Acceptances for lifetimes of 5 (1) ns 
decrease by factors up to 2 (10), depending on mN . Simulations 
reproduce the m2

miss resolution at the K + → μ+ν peak to a 1% 
relative precision. Modelling of the resolution outside the peak is 
validated using data and simulated K + → π+π+π− decay sam-
ples; the corresponding systematic effects on AN do not exceed 2% 
in relative terms [17].

The number of observed events, Nobs, within the signal window 
and the quantities Nexp and δNexp are used to compute the local 
signal significance for each mass hypothesis. It is found that the 
significance never exceeds 3 standard deviations, therefore no HNL 
production signal is observed. Upper limits at 90% CL of the num-
ber of K + → μ+N decays, N S , in each HNL mass hypothesis are 
evaluated from the quantities Nobs, Nexp and δNexp using the CLS
method [18]. The values of Nobs, the observed upper limits of N S , 
and the expected ±1σ and ±2σ bands of variation of N S in the 
null (i.e. background-only) hypothesis are shown in Fig. 4 (left).

The single-event sensitivity (SES) branching fraction BSES(K + →
μ+N) and mixing parameter values |Uμ4|2SES, corresponding to the 

5



The NA62 Collaboration Physics Letters B 816 (2021) 136259

Fig. 7. Left: expected background, its uncertainty, and expected ±1σ and ±2σ bands of the upper limit on the number at 90% CL of signal events NS in the null hypothesis, 
for each lower squared missing mass cut (m2

0) considered to optimize the definition of the K + → μ+ν X and K + → μ+ννν̄ signal regions. Observed numbers of events 
and upper limits of NS are shown for m2

0 values found to be optimal for certain mX hypotheses. Right: upper limits of B(K + → μ+ν X) obtained at 90% CL for each mX

hypothesis for the scalar and vector mediator models.

observation of one signal event, are defined in each HNL hypothe-
sis as

BSES(K + → μ+N) = 1

NK · AN
and

|Uμ4|2SES = BSES(K + → μ+N)

B(K + → μ+ν) · ρμ(mN)
,

with the kinematic factor ρμ(mN) given in Eq. (1). They are shown 
as functions of the HNL mass in Fig. 4 (right). The expected num-
ber of K + → μ+N signal events, N S , is written as

N S = B(K + → μ+N)/BSES(K + → μ+N) = |Uμ4|2/|Uμ4|2SES,

which is used to obtain upper limits at 90% CL of the branching 
fraction B(K + → μ+N) and the mixing parameter |Uμ4|2 from 
those of N S .

The upper limits obtained for |Uμ4|2 are compared with the 
results from earlier searches for the K + → μ+N decay [16,19–21], 
and the Big Bang nucleosynthesis (BBN) constraint [22], in Fig. 5. 
The results of the current study represent the first HNL produc-
tion search in the mass range 374–384 MeV/c2, and improve on 
previous NA62 results in the mass range 300–374 MeV/c2 [16] by 
more than an order of magnitude. In the range 200–300 MeV/c2, 
the sensitivity achieved is similar to that of the BNL-E949 experi-
ment [19].

A comparison of the above upper limits of |Uμ4|2 with the 
upper limits of |Ue4|2 obtained from HNL production searches in 
K + → e+N [16,17,21] and π+ → e+N [23,24] decays is shown in 
Fig. 6. Upper limits of O(10−5) obtained on |Uμ4|2 in the mass 
range 16–34 MeV/c2 from searches of the π+ → μ+N process [25]
are not shown. In comparison to the limits of |Uμ4|2 obtained 
from direct HNL decay searches [26,27], the limits from produc-
tion searches are weaker but more robust because they are based 
on fewer theoretical assumptions.

6. Search for K + → μ+ν X and K + → μ+ννν̄ decays

The K + → μ+ν X process is investigated in the framework of 
the scalar and vector mediator models, defined for non-zero medi-
ator mass mX [7]. In total, 37 mass hypotheses equally spaced in 
the range 10–370 MeV/c2 are examined. The K + → μ+ννν̄ decay 

is investigated assuming the SM differential decay rate distribu-
tion [8].

The true missing mass spectrum lies in the mX ≤ mmiss ≤
mK −mμ range for the K + → μ+ν X decay, and in the 0 ≤ mmiss ≤
mK − mμ range for the K + → μ+ννν̄ decay (neglecting the neu-
trino mass). In both cases, a signal would manifest itself as an 
excess of data events over the estimated background at large re-
constructed m2

miss values as shown in Fig. 2 (top-right). Therefore 
the event selection requires that m2

miss > m2
0. The m0 value is op-

timized to obtain the strongest expected upper limit of the decay 
rate in the null hypothesis, considering that signal acceptances and 
backgrounds both decrease as functions of m2

0. The optimization 
is performed independently for each of the possible signals listed 
above.

The numbers of background events, Nexp, and their uncertain-
ties, δNexp, estimated with simulations (Section 4) are shown as 
functions of m2

0 in Fig. 7 (left). Also shown are the expected up-
per limits at 90% CL of the number of signal events, N S , and their 
±1σ and ±2σ bands of variation in the null hypothesis, obtained 
from Nexp and δNexp using the CLS method [18] for each m2

0 value 
considered.

For the K + → μ+ν X decay in mX hypotheses of 320–370
MeV/c2, the signal region is defined m2

0 = m2
X (rounded up to the 

nearest multiple of 0.02 GeV2/c4), avoiding a significant loss of 
signal acceptance. For the K + → μ+ν X decay in mX hypotheses 
of 10–310 MeV/c2, and for the K + → μ+ννν̄ decay, the signal 
region is defined as m2

0 = 0.1 GeV2/c4. The background composi-
tion for this m2

0 value is reported in Table 1. Optimal sensitivity is 
obtained in this case with a reduced signal acceptance. In partic-
ular, the acceptance for the K + → μ+ννν̄ decay decreases from 
A0

μννν = 0.277 to Aμννν = 0.103.
The observed numbers of events and upper limits of N S for the 

above set of m2
0 values are displayed in Fig. 7 (left). Upper limits 

of B(K + → μ+ν X) in the scalar and vector X models as functions 
of the assumed mX , obtained from those of N S similarly to the 
HNL case, are shown in Fig. 7 (right). The limits obtained in the 
scalar model are stronger than those in the vector model due to 
the larger mean mmiss value.

In the search for the K + → μ+ννν̄ decay, Nobs = 6894 events 
are observed in the signal region m2

miss > 0.1 GeV2/c4, with an 
expected background of Nexp = 7549 ±928 events. This leads to an 
observed (expected) upper limit at 90% CL of 1184 (1526) events 
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for the number of signal events N S . An upper limit is established 
on the decay rate using the relation N S = NK · B(K + → μ+ννν̄) ·
Aμννν :

B(K + → μ+ννν̄) < 1.0 × 10−6 at 90% CL,

improving by a factor of 2.4 on the most stringent previous limit 
obtained by the BNL-E949 experiment [9]. Both this and BNL-E949 
K + → μ+ννν̄ results are obtained assuming the SM differential 
rate. However the reconstructed missing mass intervals analysed 
are complementary: mmiss > 316 MeV/c2 in this study, and 230 <
mmiss < 300 MeV/c2 at BNL-E949.

7. Summary

A search for HNL production in K + → μ+N decays has been 
performed using the data set collected by the NA62 experiment in 
2016–2018. Upper limits of the HNL mixing parameter |Uμ4|2 are 
established at the level of O(10−8) over the HNL mass range of 
200–384 MeV/c2 with the assumption of mean lifetime exceeding 
50 ns, improving on the previous HNL production searches. The 
first search for K + → μ+ν X decays has been performed, where 
X is a scalar or vector hidden sector mediator in the mass range 
10–370 MeV/c2, which decays to an invisible final state. Upper lim-
its obtained at 90% CL on the decay branching fraction range from 
O(10−5) for low mX values to O(10−7) for high mX values. An 
upper limit of 1.0 × 10−6 is obtained at 90% CL on the branching 
fraction of the K + → μ+ννν̄ decay, assuming the SM differential 
decay rate, which improves on the earlier searches for this process.
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