
CERN-TH-2020-205
LMU-ASC 48/20

Moduli-dependent Calabi-Yau and SU (3)-structure metrics
from Machine Learning

Lara B. Anderson a,1, Mathis Gerdes b,2, James Gray a,3, Sven Krippendorf b,4,
Nikhil Raghuram a,5, Fabian Ruehle c,d,6

a Department of Physics, Robeson Hall, Virginia Tech
Blacksburg, VA 24061, USA

b Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität
Theresienstr. 37, 80333 Munich, Germany

c CERN, Theoretical Physics Department
1 Esplanade des Particules, Geneva 23, CH-1211, Switzerland

d Rudolf Peierls Centre for Theoretical Physics, University of Oxford
Parks Road, Oxford OX1 3PU, UK

Abstract

We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics,
including for the first time complex structure moduli dependence. Our new meth-
ods furthermore improve existing numerical approximations in terms of accuracy and
speed. Knowing these metrics has numerous applications, ranging from computations
of crucial aspects of the effective field theory of string compactifications such as the
canonical normalizations for Yukawa couplings, and the massive string spectrum which
plays a crucial role in swampland conjectures, to mirror symmetry and the SYZ con-
jecture. In the case of SU(3) structure, our machine learning approach allows us to
engineer metrics with certain torsion properties. Our methods are demonstrated for
Calabi-Yau and SU(3)-structure manifolds based on a one-parameter family of quintic
hypersurfaces in P4.

1lara.anderson@vt.edu
2mathisgerdes@gmail.com
3jamesgray@vt.edu
4sven.krippendorf@physik.uni-muenchen.de
5nikhilr@vt.edu
6fabian.ruehle@cern.ch

1

ar
X

iv
:2

01
2.

04
65

6v
2

 [
he

p-
th

]
 1

9
M

ay
 2

02
1

Contents

1 Introduction 2

2 Ricci-flat CY metrics 4
2.1 Ricci flatness from a Monge-Ampère equation 4
2.2 CY example: quintic hypersurfaces . 5
2.3 Metric ansätze . 6
2.4 Accuracy measures . 7
2.5 Finding metrics with machine learning . 9
2.6 Learning the Kähler potential . 10
2.7 Learning the metric directly . 14

3 CY metrics with SU(3) structure 18
3.1 Learning an ansatz . 19
3.2 Learning the SU(3) structure directly . 22

4 Conclusions and future directions 25

A Sampling 27
A.1 Sampling by solving for the dependent coordinate 28
A.2 Illustration of rejection sampling . 28
A.3 Homogeneous sampling in projective space 29

B Algebraic metrics and Donaldson’s algorithm 30
B.1 Constructing the monomial basis . 30
B.2 Donaldson’s algorithm . 31

C Details for training H networks 33
C.1 Supervised training with Donaldson’s algorithm 34
C.2 Learning H by minimizing the Monge-Ampère loss (at constant ψ) 35
C.3 Learning H by minimizing the Ricci loss . 35
C.4 H networks with ψ dependence . 36
C.5 Network architectures . 37

D Details on metric training 38
D.1 NN with homogeneous coordinate input (ψ = 10) 38
D.2 NN with affine coordinate input (LDL output 0 < |ψ| < 10) 39

1 Introduction

Finding numerical approximations to metrics for the compact dimensions of string theory
is a subject which by now has a long history within the literature. Knowledge of such
metrics is not always necessary. In the case of Calabi-Yau (CY) compactifications, Yau’s
theorem [1] and techniques from algebraic geometry allow many quantities of interest to be
computed without explicit knowledge of the Ricci-flat metric on the extra dimensions [2].
For example, the massless spectrum of fields and superpotential Yukawa couplings can be
computed in a purely quasi-topological manner.

However, there are several quantities in the effective field theory for which knowledge of
the metric is apparently indispensable. The kinetic terms of matter fields, for example, are
determined by the Kähler potential. This is a non-holomorphic function that is therefore

2

inaccessible with the methods of algebraic geometry. One needs explicit knowledge of the
metric (and indeed often other structures) in order to compute this crucial aspect of the
low-energy effective field theory.

Unfortunately, Ricci-flat metrics on CY three-folds, being high-dimensional structures with
no continuous isometries, are seemingly prohibitively hard to find analytically. This has
led to the development of a number of numerical, and other, approaches to computing
these and related quantities in the literature [3–16]. One common feature which is seen
in such work is that each computation of a metric is performed at one point in moduli
space at a time. In many potential applications of such work, this is a serious limitation.
For example, whenever the dynamics of fields, and hence the moduli dependence of the
metrics, are relevant such a restriction is a serious impediment to progress.

In particular, knowing how the metric changes with the moduli is important for under-
standing moduli dependent masses in relation to the swampland distance conjecture [17]
and imprints of moduli in solutions to the electroweak hierarchy problem (e.g. [18]).

The need for a numerical approach to obtaining the metric on compactification manifolds
becomes even more acute in the more general arena of compactifications of SU(3) struc-
ture. The methods of algebraic geometry are largely not available in these cases, and thus
even quantities that can be addressed quasi-topologically in the CY case may require ex-
plicit knowledge of the compactification metric in this more general setting. In addition,
the class of compactification-suitable SU(3) structure solutions discovered thus far seem
to generically suffer from the presence of small cycles in the geometry, violating the con-
sistency conditions for a good supergravity approximation to the compactification. It is
perhaps surprising, therefore, that there is essentially no work on numerical approximations
to SU(3)-structure metrics in the string compactification literature.

Machine learning (ML), in particular through the recent advances in deep learning, offers
a flexible approach to finding solutions of differential equations. In this paper, we will
look at the application of machine learning techniques to both Ricci-flat metrics on CY
manifolds (see [12] for some related work and [19] for a review on data science applications
in string theory) and numerical approximations to metrics associated to more general
SU(3) structures.

We will explore a number of different but related approaches to learning moduli-dependent
metrics with neural network (NN) approximations:

• Learning the CY metric from a Kähler potential which can be trained in either a
supervised or unsupervised fashion (see Section 2.6).

• Learning the CY metric directly (see Section 2.7).

• Learning SU(3) structure metrics (see Section 3).

In more detail, we first construct NNs that interpolate between numerical approximations
to Ricci-flat CY metrics computed at different fixed points in complex structure moduli
space using Donaldson’s algorithm [4]. We then train metrics in an unsupervised fashion
by optimizing loss functions measuring the deviation from Ricci flatness (i.e. without using
Donaldson’s algorithm). For both types, the metrics are obtained from an “algebraic Kähler
potential” [20] and are learned as a function of moduli. We then discuss a method for
constructing neural networks which output approximations to Ricci-flat metrics using ML

3

techniques directly. We compare the efficiency of the methods we present with existing
techniques for computing numerical approximations to CY metrics. We find improved
performance in efficiency (i.e. given accuracy per computation time) in comparison to
existing algorithms.

Having studied the case of metrics of SU(3) holonomy, we will then turn to apply machine
learning techniques to the metrics associated to SU(3)-structures with non-trivial torsion.
We will again present two approaches: one based around the use of an ansatz and the
other concerning learning the metric directly. We verify these methods by reproducing
the exact analytic results for an SU(3)-structure metric obtained by one of the authors
in [21]. One of the reasons that the second of these approaches in particular appears to
be promising is that, in choosing contributions to the loss function, we will describe how
one can choose the non-zero torsion classes of the target SU(3)-structure. This contrasts
with the analytic approaches that have appeared in the literature, which propose an ansatz
for the forms defining an SU(3)-structure and then see which torsion classes that ansatz
gives rise to. In the context of string compactifications, this leads to a shooting problem.
Specific constraints on the torsion classes are imposed by the equations of motion of the
theory, and there is no guarantee that any given proposed ansatz will turn out to give an
SU(3)-structure with the required properties. Clearly, the approach that we will detail
here avoids this issue.

The rest of this paper is organized as follows. In Section 2, we discuss our setup to
approximate the complex structure moduli dependence of Ricci-flat CY metrics. Section 3
describes how approaches similar to the previous sections can be used to learn SU(3)-
structure metrics. We conclude and present an outlook in Section 4. Technical details about
our experiments and implementation of known algorithms can be found in the Appendices.

As this work was being completed, we became aware of related work in [22] which is
coordinated to appear simultaneously.

2 Ricci-flat CY metrics

The uniqueness and existence of metrics with vanishing Ricci curvature on compact Kähler
manifolds with vanishing first Chern class is long known.1 In this section, we first highlight
several important known results relevant for obtaining numerical approximations to these
Kähler metrics, with the goal of setting up our notation and to introducing examples used
in our ML approaches. We then discuss several approaches to finding numerical metrics
using deep learning and compare their performance with existing techniques.

2.1 Ricci flatness from a Monge-Ampère equation

The Ricci curvature on Kähler manifolds can be written in a simple form

Rī = −∂i∂ ̄ log det g , (2.1)

where the metric g = ∂∂K is obtained from the Kähler potential K. Solving this equation
for a Kähler potential corresponds to solving a fourth order partial differential equation
(PDE). The following idea reduces the problem to solving a second order Monge-Ampère
(MA) equation.

1Calabi conjectured that for a compact Kähler manifold with vanishing first Chern class there exists a
Kähler metric in the same cohomology class with vanishing Ricci curvature [23]. He proved uniqueness of
this metric and, subsequently, Yau proved the existence of such a metric [1].

4

One starts with any Kähler metric g on a CY d-fold and its associated Kähler form Jg.
The Ricci flat metric gCY with Kähler form J is supposed to be in the same cohomology
class. Hence, it can be written as

J = Jg + ∂∂φ (2.2)

for some smooth zero-form φ. The second order Monge-Ampère equation arises by noting
that there are two ways of building a (top) volume form. The first (top) volume form J3

arises from the Kähler form J corresponding to the Rici-flat metric. Another volume form
is given in terms of the holomorphic (3, 0) form Ω on the CY manifold by forming Ω ∧ Ω̄.
Since the top form is unique, these need to be proportional:

J ∧ J ∧ J = κ Ω ∧ Ω̄ (2.3)

for some κ ∈ C that is constant at any given point in moduli space. Using (2.2), this
becomes a Monge-Ampère equation for φ.

The deviation from this proportionality measures how close a given metric is to Ricci
flatness. We will return to this later in this section, when we discuss accuracy measures in
detail.

2.2 CY example: quintic hypersurfaces

While there are many CY spaces, and string theory applications desire techniques available
for all of these spaces—in particular examples with larger Hodge numbers—we restrict
ourselves to prototype complex d-dimensional hypersurfaces in Pd+1. Specifically, we focus
on the one-parameter family of hypersurfaces

pψ(~z) =
d+1∑
i=0

zd+2
i + ψ

d+1∏
i=0

zi = 0 , (2.4)

where the parameter ψ ∈ C encodes the complex structure dependence and where we
denote the homogeneous coordinates

~z = [z0 : z1 : . . . : zd+1] . (2.5)

In line with the degree of this equation, CY one-folds (i.e. tori) of this type are called cubics,
CY two-folds (i.e. K3 manifolds) of this type are called quartics, and CY three-folds are
called quintics. Most of our subsequent discussion is focused on the one-parameter quintic
hypersurfaces.

The holomorphic (d, 0) form Ω can be constructed straightforwardly for hypersurfaces or
complete intersections in projective ambient spaces [24]. If we restrict to a patch where
za = 1 (i.e. pick a set of local affine coordinates) and consider the coordinate zb as an
(implicit) function of the coordinates zc with c 6= a, b, the form Ω is given by

Ω =
1

∂pψ(~z)/∂zb

∧
c=1,...,d
c 6=a,b

dzc , (2.6)

where pψ is the hypersurface constraint as introduced in (2.4).

In practice, we will use two types of conventions for coordinates on the CY manifold. The
first choice is to stick to the full set of homogeneous coordinates, and pick the coordinate

5

for which |pψ(~z)/∂zb| is largest as the one the defining equation is solved for. Alternatively,
we can use affine coordinates in each different patch and pick the induced coordinate as
before. For numerical stability, it is best to go to the affine patch where we scale the
homogeneous coordinate with the largest absolute value to one, |za| = 1, and pick the
dependent coordinate as above. This convention defines the relation between the ambient
space and local coordinates on the CY manifold by uniquely specifying the patch and the
variables the CY hypersurface equations are implicitly solved for. Note that this choice of
affine coordinates leads to values in a unit ball, which readily normalizes the input for our
neural networks.

For sampling points on the CY space we use the method outlined in [6]. We fix a random
line in P4 by choosing two random points (with flat prior) on the unit sphere isomorphic
to P4. Intersecting this line with the hypersurface pψ(~z) = 0 gives five points on the CY
manifold which we use as our sample. It should be noted that these points are not sampled
with a flat prior on the CY manifold, which means that the points have to be weighted
accordingly in the numerical Monte Carlo integration of some function f :∫

Xψ

f dVolCY =

∫
Xψ

f
dVolCY

dA
dA ≈ 1

N

N∑
i=1

f(~zi)w(~zi) , (2.7)

where each of the N points is weighted with w(~zi) = dVolCY
dA |~zi . The numerator is evaluated

with the value of the top form dVolCY ∝ Ω ∧ Ω̄ and the denominator can be obtained
from the pullback of the Fubini-Study metric of the ambient space onto the hypersurface,
dA ∝ i∗pωFS

P4 . We refer the reader to Appendix A for more details.

The following discrete symmetries can reduce the number of independent components in
the Kähler potential ansatz. The quintic hypersurfaces (2.4) enjoy a Zd+2 × Zd+2 freely
acting symmetry

Z
(1)
d+2 : [z0 : z1 : . . . : zd+1] 7→ [α0z0 : α1z1 : . . . : αd+1zd+1] , α = e2πi/(d+2)

Z
(2)
d+2 : [z0 : z1 : . . . : zd+1] 7→ [z1 : z2 : . . . : zd+1 : z0] , (2.8)

i.e. these symmetries act by multiplication of complex phases and by cyclic permutation.
It should be noted that the full (non-free) symmetry group (Sd+2 ×Zd+2)oZdd+2 is much
bigger (here, Sd+2 denotes the permutation group and o a semi-direct product). We note
that the most generic hypersurface will not have these symmetries and we hence do not
enforce them in our ML models to keep our ansatz as general as possible.

2.3 Metric ansätze

There is a canonical choice of Kähler metrics in complex projective spaces called Fubini-
Study (FS) metrics. For a given complex projective space Pn, the FS Kähler potential can
be written as

K =
1

2π
ln(k) , k =

n∑
a=0

zaz̄a , (2.9)

and the corresponding Kähler metric is

gab̄ = ∂a∂ b̄K =
1

2π

kkab̄ − kakb̄
k2

, (2.10)

6

where the subscripts on k denote differentiation. These FS metrics can be generalised by
adding a Hermitian matrix H

k =
n∑

a,b̄=0

za Hab̄ z̄b̄ . (2.11)

So-called algebraic metrics are obtained by considering non-trivial pull-backs of these gen-
eralised FS metrics (2.11) defined in high-dimensional projective spaces to our ambient
space (i.e. P4 in the case of the quintic). The embedding is constructed via global sections
sα of line bundles which are non-trivial on the CY:

k =

Nk∑
α,β̄=0

sα(~z) Hαβ̄ s̄β̄(~̄z) . (2.12)

In practice, the basis of these sections is given by polynomials of degree k and grows like
Nk ∼ O(kd+1) for a d-dimensional CY manifold, i.e. Nk ∼ O(k4) for the quintic.2 An
interesting aspect of this parametrization is that linear combinations of the global sections
sα at degree k give the eigenfunctions corresponding to the first k + 1 eigenvalues of the
scalar Laplacian on P4, cf. [8].3 In this sense, the algebraic metrics can be understood as
spectral expansions with coefficients given by the H-matrix.

Donaldson’s algorithm [4] provides a method which determines H for any given k such
that H is balanced. In the limit k → ∞, these balanced metrics are unique and converge
to the Ricci-flat CY metric. Details about Donaldson’s algorithm, more definitions, and
our implementation can be found in Appendix B.2.

2.4 Accuracy measures

Measuring how close a given metric is to the Ricci-flat CY metric is useful for two reasons:

1. One can check the convergence of the numerical method and compare different nu-
merical approximations.

2. One can optimize the metric by minimizing these measures. In different words, if one
uses these measures as loss functions, finding Ricci-flat CY metrics is readily defined
in the language of ML.

In order to evaluate the quality of an approximation, the authors of [6] propose to compute
the quantity

η =
J ∧ J ∧ J

Ω ∧ Ω̄
=

(−6i) det g

Ω ∧ Ω̄
, (2.13)

which should be constant throughout the CY manifold. In fact, this should just be equal to
κ defined in Equation (2.3). Note that J here can be any Kähler form in the same Kähler
class (e.g. the Fubini-Study metric) and need not be the Kähler form of the Ricci-flat
metric. As an accuracy measure, the authors propose to compute

σ =
1∫

X Ω ∧ Ω̄

∫
X

∣∣∣∣∣1− 1

κ

J3

Ω ∧ Ω̄

∣∣∣∣∣ . (2.14)

2Polynomials containing the defining equations are removed. Details on the implementation are sum-
marized in Appendix B.1.

3The eigenvalues of the scalar Laplacian on P4 have increasing multiplicities due to the fact that they
carry representations of the SU(4) action on the projective space.

7

Hence, if η is constant at each point on the CY space, the integrand vanishes and σ = 0.
In practice, our losses can be of the generalized form

LMA = α

∣∣∣∣∣1− 1

κ

J3

Ω ∧ Ω̄

∣∣∣∣∣
n

, (2.15)

which allows for some overall re-scaling of J or Ω, the option of doing a Monte-Carlo
approximation of the σ accuracy. Note that a larger n punishes outliers in this measure
more strongly. In Section 2.6, we generally follow the authors of [6] and do not rescale
J or Ω to set κ = 1. When learning the metric directly in Section 2.7, we learn it in
a normalization such that κ = 1, i.e. we force the metric networks to learn the rescaled
metrics since we keep Ω fixed.

Alternatively, one can use the vanishing of the Ricci scalar as an accuracy measure when
we learn the Kähler potential directly. However, using two additional derivatives takes
longer and the numerics appeared to be less stable and accurate.

In addition to being Ricci flat, the solution has to be Kähler. Of course, if we learn a
Kähler potential, this property is guaranteed, so we only need to impose it when learning
the metric directly. The condition is that the fundamental two-form is closed,

dJ = 0 ↔ gī,k dzi ∧ dz̄̄ ∧ dzk = 0 = gī,k̄ dzi ∧ dz̄̄ ∧ dz̄k̄ . (2.16)

This leads to 9 non-trivial complex or respectively 18 real conditions

cijk = gī,k − gk̄,i = 0 . (2.17)

We implement these conditions by taking derivatives of the NN with respect to the input
variables. Note that this is different from the usual backpropagation in neural networks,
where derivatives are taken with respect to the parameters of the neural network layers.
As the induced coordinate, i.e. the coordinate which is implicitly specified in terms of the
other coordinates upon imposing the hypersurface constraint, is an additional input to our
network, we need to properly take this into account when taking derivatives. We have
implemented each of these 18 conditions ci for our networks. We measure the Kählerity
accuracy as follows

LdJ =
∑
i,j,k

||Re(cijk)||n + ||Im(cijk)||n , (2.18)

where in our experiments we have used both n = 1 and n = 2. A good cross-check which
we used to test our implementations is that this Kähler loss is zero for the FS metric.

The third consistency condition we need to impose is that the metric transforms correctly
on overlaps of patches of the projective ambient space. The Kähler potential ansatz in
Section 2.3 automatically satisfies the overlap conditions, so these conditions are primarily
used when we go beyond the ansatz in Section 2.7. Defining the standard patches Ui =
{zi 6= 0}, we can use the projective scaling to set zi = 1 and obtain an affine patch with
coordinates

~z(i) =

(
z0

zi
,
z1

zi
, . . . ,

zi−1

zi
,
zi+1

zi
. . . ,

zd+1

zi

)
. (2.19)

The transition function from Ui to Uj is then simply zi/zj . This allows us to compute the
transition functions for g. Denoting the transition matrix with Tij = ∂~z(i)/∂~z(j), we can
compute the metric g(j) in patch j from the metric g(i) in patch i via

g(j) = Tij · g(i) · T †ij . (2.20)

8

Almost all points4 lie in all standard affine patches Ui of Pd+1. Hence, if we use differ-
ent patches as inputs to describe the same point on the CY manifold, the metric should
transform as dictated by the transition functions between the patches.

In order to compute the overlap loss, we proceed as follows. As explained above, we usually
go to the patch Ui where i is the index of the coordinate of a point on the CY manifold
with the largest absolute value, and we solve for zj , where j is the index of the coordinate
which has the largest absolute value of the derivative ∂jpψ. Typically, in the input for the
NN we already divide all coordinates by zi. Now, we will also input the coordinates of the
point in question in other patches Uk with k 6= j and compute the resulting expression for
the metric based on this NN input. We then compute the expected value in the patches
Uk using the transition functions and write the transition loss as

LTransition =
1

d

∑
k,j

∣∣∣∣g(k)
NN(~z)− Tjk(~z) · g(j)

NN(~z) · T †jk(~̄z)
∣∣∣∣
n
, (2.21)

where the transition functions are as explained in (2.20) and the numerical values of points
we use are explained when we describe our metric networks in Section 2.7. We define the
matrix norm for n > 1 via the sum of all matrix components,

||Mµν ||n =
∑
µ,ν

|Mµν |n , (2.22)

and for n = 1 as the sum of the absolute values of all matrix elements Mµν . Finally, we
sum in the loss over all patches (except for j). Since we compute the loss for d overlaps,
we introduce a conventional factor of 1/d into the loss. Again, this loss is non-negative
and goes to zero if the metric transforms correctly across patches. In order to cross-check
the code, we can again use the Fubini-Study metric, which is well-defined on the overlaps.

2.5 Finding metrics with machine learning

Given the accuracy measures just discussed, it is clear that finding Ricci-flat metrics can
be formulated as a continuous ML optimization problem of the underlying algebraic and
differential equations. The first implementation choice one has to make is whether to learn
representations of the Kähler potential or the metric. A schematic overview of either setup
can be found in Figure 1. The present ML approach is in large parts facilitated by readily
available frameworks implementing auto-differentiation, as this allows one to optimize the
appropriate loss functions which involve derivatives of the Kähler potential and metric
respectively.5

The motivation for an ML approach is that an improvement in speed and accuracy by
using these numerical methods enables a study of CY metrics at a much broader scope.
The current numerical benchmark is given by Donaldson’s algorithm, which computes
metrics at a fixed point in moduli space and becomes significantly more expensive when
constructing more accurate metric approximations in the sense of Section 2.4.

A first approach is to use NNs for supervised regression on Kähler potentials using the
output of Donaldson’s algorithm as discussed in Section 2.6.1. Alternatively, instead of
performing fixed point iteration of the T-operator in Donaldson’s algorithm, we can use the

4That is, all points up to a measure zero set.
5We utilize PyTorch [25], Tensorflow [26], and JAX [27] in our experiments.

9

Model
learnable parameters θ

H Model
learnable parameters θ⃗z

gab̄

gab̄

K
ψ

⃗z

ψ

Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the σ-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k →∞, for finite, fixed k there exist better approximations (as quantified by the
flatness measure σ) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of theH-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d × d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of P4.

10

• The resulting Kähler potential is given explicitly in terms of the sections sα, and
consequently in terms of the coordinates za.

However, the disadvantage is that the Nk × Nk matrix H has N2
k real independent en-

tries, and Nk grows rapidly with larger k as can be seen from (B.3). Hence, this approach
requires more and more training data in order to fix the coefficients and allow the interpo-
lating NN to learn the complex structure dependence efficiently. It should be noted that
discrete symmetries can tremendously reduce the number of complex structure parameters.
Moreover, equivariance of s ·H · s̄ can force many entries of H to zero or to be equal. For
example in the case of the quintic (2.4) with k = 2, we find from (B.3) that H is a 15× 15
matrix. Due to H being Hermitian, this matrix has 152 = 225 independent real com-
ponents. However, the (multiplication by a complex phase and permutation) symmetries
force the off-diagonal entries to be 0 and impose relations between the diagonal entries.
This leaves only two real degrees of freedom in H. It is a nice cross-check that the off-
diagonal components automatically become zero and the respective diagonal components
automatically have the same numerical values in Donaldson’s algorithm, even if they have
not been chosen to for the initial matrix H(0) (see Appendix B.2.1).

2.6.1 Supervised regression of Donaldson’s Kähler potentials

First, we demonstrate that it is easily possible to train a NN to learn the moduli dependence
in a supervised learning setup. This provides a simple check that the NN architecture
has sufficient functional capabilities to learn the moduli dependence of H. To this end,
we compute the matrix H for different choices of complex structures using Donaldson’s
algorithm. The input to the NN is just the real part, imaginary part, and absolute value
of ψ and the output are the independent real and imaginary components of the Hermitian
matrix H.

Experiments: We present results for the quintic (2.4) with k = 3, which has Nk = 35.
We computed H for different values of ψ using Donaldson’s algorithm using 80000 points.
In one experiment, we randomly drew 100 values for ψ from a flat prior with −100 ≤
Re(ψ) ≤ 100 and −100 ≤ Im(ψ) ≤ 100 (see Figure 2 middle). We assess the quality of
the NN interpolation by comparing the error measure σ obtained by the NN on the test
set with the result one would obtain by using the “wrong” Kähler potential computed for
a point of the training set that is closest in complex structure moduli space (in Euclidean
distance). For reference, we also compare these results with the result that is obtained
from computing the Kähler potential at each point in the test set. In theory, this should
provide a lower bound for the quality of the approximation that can be obtained from the
NNs or from using a wrong but close-by approximation. In practice, as alluded to above,
Donaldson’s algorithm does not produce the Kähler potential with the lowest possible σ
error at fixed k, and we find that sometimes the NN and/or the nearest points produce
better results than a direct computation following Donaldson’s algorithm.

We also repeat this analysis, but this time we sample from a grid of complex structure
values of the form ψ = a+ ib with a, b ∈ {0,±1,±10,±100}) (see Figure 3 middle). Given
that computing H is very costly, especially for larger k, this grid contains only very few
samples as compared to the rather dense sampling used in the first experiment.

We use feedforward neural networks with 3 hidden layers and ReLU activation. The input
layer is three-dimensional, as it takes the real part, imaginary part, and the absolute value
of ψ. The output layer is N2

k -dimensional and gives the independent entries of H. We use
ADAM as an optimizer [28]. Overall, we find that the results do not depend stron gly on

11

−100 −50 0 50 100

Re(ψ)

−100

−50

0

50

100

Im
(ψ

)

ψ in train and test set

train

test

closest

−6
9.
82

+
66
.3
6i

19
.9
6
− 80

.4
6i

32
.2
9
− 7.

91
i

45
.6
8
+

86
.3
4i

−1
.4
9
+

99
.4
1i

95
.1
1
− 64

.2
5i

−8
1.
94

+
52
.8
i

−5
1.
29
− 40

.8
6i

−5
3.
87

+
63
.1
7i

51
.5
− 61

.4
6i

0.0

0.1

0.2

0.3

σ

σ of the test set

Algorithm

Donaldson

NN prediction

nearest value

Figure 2: (Left): Errors σ for Donaldson’s algorithm as a function of ψ for random sam-
pling. (Middle): Values of ψ used in the training and evaluation set. (Right): Comparison
of σ for different approximation approaches.

−102 −101 −100 0 100 101 102

Re(ψ)

−102

−101

−100

0

100

101

102

Im
(ψ

)

ψ in train and test set

train

test

closest

−1
00 10

0

−1
00
i

10
0i

−1
0
− 10

i

−1
0
+

10
i

10
− 10

i

10
+

10
i −1 i −i 1

0.0

0.1

0.2

0.3

0.4

0.5

σ

σ of the test set

Algorithm

Donaldson

NN prediction

nearest value

Figure 3: (Left): Errors σ for Donaldson’s algorithm as a function of ψ for sparse sampling.
(Middle): Values of ψ used in the training and evaluation set. (Right): Comparison of σ
for different approximation approaches.

hyperparameter choices such as the learning rate, the network architecture or activation
function, the optimizer, the batch size, etc. Further details are given in Appendix C.

The results of our two experiments are presented in Figures 2 and 3. On the left, we can
see the error measure σ in the complex ψ-plane. We find that σ increases by a factor of 2
between ψ ∼ O(1) and ψ ∼ O(100). This illustrates that for larger complex structure, we
need to go to larger k in order to achieve the same quality of approximation of the Ricci-flat
metric. However, interestingly, the error does not increase monotonically with |ψ|; indeed,
for very small non-zero ψ the error is larger than for ψ in the intermediate range.6 In
the figure in the middle, we show the training (blue) and test (orange) sets for ψ. On the
right, we plot σ for all points in the evaluation set as obtained from Donaldson’s algorithm,
from using the H as computed by the NN, and from using the wrong H as computed via
Donaldson’s algorithm for the closest available ψ in the training set.

As one can see for the randomly sampled points in Figure 2, the differences for this rather
fine sampling of points in the complex structure plane are not very large. While this means
that the NN works well, it also shows that the error one makes by taking the H that has
been obtained from Donaldson’s algorithm for a nearby point is not too large either. This
changes if the sampling of points in the complex structure plane becomes more sparse, as
shown in Figure 3 (note the log scale on the axes). In that case, for the innermost “square”
with {a, b} ∈ {±1,±1}, the results of using the nearest neighbor and the NN are small, as to
be expected from our results for densely sampled, randomly distributed ψ. However, as the
distance between the nearest neighbors and the actual complex structure point increases,
the nearest neighbor approximation becomes much worse than the NN prediction, as can
be seen from the outer square. This illustrates that the NN can already learn a reasonable

6This happens throughout the complex ψ plane, which is why we do not think that this is related to
the conifold point.

12

approximation of the functional form of the ψ dependence of the coefficients in H from a
relatively small sample, which is important since computing H is very time-consuming. Of
course one could compare the NN against interpolation/regression algorithms other than
neural networks. However, given the ease of implementing the NN, the extremely fast
training time, and the quality of the results we refrained from exploring this further.

2.6.2 Learning the Hermitian matrix H directly

In the previous section, we have shown that it is in principle feasible to train networks
that approximate the Ricci-flat metric by learning the H matrices produced by Donald-
son’s algorithm. While we have seen that only few data are needed for the supervised
training to produce useful interpolations, the approach is still limited by the accuracy and
corresponding computational cost of Donaldson’s algorithm.

Instead of building on top of Donaldson’s algorithm, we now study networks that are
trained directly using the Monge-Ampère loss defined in Equation (2.15) with n = 2. This
is similar to the approach of [9], with the key difference that we are learning the moduli
dependence of H. We find that this approach produces better accuracies while taking
similar amounts of time as Donaldson’s algorithm over a range of ψ values.

We performed several experiments to find the best NN architecture to model the maps
from ψ to H. Based on several experiments, we have found the following architecture to
work well. As input we take |ψ| and the complex angle arg(ψ). This is followed some
number of dense layers using the sigmoid activation function. Finally, another dense layer
(without activation) is added that maps to the needed number of complex parameters of
H. We have found that the Cholesky decomposition typically leads to better results than
encoding the real and imaginary parts directly, which ensures the output H is positive
definite in addition to Hermitian. Further technical details can be found in Appendix C.

As a balance between numerical cost and quality of approximation, our experiments here
are performed for k = 6, which corresponds to 42025 independent components in H (as
a general Hermitian matrix). We expect generally that optimal H matrices exist for each
degree k and value of ψ that converge to the Ricci-flat metric at a significantly faster rate
than Donaldson’s balanced metrics [9]. Our networks could in principle find these optimal
values of H. However, their ability to do so will be limited by the complexity of the model
that maps from ψ to H, and by the range of ψ values over which we optimize. In an
initial experiment where the network was optimized on uniform values 0 < |ψ| < 10, the
network reached a σ accuracy comparable to Donaldson’s algorithm at degree k = 12 (see
Figure 12 in the appendix). This is a noteworthy result, as training the network at k = 6
over the whole range of ψ takes only on the order of minutes, while Donaldson’s algorithm
at k = 12 takes on the order of days using the same hardware.

For the main experiment, we have chosen to use uniformly distributed values in the range
0 < |ψ| < 100. Figure 4 shows the σ-accuracy achieved by a network with one and two
dense hidden layers, respectively. These architectures were chosen as the best-performing
ones from a search over several architectures. Besides the performance on the training
range, the figure shows how well the network extrapolates beyond the training set for larger
values up to |ψ| = 1000. One can see an improvement in the σ accuracies compared to
Donaldson’s algorithm at the same degree k. This improvement is not only present over the
range our algorithm was trained on, but extends up to |ψ| ≈ 175, a factor of 2 beyond the
regime used during training. While the accuracy of the network extrapolation no longer
outperforms Donaldson’s algorithm beyond this point, it is still a better approximation

13

101 102 103

| |

10 1

100

Accuracy for
DenseModel-1
DenseModel-2
Donaldson k=6
Extrapolation from = 100

Figure 4: σ accuracies at k = 6 achieved by the dense network with one and two hidden
layers. The shaded area indicates the range of |ψ| that was not used during training,
and thus shows the extrapolation behavior of the networks. For reference, the σ accuracy
achieved by Donaldson’s algorithm for the same range of |ψ| is shown. The dashed line
corresponds to the extrapolation of using Donaldson’s balanced metric at ψ = 100 over
real values of ψ. The error band in each case corresponds to the maximal and minimal
value obtained respectively when evaluating the σ accuracy at different angles.

than an extrapolation of Donaldson’s metric at ψ = 100 over the entire shown range.
The latter is shown in the figure as a dashed line. In summary, the result shows that the
machine learning approach can predict very good approximations over a range of values
in moduli space. Moreover, it can also extrapolate (within reason) outside the training
region.

Our experiments show that this ML approach can outperform Donaldson’s algorithm in
efficiency (i.e. the accuracy which can be achieved in a given computing time). The accu-
racies achieved over the desired range of ψ is strongly dependent on the chosen network
architecture, as is the extrapolation behavior. Our primary focus here is showing the feasi-
bility of this ML approach, and we leave further optimization of the architectures to future
research.

2.7 Learning the metric directly

Instead of using a NN to learn the complex structure dependence of the matrix H, we can
also train a NN to directly learn a functional expression for the CY metric. The value
of the metric will depend on the position in the CY manifold as well as on the complex
structure. In contrast to the methods presented to learn the Kähler potential, we now aim
to learn the components of the metric g directly. This has several potential advantages:

• Instead of the need of predicting N2
k functions for learning the Kähler potential, the

NN always only needs to predict the independent components of the metric, i.e. d2

real parameters for a complex CY d-fold.

• In comparison to approaches which use a general ansatz for the Kähler potential,

14

learning the metric directly saves two derivatives when evaluating the Monge-Ampère
loss.

To the best of our knowledge, our experiments are the first to test whether these heuristic
differences can be numerically advantageous.

However, there is also a disadvantage as compared to the method discussed in Section 2.6.
The metric g is not automatically Kähler, nor does it automatically glue nicely across
patches of Pd+1. So, in addition to finding a Ricci-flat metric that solves the Monge-
Ampère equation (2.3), we will need to impose that the Kähler and gluing conditions are
satisfied. As mentioned previously, the fact that the Kähler property is not ensured by
construction also allows us to apply this approach to more general (non-Kähler) SU(3)-
structure metrics.

Finding a NN that computes the CY metric for a given point and complex structure then
comes down to optimizing the parameters of the NN subject to these three loss components:

L = λ1LMA + λ2LdJ + λ3Loverlap , (2.23)

where the optimal weighting λi of these losses have to be chosen experimentally in a
hyperparameter search.

Experimentally, we have found that it is beneficial to start near a solution which satisfies
the overlap conditions approximately. While we do not know the CY metric, we know
several metrics that are Kähler and glue nicely on the CY manifold: the Fubini-Study
(FS) metric on the ambient Pd+1 pulled back to the CY space. Since this provides a
promising starting point in the sense that out of the three consistency conditions only
the Ricci-flatness criterion needs to be optimized, we will start our network as a small
perturbation around the Fubini-Study metric utilizing one of the two ansätze:

g(1) = gFS + gNN , g(2) = gFS (1 + gNN) . (2.24)

A priori, it is unclear which type of network works better, and we experimentally deter-
mined which approach leads to the best result.

When outputting the information about the metric components we have explored two
directions, either to output the real and imaginary parts of the metric directly or the
components in the LDL decomposition of the metric

g = LDL† . (2.25)

Here, L is a complex lower triangular matrix with 1’s along its diagonal, whileD is a real di-
agonal matrix. When learning the metric directly, we output the independent components
of the metric

N(~z, ψ) =
(
g11, g22, g33,Re(g21),Re(g31),Re(g32), Im(g21), Im(g31), Im(g32)

)
. (2.26)

In the LDL parametrization, we output the non-determined components of this LDL de-
composition:

N(~z, ψ) =
(
D11, D22, D33,Re(L21),Re(L31),Re(L32), Im(L21), Im(L31), Im(L32)

)
. (2.27)

In the latter case, the determinant is computed as det(g) =
∏
iDii, but reconstructing the

actual metric requires two matrix multiplications.

15

2.7.1 Experiments

Below, we present two experiments to demonstrate that this method of learning the metric
directly works and produces results that clearly improve throughout training from our
starting point.

In the first experiment, we aim to learn the metric using a single neural network for all
patches. This network takes as an input the real and imaginary parts of a point on the CY
manifold in homogeneous ambient space coordinates, together with the real and imaginary
parts of ψ and the ambient space coordinates in which the pulled-back metric is expressed.
It should be noted that the information about the ambient space coordinates is available
implicitly to the NN, since we go to the patch where the largest absolute value of the
homogeneous ambient space coordinates has been scaled to one and where we have solved
for the coordinate with the largest |∂pψ/∂zi|. Adding information about which ambient
space coordinates have not been scaled to one or solved for only resolves a theoretical
ambiguity at a measure zero set of points on the CY manifold where two or more ambient
space coordinates have the same (largest) absolute value. We checked that omitting this
information actually does not impact training or final accuracies. For concreteness, we
only display results for ψ = 10 here.

In the second experiment, we train the network on points in the interval 0 < |ψ| < 10, and
we use a separate neural network for each patch. Each network takes as input the real and
imaginary parts of the points in affine coordinates for the respective patch, together with
the complex structure parameter ψ.

For both types of networks, we have performed hyperparameter tuning, as discussed in more
detail in Appendix D. The results shown below are achieved with standard feedforward
neural networks that have three hidden dense layers and a dense output layer with 9
output dimensions. In both cases, we have found that the multiplicative ansatz g(2) from
Equation (2.24) outperforms the additive ansatz.

The results for ψ = 10 are shown in Figure 5. The evolution of the three components
that make up the total loss function are plotted on the left. After 20 epochs, the σ error
measure has gone down from 0.2 to 0.06. Note that the σ loss can be read off from
the Monge-Ampère loss, since they are just proportional with proportionality constant
batch_size×λ1 = 9000. This flatness accuracy is the same level that is reached with
Donaldson’s algorithm for k = 6. We have observed that including more training points
(which are easily obtainable) improves the accuracies, and we expect this trend to continue.
Note that the initial points at zero epochs provide an approximate comparison to the
performance of the Fubini-Study metric, perturbed by a (small) random permutation of
the initialized but untrained NN. We also trained the NN with setting λ2 (middle) and λ3

(right) to zero; in other words, we do not optimize the NN to solve the Kähler condition and
the overlap condition, respectively. Interestingly, we find that nevertheless, these losses,
even if they were not being optimized for in the multiplicative ansatz, do not blow-up.
They increase by a factor of 15 and 2.5 respectively when compared with the loss at the
end of training where they are included in the optimizer.

In the second example, we learn the LDL-components of the metric, and we have a separate
network for each of the five coordinate patches. The training evolution is shown in Figure 6,
where we see that the σ accuracy is improving during training. We observe that the
individual networks exhibit jumps in the Monge-Ampère loss at different times, which occur
in close vicinity to increases in the overlap loss. In contrast to the previous implementation,

16

0 2 4 6 8 10 12 14 16 18 20

epoch

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

0 2 4 6 8 10 12 14 16 18 20

epoch

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

0 2 4 6 8 10 12 14 16 18 20

epoch

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

Figure 5: Evolution of the training loss during training. Left: Optimizing the NN with
all three losses. Middle: Optimizing the NN without Kähler loss (i.e. λ2 = 0). Right:
Optimizing the NN without overlap loss (i.e. λ3 = 0).

0 25 50 75 100 125 150 175 200

Epoch

10°7

10°6

10°5

10°4

10°3

10°2

10°1

100

L
os

s

Average Loss per Epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

|√|

10°1

6£ 10°2

2£ 10°1

3£ 10°1

4£ 10°1

æ

Sigma-Accuracy

Metric Network

Induced FS

0 25 50 75 100 125 150 175 200

Epoch

10°2

10°1

100

|g
N

N
i|
°

g
F

S
i|

|

Mean Deviation from induced FS-Metric

Figure 6: Left: Evolution of the validation loss components for our network trained on the
range 0 < |ψ| < 10. The loss components are averaged over the respective patch-networks.
Middle: σ accuracy of our network in comparison with the induced Fubini-Study accuracy.
The data points indicate the mean value of the performance, and the error bars show the
minimal and maximal accuracy on different patches. (We have multiple networks which
are trained here.) This average is also over four different angles θ for ψ = reiθ, namely
0, π/2, π, and 3π/2. The networks were trained on values of |ψ| < 10, and the performance
in the range 10 < |ψ| < 20 is obtained from extrapolation beyond the training set. Right:
Deviation from the induced Fubini study metric during training, averaged over each patch-
network and across the ψ values used for training.

we observe that when we do not include the overlap loss condition the overlap conditions
are severely violated. Since the first approach has a single neural network for all patches,
the difference between the two experiments comes down to the fact that the network in
the first experiment has shared weights between the patches, while the NNs in the second
experiment have separate weights that are, however, simultaneously optimized.

We want to point out that the magnitudes of the losses in Figures 5 and 6 should not
be compared directly, as the architectures, the normalization, and the points where the
networks were evaluated are different for both experiments. For a rough estimate of the
relative scaling of the losses, one can look at the beginning of the training, since both
architectures start close to the induced Fubini-Study metric. Alternatively, one can convert
the Monge-Ampère losses for the first experiment to σ accuracies (as explained above) and
then compare the result to the σ accuracies for the second experiment, which are plotted
in the middle of Figure 6.

As a final comment, it should be noted that for the CYs considered in this paper, the
Kähler class is fixed by the volume as measured by

∫
X J

3. This can be scaled out and
absorbed in

∫
X Ω∧ Ω̄. By fixing Ω from our construction (2.6) and by setting κ = 1 in the

loss (2.14), we fix the Kähler class. In more general setups with h11 > 1, this is not the

17

case. Then, one can simply integrate the pull-back of the numerical Kähler form over an
appropriate basis of intersections of pairs of divisors. With knowledge of the intersection
numbers, one can then pick out the coefficients of the duals of divisor classes in J . If one
wants to fix the Kähler class, one can easily add the Kähler class as input to the NNs and
enforce it by computing these integrals and adding them to the loss. Alternatively, one can
leave the Kähler class unspecified, but then one needs to be careful with the Monte Carlo
integration: since the weights depend on the Kähler class, they need to be re-evaluated
with respect to the Kähler class of the current, approximate metric after each update.

3 CY metrics with SU(3) structure

In this section, we will turn our attention to metrics that are associated to more general
SU(3) structures than the CY metrics with SU(3) holonomy. We will need a small amount
of background on SU(3) structures in general and how they appear in string theory com-
pactifications in particular. Here, we will quickly summarize the needed material following
the notation and conventions of [21], before proceeding to discuss how one can set up
numerical approaches to finding the associated metrics.

An SU(3) structure on a real six-dimensional manifold can be specified by two nowhere
vanishing forms. These are a real two-form J and a complex three-form Ω satisfying the
following algebraic relations.

J ∧ J ∧ J =
3

4
iΩ ∧ Ω , J ∧ Ω = 0 (3.1)

Given the pair of forms (J,Ω) obeying the algebraic conditions above, the nature of the
resulting SU(3) structure is encoded in five torsion classes. These are determined in terms
of the the exterior derivatives of J and Ω,

dJ = −3

2
Im(W1Ω) +W4 ∧ J +W3 (3.2)

dΩ = W1J ∧ J +W2 ∧ J +W5 ∧ Ω ,

together with the conditions W3 ∧ J = W3 ∧ Ω = W2 ∧ J ∧ J = 0, which make the above
decomposition of dJ and dΩ unique. Frequently in what follows it will be useful to have
straight forward formulae for extracting the torsion classes given J and Ω. They read:

W1 = −1

6
iΩydJ =

1

12
J2ydΩ , W4 =

1

2
JydJ , W5 = −1

2
Ω+ydΩ+ . (3.3)

Here, we use subscripts of ± to indicate real and imaginary parts, and the symbol y denotes
contraction with indices being raised with the metric. Given the expression for three of
the torsion classes in (3.3), the other two classes W2 and W3 can be trivially obtained
from (3.2). And given the data (J,Ω) of an SU(3) structure, one can easily reconstruct the
associated metric as gmn = J l

mJln where J l
m is the almost complex structure determined

by the three-form Ω.

As mentioned in the introduction, a wide variety of SU(3) structures appear in the sub-
ject of string compactifications. By far the most widely studied case is that were all of
the torsion classes vanish: this reduces to the Ricci-flat CY manifolds that have been
the focus of previous section. However, this special case is frequently studied simply for
computational ease, and many other possible torsion classes are of interest. In this pa-
per, we will present just one illustrative example: the general constraints on the torsion

18

classes of the Strominger-Hull system that are required for an N = 1 four-dimensional
Minkowski vacuum in heterotic string theory [29–31]. In that case, the requirement for a
good supersymmetric vacuum can succinctly be stated as follows:

W1 = W2 = 0 , W4 =
1

2
W5 = dφ , W3 arbitrary . (3.4)

Here φ is the heterotic dilaton. In this section, as an example of how machine learning
techniques can be used to numerically find metrics associated to non-Ricci-flat SU(3)
structures, we will generate metrics associated to structures of this form.

3.1 Learning an ansatz

One of the more difficult issues in numerically searching for an SU(3) structure is to ensure
that the forms J and Ω are globally well-defined and nowhere vanishing. One approach to
addressing this issue is to impose an ansatz which enforces such behavior from the outset.
As an example for this, we will consider a generalization of the ansatz that was considered
in [21]. This approach to machine learning SU(3) structure metrics is somewhat similar in
spirit to Section 2.6.2. It is important to note that in most of the discussion that follows,
we will consider the case where the moduli have been fixed to a specific value.

The ansatz we will consider will provide (torsional) SU(3) structures on CY three-folds
described as a complete intersection in products of projective spaces (CICYs). We can
describe such a manifold in terms of a configuration matrix.

Pn1 q1
1 . . . q1

K
...

...
...

...
Pnm qm1 . . . qmK

 . (3.5)

Such a manifold is the common solution set of K homogeneous equations in an ambient
space Pn1 × . . .×Pnm . Each column of q’s in (3.5) denotes the homogeneous multi-degree
of one of the K defining equations in the coordinates of the ambient space factors. Clearly,
the complex dimension of such a manifold is

∑m
i=1 ni − K. The condition that the first

Chern class vanishes can be satisfied by insisting that
∑

r q
i
r = ni + 1 for all i.

On such a manifold, we make the following ansatz

J =

m∑
i

aiJi , Ω = A1Ω0 +A2Ω0 . (3.6)

Here, Ji is the restriction to the CY manifold of an algebraic Kähler form for the ith

ambient projective space factor (this can be derived from a Kähler potential described
by (2.11)). Meanwhile, Ω0 is the usual expression for the closed holomorphic three-form
associated with the Ricci-flat structure on the CICY [24,32]. The ai are m real functions,
while A1 and A2 are complex functions. This ansatz becomes the same as that which was
used in the analytic work of [21] if we set A2 = 0 and replace the Ji with the restriction of
Fubini-Study Kähler forms. We note that including the form Ω0 in the ansatz for Ω can
be important in that it allows us to divorce the almost complex structure of the SU(3)
structure being considered from the integral complex structure inherited from the ambient
space. We will see this in more detail shortly.

The benefit of an ansatz such as (3.6) is that it automatically ensures that J and Ω are
nowhere vanishing and globally well-defined if the ai are taken to be everywhere positive

19

and if A1 and A2 are chosen to be nowhere vanishing. In addition, this ansatz automatically
defines an SU(3) structure for such choices of the undetermined functions, subject to one
further condition. While the second condition in (3.1) is automatic, the first is only satisfied
if the following relationship between the functions holds:

|A1|2 + |A2|2 =

m∑
i,j,k=1

Λijkaiajak (3.7)

In this expression, Λ is defined via the following equation.

Ji ∧ Jj ∧ Jk =
3

4
iΛijkΩ0 ∧ Ω0 (3.8)

Thus the ansatz (3.6), subject to the constraint (3.7) gives rise to a SU(3) structure, for
any appropriate choice of the functions that appear.

Given such an SU(3) structure, we can compute its torsion classes using (3.2) and (3.3).
We find that

W1 = 0 (3.9)

W2 = −i∂A1yΩ0 + i∂A2yΩ0 + i
∂(A1 +A2)

A1 +A2

yA1Ω0 − i
∂(A1 +A2)

A1 +A2

yA2Ω0

W3 =
∑
i

(dai −W4) ∧ Ji

W4 =
1

2

∑
i

Jiy(dai ∧ Ji)

W5 =
∂(A1 +A2)

A1 +A2

+
∂(A1 +A2)

A1 +A2

.

Note that if we set A2 = 0 we regain the expressions produced in [21] where W2 = 0 and
the form ofW5 was simpler. We see again here that the generalization of the ansatz we are
introducing does produce a qualitative difference to that which appeared in [21], even when
replacing the Ji with Fubini-Study Kähler forms. The almost complex structure which is
associated to the SU(3) structures described by the ansatz is no longer strongly linked to
that of the SU(3) holonomy structure. As such, it no longer has to be integrable: we can
describe non-integrable almost complex structures on the underlying complex manifold in
this manner, leading to the non-vanishing W2 in (3.9).

Given the ansatz (3.6), our goal is to set up a NN which takes as input the real and
imaginary parts of a point on the CICY threefold (in terms of homogeneous ambient space
coordinates), together perhaps with the real and imaginary parts of some coefficients in
the defining relation if such dependence is desired. As an output, the NN should give
the ai, A1, A2 and the H parameters appearing in the Ji’s, perhaps with some additional
ancillary data as we will describe shortly.

In terms of loss functions, several of the requirements that should be imposed are auto-
matically satisfied by (3.6). There is no need to have a contribution to the loss function
which aims to enforce global well-definedness and non-vanishing, for example, as we did
in Section 2.7. The ansatz itself guarantees the former, and encoding the ai and the real
and imaginary parts of A1 and A2 as exponentials of real functions would be sufficient
to enforce the latter. The result is also guaranteed to be an SU(3) structure given the

20

above discussion, if (3.7) holds. We have two options here. We can solve (3.7) explicitly
for one of the defining functions of the ansatz in terms of the others. Or we can include a
contribution to the loss function of the form,

LSU(3) =

∥∥∥∥∥∥|A1|2 + |A2|2 −
m∑

i,j,k=1

Λijkaiajak

∥∥∥∥∥∥
n

. (3.10)

The remaining contributions to the loss function would all be concerned with the torsion
classes of the SU(3) structure that we are trying to produce. Instead of imposing a
loss function trying to enforce Kählerity as in (2.18), one would ask instead that the
Wi take a given desired form. What would be required here would depend upon the
physical application, with different string constructions placing different constraints upon
the torsion classes. As a concrete example, let us discuss the loss functions that would be
used if a solution to the Strominger system (3.4) was desired.

We see from (3.9) that W1 = 0 is automatic given our ansatz, and for the Strominger
system W3 is arbitrary so that we do not need to include these quantities in any loss
function. This just leaves us with W2 = 0 and 2W4 = W5 = dφ as constraints to consider.
Combining (3.2) and (3.3), together with the condition W1 = 0, we obtain

W2 ∧ J = dΩ + (
1

2
Ω+ydΩ+) ∧ Ω . (3.11)

The conditionW2 = 0 can therefore be enforced by including the loss function contribution

LW2 =

∥∥∥∥dΩ + (
1

2
Ω+ydΩ+) ∧ Ω

∥∥∥∥
n

. (3.12)

The final set of conditions 2W4 = W5 = dφ is slightly less straightforward given that
we currently do not know, in any realistic application, what the profile for the heterotic
dilaton φ would be. This leads us to include φ as part of the output of the NN: this is an
example of the extra ancillary data that can sometimes be required in the output that was
mentioned above. Given the expressions for W4 and W5 in (3.3) we then add the following
contributions to the loss function:

LW4 = ‖JydJ − dφ‖n (3.13)

LW5 =

∥∥∥∥−1

2
Ω+ydΩ+ − dφ

∥∥∥∥
n

Combining the contributions in (3.10), (3.12) and (3.13), we then arrive at the following
total loss function, in the case where we are interested in SU(3)-structure solutions to the
Strominger system:

LStrominger = γ1LSU(3) + γ2LW2 + γ3LW4 + γ4LW5 (3.14)

Here, the γi ∈ R+ allow us to weight the various conditions being imposed differently,
analogously to the λ’s in (2.23). In the case where one solves (3.7) analytically, one would
of course set γ1 = 0. Clearly, analogous loss functions could be set up for the constraints
placed upon torsion classes by other string compactifications.

21

3.1.1 An example

Running a full analysis of an ansatz of the type described above is too complex for a first
attempt at using machine learning techniques to learn SU(3)-structure metrics. (Indeed,
we believe this is the first work on numerical SU(3)-structure metrics of any kind in the
physics literature). As such, instead of providing an explicit example in this sub-section,
we will defer providing sample computational results until the next. However, there is
one last issue that we should address before moving on to the subject of directly learning
the SU(3)-structure metric. In developing NN’s to describe SU(3) structures, there is a
question as to how to evaluate the trustworthiness of the results. Numerical methods for
constructing Ricci-flat metrics on CY manifolds benefit from several notable advantages
over those aimed at producing more general structures. One of these is that existence
theorems guarantee that a solution to the system exists. This is important as it shows
that the numerical approximations that are being obtained are close to full solutions to
the system, rather than just being metrics which approximate the desired properties in a
system which admits no exact solution. In particular, the method utilizing extremization of
an energy functional [9,13] can rest on Yau’s theorem [1], and Donaldson’s approach [4–7]
can use certain results pertaining to balanced metrics and the algebraic ansatz for the
Kähler potential [4, 33]. In the case of more general SU(3) structures, there are, to our
knowledge, no such existence theorems available.

To combat this issue, we will show that the numerical results that we will present in the
next sub-section approximate an explicitly known SU(3)-structure solution with torsion
on the quintic CY threefold [21]. For this solution, the authors of [21] give the following
expressions for the functions appearing in (3.6) where J is the Kähler form derived from
the Fubini-Study Kähler potential:

a1 =
1

π3

|∇p|2
σ4

, A1 = a2
1 , A2 = 0 , (3.15)

where σ =

4∑
a=0

|Xa|2 .

In this expression, p is the defining relation of the quintic hypersurface and the Xa are the
homogeneous coordinates on P4. In addition, the authors take J1 to be the Fubini-Study
Kähler form of P4 restricted to the quintic CY threefold, rather than the more general
algebraic Kähler potentials considered in (3.6). These choices lead, from (3.9), to torsion
classes

W1 = W2 = W3 = 0 , W5 = 2W4 = 2d(ln a1) . (3.16)

Comparison with (3.4) shows that these choices indeed lead to a solution to the torsion class
constraints that arise from considering the Strominger system of heterotic string theory.
To show that the methodology being proposed in this section for machine learning SU(3)-
structure metrics is viable, we will, in the next sub-section, show that the techniques being
implemented can correctly reproduce this known solution.

3.2 Learning the SU(3) structure directly

Starting from an ansatz such as (3.6) for an SU(3) structure, as we did in the last section,
has many advantages. The resulting structure is automatically globally well defined. It is
also automatically an SU(3) structure if we choose to solve (3.7) analytically. Nevertheless,
just as considered in Section 2.7 for the CY case, one could try and learn the Kähler form

22

(and threeform) of an SU(3) structure directly rather than leaning on an ansatz. Such an
approach, while much more ambitious, clearly has potential advantages. For example, the
ansatz (3.6) we have provided relies on the existence of known nowhere vanishing forms
on the space on which it is defined – restricting the possible manifolds to which analogous
techniques can be applied. In addition, we can see from equation (3.9) that the ansatz
(3.6) is constrained in the forms of torsion classes it can give rise to.

One possible strategy would be to take as inputs to a NN the real and imaginary parts of
points on some algebraic variety, and as outputs the components of the real two-form J and
the real and imaginary parts of the components of the complex three-form Ω at those points.
The global well definedness of the forms could be imposed using loss functions contributions
similar to (2.21) and simple contributions imposing the algebraic conditions (3.1) can be
implemented in a trivial manner. Contributions to the loss function guaranteeing that J
and Ω were nowhere vanishing, perhaps by constraining the eigenvalues of J at each point
and the contraction of Ω with its complex conjugate, would also have to be included.

An important advantage to such an approach to numerically determining SU(3) struc-
tures for string compacitifications would be the ability to ‘choose’ any set of torsion class
constraints by appropriate choices of loss functions. In the analytic approaches to SU(3)
structures that have been applied to date, one first makes an ansatz for the geometry
involved and then computes the torsion classes that can be achieved. This is a shooting
problem in that there is no guarantee that a given choice of ansatz may be capable of
reproducing the torsion classes necessary for a given type of string compactification. In an
approach such as that being discussed here, analogues of (3.12) and (3.13) could be used
to obtain any pattern of torsion classes desired, assuming that such a pattern is possible
on the manifold under consideration.

To illustrate this approach to numerically determining SU(3)-structure metrics, we will
provide an explicit example rather than outlining general formalism. The form a general
approach would take is rather clear given the above discussion, and it is perhaps useful
at this stage to present a concrete result. Rather than attempting to learn both forms of
the SU(3) structure in what follows, we will specify Ω and attempt to learn J . Such a
simplification has two benefits. First, it makes this initial foray into such work simpler.
Second, in doing so we will show that we can guide the system to learn the known example
of an SU(3) structure obtained in [21] and repeated in Section 3.1.1. This is important,
since reproducing a known solution gives us more confidence in the methods being espoused,
given the lack of existence theorems in this setting.

In more detail, we fix a three-form for the SU(3) structure Ω by using (3.6) and (3.15).
In that case, the torsion class W5 = 2d(ln a1) is fixed by (3.3) and we have W1 = W2 = 0.
If we wish to look for torsion classes compatible with the Strominger-Hull system, then
this also fixes W4 = 1

2W5 via (3.4). In order to try and reproduce the known solution of
Section 3.1.1, we will look for a case where W3 = 0. In general, we are not guaranteed to
find a solution withW3 = 0 and indeed we could leave this torsion class as an output of the
NN rather than specifying its value. However in the case at hand, requiring its vanishing
will allow us to verify the validity of our techniques by recovering the known solution of
Section 3.1.1. We then have a complete specification of the torsion classes desired and can
attempt to learn the two form of the SU(3) structure J .

We will need several contributions to the loss function. First we implement a loss of the

23

0 2 4 6 8 101214161820222426283032343638404244464850

epoch

100

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

Figure 7: Change in loss during training for the SU(3)-structure example.

form

LSU(3) =

∥∥∥∥1 + i
4

3

J ∧ J ∧ J
Ω ∧ Ω

∥∥∥∥
n

(3.17)

in order to impose the first of the algebraic conditions defining the SU(3) structure ap-
pearing in (3.1). Note that given the index structure we will impose on J and the form
of Ω being taken, the second of the constraints in that equation are automatic. This is
the same loss as appeared in (2.15), given a different name as we are no longer searching
for a Ricci-flat metric. It is a useful fact that this loss function also enforces the nowhere
vanishing condition on J , given the nowhere vanishing nature of the expression being used
for Ω. We also need to impose the transition loss (2.21) which also remains unchanged
from the CY case. In order to impose the torsion class constraints discussed above, we can
use equation (3.2). For our torsion classes, the condition simply becomes

dJ = W4 ∧ J . (3.18)

Hence, we will use the loss

L′W4
= ||dJ − d ln a1 ∧ J ||n , (3.19)

which closely resembles the Kähler loss (2.18).

We will use the same example as for the CY metrics in earlier sections, i.e. the quintic with
one parameter ψ = 10. We also leave all other hyperparameters unchanged; in particular,
we choose the weight factor γ1 of the contribution to the SU(3) loss function to be 10, all
other γi to be one, and set n = 1 (so that we are using the L1 norm for the losses and not
weighting outliers disproportionately strongly). We use multiplicative boosting from the
Fubini-Study metric. Figure 7 shows how the losses change over the course of training. As
a measure for how much the metric improves during training as compared to the Fubini-
Study metric, we compute the equivalent of the η error measure, i.e. the departure from
the Monge-Ampere equation averaged over all points on the manifold in the test set:

〈ηSU(3)〉 =
1

Npts

Npts∑
i=1

∣∣∣∣∣∣1− 3i

4

Ω ∧ Ω̄

J3

∣∣∣∣∣
pi

∣∣∣∣∣∣ . (3.20)

24

We find that if we set the NN to zero, i.e. use the FS metric as the lowest order approxima-
tion to the SU(3)-structure metric, we get 〈ηSU(3)(gFS)〉 ≈ 40′000. In contrast, the metric
after training gives 〈ηSU(3)(gNN)〉 ≈ 1.2, i.e. an improvement of 5 orders of magnitude.

The error measure (3.20) is closely related to the loss function (3.17). In addition, this
quantity is only a measure of how close we are to some SU(3) structure. It does not
demonstrate that we are correctly approximating the analytic example described in Sec-
tion 3.1.1. In order show that our numerics are approaching this known solution we wish
to consider an error measure of the following form.

Eknown = ||gnumeric − gknown||n (3.21)

In this expression gnumeric is the output of our trained NN and gknown is the known solution
computed from the quantities given in Section 3.1.1. In fact, some caution is required here
as even if the numerical results were approaching the analytic expression, the two could
be related by a non-trivial coordinate transformation. If such a coordinate transformation
is to preserve the form of the quintic polynomial (2.4), then it must be linear. Additional
constraints are placed upon this transformation by the requirement that it preserve Ω,
which is the same for the numerical and exact solutions. Imposing these two constraints on
the set of possible coordinate transformation provides us with a small list of possibilities
that must be considered, and in considering (3.21) we choose the transformation that
minimizes its value.

Proceeding in this manner, we obtain a measure of how accurately our NN is reproducing
the analytic solution of Section 3.1.1. If we choose n = 1, we find that Eknown goes from
0.511 for the Fubini-Study metric to 0.025 for the output of the NN. Moreover, choosing
higher values of n makes the improvement even more notable - showing that the numerical
result has fewer outlying regions that are far from the desired solution. For example, if we
choose n = 2 then we obtain values of 0.59 and 0.017 respectively. Thus we find that the
machine learning techniques described in this section are indeed capable of reproducing
known results for SU(3) structures on six-manifolds. This gives us confidence that such
techniques can be useful in this arena going forward.

One can imagine many long term goals of the approach to obtaining explicit SU(3) struc-
ture metrics discussed in this section. For example, one could in principle add contributions
to the loss function designed to ensure that there are no small cycles anywhere in the target
geometry (an issue common to all known SU(3) structure solutions with non-trivial torsion
to date). Even the most basic implementation of this approach is beyond the scope of the
current paper, however, and we leave the exploration of such possibilities to future work.

4 Conclusions and future directions

CY geometries play an important role in string compactifications. However, the fact that
no explicit, analytic CY metrics are known has formed a substantial barrier to progress
in a wide range of physical applications. As a result, the need for numerical approxima-
tions has been long-standing. In this work, we have demonstrated that the techniques of
ML can serve as an important addition to this literature, producing results on par with
or surpassing those obtained from methods such as the Donaldson algorithm and energy
minimization, while at the same time naturally including complex structure moduli de-
pendence. In particular, the techniques presented in the previous sections provide both
certain quantitative and qualitative improvements on the prior state of the art. The most

25

significant qualitative advances being that machine learning techniques allow us to effec-
tively study moduli dependence of CY metrics (something very difficult to achieve with
the Donaldson algorithm for example, which is formulated at a single point in the CY
moduli space) and importantly, to move away from the complex/Kähler regime entirely,
by approximating Ricci-flat but non-Kähler metrics for manifolds of special structure.

The key results of this work include the following:

• We have demonstrated that ML is a viable approach to finding Ricci-flat metrics in
the case of SU(3)-holonomy and SU(3)-structure manifolds. Comparing to existing
methods, we find that networks with relatively few dense layers converging to the
algebraic metrics outperform Donaldson’s algorithm in terms of efficiency (i.e. with
respect to the achieved accuracy given a certain runtime, cf. Figure 4). We also
find that our metrics generalize well beyond the range they have been trained on. In
general the runtime of all networks is very reasonable and our results can be obtained
on standard desktop CPU or GPU systems.

• We have presented the viability of two distinct approaches to approximating a CY
metric: 1) learning the Kähler potential and 2) directly learning the metric (Figures 5
and 6). This latter approach is a crucial step away from past approaches (which were,
by construction, tied to Kähler geometry) and the first to be generalizable to metrics
for SU(n) structure.

One additional difficulty arises for our directly learned metrics, namely that the loss
on the overlap and for the Kähler condition is non-vanishing. Pragmatically, we
observe that the loss can be kept at a small order compared to what we have started
out with, while at the same time the Monge-Ampère-loss is changed by an order of
magnitude. We hence consider these solutions as non-trivial approximations for Ricci-
flat metrics. This allows us to also search for general solutions with SU(3)-structure.
We demonstrate for the first time that NNs can find such solutions (Figure 7) by
reproducing the known, exact results of [21].

• We have demonstrated that ML can shine light on previously difficult to determine
moduli dependence of CY metrics. In particular, we have applied Donaldson’s algo-
rithm to obtain expressions for the CY metric at different points in complex structure
moduli space and then trained a NN to learn from that the CS moduli dependence
(Figures 2 and 3).

• Within the context of SU(3)-structure solutions, our methods have a potentially
important flexibility in that it is possible to approximate a metric given an explicit
choice of torsion classes. This is in contrast to most other available methods of gen-
erating SU(3)-structure solutions, which often fix the torsion classes. This flexibility
could prove useful in applications within string model building.

There are many possible directions in which this work could be extended or applied in the
future. Beginning with CY metrics, it is clear that our approach could be readily extended
to more general algebraic varieties. For concreteness in the present work, we focused on
the quintic one parameter hypersurfaces. However, our architectures can easily accommo-
date the additional complexity of complete intersection manifolds in more general ambient
spaces. Towards this end, we find it encouraging that our algebraic metrics for k = 6
are optimizing all components of H rather than just non-vanishing components due to
symmetry constraints (which have been heavily employed in previous work to ensure that

26

algorithms can actually finish in finite time). In a related spirit, we view the metrics with
SU(3) structure studied here as a proof of concept that ML methods are capable of pro-
ducing non-Kähler results. Clearly, it would be of interest to continue such investigations
into more general classes of SU(3)-structure metrics, or indeed to any special structure
manifold. As one particular example, applying ML techniques to metrics for manifolds
with G2 holonomy/structure could potentially provide interesting new classes of examples,
where existing examples/constructions are scarce.

It is clear that are a number of natural and very related geometric applications for these
tools and the approximate CY metrics we have generated. Many string compactifications
involve additional geometric data in the form of slope-stable vector bundles, fluxes, or spe-
cial sub-cycles (including Special Lagrangian subvarieties of CY 3-folds). The techniques
we have developed here could readily be extended to learn these associated structures – for
example the associated Hermitian-Yang-Mills connection on a slope poly-stable vector bun-
dle (something that has already been attempted via the Donaldson Algorithm [5,11,34,35]).
Lastly, we could use the approximate metrics generated here to probe theoretically expected
structure. This could include decompositions of the metric into fiber/base components in
the case of elliptic or K3 fibrations, or in the large complex structure limit one should be
able to see that any CY manifold is a T 3 fibration according to the SYZ conjecture [36].

Finally, our primary goal in beginning this study was the hope that these tools will be
of use in applications to string phenomenology and the study of the string swampland.
As mentioned previously, canonically normalized kinetic terms are needed to determine
particle masses/excitations in string vacua, and for this the explicit metric must be known
(see e.g. [8]). These masses, together with their moduli dependence, play an important role
in the recent discussion of the string swampland, especially in the distance conjecture [17].
Finally, the moduli dependence of the metric will also play a vital role in the quest for
moduli stabilization. We hope to turn to some of these open questions in future work.

Acknowledgments

We would like to thank Chris Beasley, Michael Douglas, Koji Hashimoto, Andre Lukas
and Dieter Lüst for helpful discussions. We are very grateful to various conferences and
workshops in recent years which allowed us to discuss in various combinations about this
research and to present preliminary results of this work. In particular this includes: MITP
program on String Theory, Geometry and String Model Building, SCGP programs on Ge-
ometry and Physics of Hitchin Systems and Neural Networks and Data Science Revolution,
String Phenomenology conferences in 2018 and 2019, DLAP 2019 in Kyoto and Corfu work-
shop on Recent Developments in Strings and Gravity 2019. LA and JG are supported in
part by NSF grant PHY-2014086. NR is supported by NSF grant PHY-1720321.

A Sampling

This appendix summarizes known results from the literature about sampling and sum-
marizes our conventions. We start by discussing two methods for sampling points on the
hypersurface. We then present a simple example on why restricting to the CY hypersurface
can lead to a point sample with a non-flat prior and discuss how our re-weighting of points
is implemented.

27

A.1 Sampling by solving for the dependent coordinate

We use the following method to generate training data for our metric neural networks
utilizing one network per coordinate patch, which are presented in Section 2.7.

Recall that to obtain an affine patch of an n-dimensional variety X, we go to a patch Ui
of the ambient space Pn+1 where zi = 1, and we solve for a coordinate zj with j 6= i.
Thus, a basic approach for generating points on X is to first sample n complex numbers(
z

(i)
0 , . . . , z

(i)
n+1

)
, where we have skipped over z(i)

i and z(i)
j . We then solve pψ

(
~z(i)
)

= 0 for

z
(i)
j to obtain affine coordinates in patch Ui of the ambient space Pn+1. These numbers,
along with information specifying the chart Ui of the ambient space, uniquely define a
point on X. Depending on the manifold, one may have to restrict the sampling of the
initial coordinates so that the equation pψ

(
~z(i)
)

= 0 has a solution for the last coordinate.
Note that, if the defining polynomial is symmetric under coordinate permutation, one may
be able to use the coordinates generated for a point on one patch to immediately obtain
points on other patches.

For example, in the case of the Fermat quintic (ψ = 0 and n = 3), we have in the affine
patch U0 that

p0

(
~z(0)
)

= 1 +

4∑
i=1

(
z

(0)
i

)5
. (A.1)

If j is 4, one can then solve for z(0)
4 given

(
z

(0)
1 , z

(0)
2 , z

(0)
3

)
:

z
(0)
4 = 5

√√√√−1−
3∑
i=1

(
z

(0)
i

)5
. (A.2)

Since there are in general five fifth roots, one gets for each choice of initial complex values
five points on X.

The crucial step is to find the solutions of the single-variable complex polynomial equation
pψ(~z) = 0 (with all but one affine coordinate fixed). A fast method to do this is by
computing the eigenvalues of the polynomial’s companion matrix.

A.2 Illustration of rejection sampling

To illustrate that the measure when restricting to the CY hypersurface is non-flat, let us
consider points on the unit disk. One way of getting a flat distribution of points inside
the disk would be to just randomly sample points in the interval [−1, 1] × [−1, 1] and
throw away those points that do not lie inside the disk, cf. the left-hand-side of Figure 8.
This type of rejection sampling works in our case as well, but it is extremely ineffective,
especially at larger ψ. So if one used spherical coordinates x+ iy = reiϕ and sampled with
a flat prior r ∈ [0, 1], ϕ ∈ [0, 2π], one would get only points inside the unit disk. However,
as shown in Figure 8 on the right, the induced measure on the disk is not flat. In our
case, the way to correct the auxiliary measure to account for this sample bias (i.e. how
to compute the weights of each point) is explained in [6], and we comment below on the
implementation.

28

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 8: Illustration of rejection sampling (left) and how the induced measure for sampling
spherical coordinates with a flat prior can be non-flat (right) using the example of the unit
disk.

A.3 Homogeneous sampling in projective space

For all other network discussed in this paper, we sample points on the manifold X using
intersections with a line, which involves the following steps:

1. Uniformly sample two points ~a,~b ∈ Pn+1, thereby defining a complex line.

2. Compute the following polynomial in the complex variable t:

pψ(~a+ t~b) = 0 , (A.3)

where pψ(~z) is the defining homogeneous polynomial of X. This can either be done
manually given a specific defining equation, or using a library for symbolic manip-
ulations. This was done for the implementation here using SymPy [37], making it
more easily extendable to other defining equations)

3. Solve the defining equation for t, for example by finding the eigenvalues of the poly-
nomial’s companion matrix or simply numerically.

4. Due to the multiplicity of roots, each chosen line intersects the manifold in n + 2
points ~z = ~a+ t~b.

One can uniformly sample points on Pn+1 by first sampling real numbers from S2(n+2) and
combining them into complex numbers representing homogeneous coordinates. There are
multiple algorithms for sampling points on a real sphere; an efficient one is to independently
sample coordinates from a normal distribution and then divide by their norm.

Since the line is chosen uniformly in projective space, this sampling algorithm leads to
points on the manifold that are not uniform to its volume form, but uniform with respect
to the Fubini-Study metric on the ambient space.

A specific example of the difference between the two sampling algorithms defined above
can be found in Figure 9.

29

1.0 0.5 0.0 0.5 1.0
z1

1.0

0.5

0.0

0.5

1.0
z 2

solve for dependent coordinate

Real
Imag

1.0 0.5 0.0 0.5 1.0
z1

line intersection

Real
Imag

Figure 9: Scatter-plot comparing real and imaginary parts of the affine coordinates of
the variety in P2 defined by z3

0 + z3
1 + z3

2 + 10 z0z1z2 = 0, generated using either sampling
algorithm introduced in Section A. The values all lie in the affine patch Û0 defined by
|z1|, |z2| ≤ |z0| = 1.

B Algebraic metrics and Donaldson’s algorithm

B.1 Constructing the monomial basis

When the basis of the line bundle OPn+1(k), given by all homogeneous monomials defined
in the homogeneous projective coordinates, is restricted to X, the basis has to be reduced
for k ≥ n+2. The reason is that on X the defining polynomial , pψ vanishes, which means
that all polynomials containing pψ (a degree n+ 2 polynomial) must be removed to obtain
a basis. Formally, the basis is defined as

C[z0, . . . zn+1]k /
〈
pψ(~z)

〉
, (B.1)

where 〈
pψ(~z)

〉
= pψ(~z)C[z0, . . . zn+1]k−(n+2) . (B.2)

Another perspective on this is that each linearly independent polynomial in
〈
pψ(~z)

〉
can be

rewritten to express one of the constituent monomials in terms of the remaining monomials.
We get the following expression for the number of basis sections of OX(k):

Nk =

(
k + 4

k

)
−
(
k − 1

k − 5

)
. (B.3)

The second term is precisely the number of sections that become linearly dependent under
pullback. (We follow the convention that a binomial coefficient with negative entries is
zero).

To make this clearer, consider k = 6, n = 3, and pψ(~z) =
∑

i z
5
i + ψ

∏
i zi. A basis of

〈pψ(~z)〉 is then given by multiplying pψ with the basis {z0, z1, z2, z3, z4} of C[z0, . . . , z4]1.
Since pψ vanishes, the following relations are generated

zj

∑
i

z5
i + ψ

∏
i

zi

 = 0 ∀j . (B.4)

30

Each of these 5 equations can be used to eliminate one monomial. One choice is to remove
all monomials zj z5

0 , j = 0, . . . , 4.

So far, the discussion of how the reduced monomial basis is obtained was on a mathematical
level. In practice, the sections can be represented using a matrix of integers. For example,
the monomial

s(~z) = z0 z
3
2 z3 (B.5)

of OP3(5) corresponds to the row vector

[1, 0, 3, 1] . (B.6)

The full basis of monomials of, for example, OP1(2) can be written as a matrix with each
row representing a monomial: 2 0

1 1

0 2

 . (B.7)

Given a defining equation such as p(~z) = z2
0 + z2

1 , each summand corresponds to a row in
the matrix. Solving for either summand and removing it from the basis thus corresponds
to deleting a row in the matrix. For the current example, either of [0, 2] and [2, 0] could be
removed to obtain a basis on X. Both the generation of the monomial basis on projective
space, and the reduction given a defining polynomial can be done algorithmically. This
allows the defining equation to be replaced without adding significant implementation
work.

B.2 Donaldson’s algorithm

Extending work of Tian [20], Donaldson presented in [4] an approximation scheme for Ricci-
flat CY metrics, which lends itself to numerical implementation on a computer. Indeed, the
method was adopted in the physics literature soon afterwards [6,7,12]. The algorithm relies
on the CY manifold X having an embedding into projective spaces (whose homogeneous
coordinates we denote collectively by ~z) and uses numerical integration paired with an
iteration procedure to approximate the Ricci-flat metric.

The algorithm is described in detail in [6, 7, 12], so we will just outline the different steps.
We have implemented the algorithm in Mathematica and JAX [27]. To test our implemen-
tations, we compared the results with [7, 12]. The algorithm finds the balanced metric as
follows:

1. Choose a (multi-) degree k of an ample line bundle to work with. The approximation
error was proven to go to zero as k →∞. The (multi-) degrees fix a direction in the
Picard lattice dual to the Kähler cone.

2. Find a basis of sections sα, α = 1, . . . , Nk of the line bundle which restrict non-
trivially to the CYmanifoldX in question (whereNk depends on k). This is described
in Section B.1.

3. Fix a complex structure and find points ~zi, i = 1, . . . , Np on X for this choice (e.g.
by intersecting a line defined by two randomly, uniformly distributed points in the
ambient space with the CY manifold). See Appendix A for the implementation.

31

4. Compute the weights wi, i = 1, . . . , Np of the induced distribution of sampled points
on X. (These are not drawn from a flat prior even though the ambient points were.)
In terms of these weights, the numerical integration reduces to∫

X
Ω ∧ Ω̄→ 1

Np

∑
i

wi ,

∫
X
J3 → 1

Np

∑
i

wi
J3

Ω ∧ Ω̄

∣∣∣∣∣
~z=~zi

. (B.8)

5. Choose a random initial Hermitian Nk ×Nk matrix H(0)

αβ̄
.

6. Compute

H̃
(`)

αβ̄
=

Nk∑
wi

∑
iwi sα(~zi)s̄β̄(~zi)∑
i sγ(~zi)H

(`)

γδ̄
s̄δ̄(~zi)

. (B.9)

The sum over the points and the weights appear from the numerical integration.

7. Set H(`+1) =
(
H̃(`)

)−1
and return to the previous step. Alternatively, sample new

points and re-calculate the weights and then go to step 6.

8. Repeat until we reach a fixpoint, i.e. H(`+1) ≈ H(`). In practice around 10-20 steps
are typically enough. We terminate the procedure either after a certain number of
steps or when the maximum absolute value of the difference of H(`+1) and H(`) is
smaller than 10−6.

9. The Ricci-flat Kähler metric is given in terms of the Kähler potential

K =
1

2πk
ln
(
sαHαβ̄sβ̄

)
(B.10)

From this example, we see that for k = 1, s = ~z, and H = 1(d+2)×(d+2), this is just
the FS Kähler potential.

The metric found in this fixpoint procedure is called balanced.

In order to arrive at an expression for the CY metric gCY, we need to perform two more
steps. First, we need to account for the projective rescaling degrees of freedom. This is best
done by going to an affine patch. We go to the patch where we scale the coordinates with
the largest absolute values to unity in order to ensure numerical stability of the algorithm.
We denote the affine patch coordinates by ~z.

Second, we need to pull back the metric computed from the Kähler potential, which is
produced by the algorithm above, to the CY manifold. On the CY space X, we can think
of m of the remaining m+ 3 affine coordinates as being (implicit) functions of the others.
Since the (3 +m)× (3 +m) metric ĝ in an affine patch but prior to pullback is given by

ĝab = ∂a∂bK , (B.11)

the 3× (3 +m) pullback map is given by

Cµa =
∂za
∂xµ

, (B.12)

where the xµ are local coordinates on X. It should be noted that this can be computed in
terms of derivatives of the defining equations with no need to actually solve the equations
for the m coordinates that are to be eliminated. The pulled back metric is then

gCY = i∗(ĝ) = C · ĝCY · C† . (B.13)

32

Implementation of Donaldson’s algorithm in pseudocode

Below is a simplified Python pseudocode which illustrates how a single iteration of Don-
aldson’s algorithm is computed.

1 def donaldson_step(variety, H, k, pows, ψ, vol_cy, count):
2 # Approximate the T operator for the ‘H‘-matrix of degree ‘k‘
3 # by a Monte Carlo sum over ‘count‘ sample points.
4

5 # accumulate the integral in this variable
6 T = zeros_like(H)
7

8 for i in range(count):
9 # pretend this returns a single point now, for simplicity

10 z = line_sample(variety, ψ)
11 z, patch = to_affine(z)
12

13 weight = mc_weight(variety, z, patch, ψ)
14 s = compute_monomials(z, patch, k)
15 s̄ = conj(s)
16

17 numerator = sαs̄β̄
18 denominator = sαHαβ̄sβ̄
19

20 dT = numerator / denominator * weight
21 T = T + dT / count
22

23 T = T * basis_size(variety, k) / vol_cy
24 new_H = invert(T).transpose()
25 return new_H

Implementation 1: Simplified algorithm for computing a single iteration of Donaldson’s
algorithm.

B.2.1 Finding equivariant elements via Donaldson’s algorithm

When evaluating the relative standard deviation over iterations of Donaldson’s algorithm
for multiple values of k and ψ in relation to their absolute value, we can identify two
clusters as shown in Figure 10. The blue cluster, containing most of the components,
corresponds to elements which are essentially vanishing and the fluctuations are relatively
large. The orange cluster has small fluctuations but includes several elements which are
small. The number of vertical lines in the orange cluster matches with the number of in-
variant polynomials under the discrete symmetries as it should. This provides a cross-check
that the numerical approximation is valid. Conversely, it can serve to detect underlying
symmetries in the Kähler potential.7 We leave a more systematic study of this observation
for the future.

C Details for training H networks

In this Appendix, we provide more details on the experiments we have performed for
learning the H matrix with and without using data obtained using Donaldson’s algorithm.

7See [38] for work on detecting symmetries in theoretical high-energy settings using NNs.

33

10 3 10 1

10 1

101

80

4, 820

k = 4

10 3 10 1 101

185

15, 440

k = 5

10 4 10 1

425

41, 600

k = 6

100

|H |

0.010

0.015

0.020

0.025

100 101

|H |
10 1 101

|H |

re
ls

td
(H

)
ov

er
 it

er
at

io
ns

 o
f T

-o
pe

ra
to

r

Figure 10: Clustering of elements in H for ψ = 10. Top row: Orange clusters correspond
to vanishing elements, blue clusters correspond to non-vanishing values. Bottom rows:
Close-up view of the blue clusters. The number of vertical lines is in close relation to the
number of equivariant components.

Layer Number of Nodes Activation Number of Parameters
input 3 – –

hidden 1 100 leaky ReLU 400
hidden 2 1000 leaky ReLU 101 000
hidden 3 1000 leaky ReLU 1 001 000
output N2

k identity 1000×N2
k +N2

k

Table 1: Neural network architecture for the neural network that learns the ψ-dependence
of H.

C.1 Supervised training with Donaldson’s algorithm

In designing and training the NN, we found that the result is not very sensitive to hyper-
parameter tuning and does not require complicated network architectures. For this paper,
we chose a simple feed-forward NN with 3 hidden layers of dimensions 100, 2000 and 2000
with (leaky) ReLU activation, cf. Table 1. The input is (the real part, imaginary part,
and absolute value of) ψ and the output are the N2

k independent (real and imaginary)
components of H.8

8We ran experiments where we added (the real and imaginary part of) powers of ψ to the input.
However, for large ψ, positive powers tend to produce rather large features. So one should either normalize
them to unit variance (since we draw ψ randomly from a flat prior, it will already have roughly zero mean),
which is problematic if one wants to extrapolate beyond the training set. For fractional powers, one will
have to choose a branch or include all branches as features. Since the observed accuracy improvements are
rather small, we ended up using Re(ψ), Im(ψ), and |ψ| as features.

34

As explained above, we choose the patch where we set the largest absolute value of the
coordinates to 1 and solve implicitly for the coordinate for which the derivative of p has
the largest absolute value. With these results, we compute σ as defined in (2.14), which
is between 0.14 and 0.39 for the quintic with k = 3 and ψ in the specified range.9 Hence,
even if the NN computing H had zero error, the numerical error dictated by using k = 2
would be 0.2 when using σ as a measure for precision. In our experiment, we trained the
network with 90 percent of the grid points and evaluated on the remaining 10 percent.
We train the NN for 200 epochs with stochastic gradient descent, ADAM optimizer and
L2 weight decay with parameter 0.001. This takes less than a minute and is orders of
magnitude faster than re-computing H for a given value of ψ.

C.2 Learning H by minimizing the Monge-Ampère loss (at constant ψ)

Before training ψ-dependent networks that output H, consider the case of fixed ψ and
k. We now want to find the optimal matrix H, defined as the one that minimizes the
Monge-Ampère loss at the given degree k. This is precisely the situation that was explored
in [9]. As a first step towards ML, we have repeated the optimization using stochastic
gradient descent. The main difference is that instead of picking a large set of points on
the manifold and finding H by least-squares, we use multiple steps of gradient descent,
each time computed over a random batch of fewer points. Choosing a different random
sample of points for each batch has the advantage that the number of points used can be
decreased, while avoiding over-fitting. We have replicated the results in [9] for degrees up
degree k = 6 and several values of ψ. This establishes the basic stochastic gradient descent
setup that will be used for the more complex models.

C.3 Learning H by minimizing the Ricci loss

The second type of loss introduced in Section 2.4 is one based on minimizing the Ricci
curvature. Here we use the Ricci scalar as a loss function

R0 =
1

M

M∑
a=1

w(za) |R(za)|2 , (C.1)

where M is the number of points and w(za) is the associated weight. Because this loss
depends on the Kähler potential in its fourth derivative, it is significantly more expensive
to compute than the Monge-Ampère loss applied in the rest of the paper. Where the H
matrix converged within minutes for the Monge-Ampère loss with k ≤ 6, the Ricci-based
loss converged within tens of minutes.

Figure 11 shows the σ accuracies achieved by a similar gradient descent setup as in the
previous section, using instead the Ricci-scalar loss defined in Equation (C.1). Both losses
should have the same global minimum with respect to the σ measure at each degree k.
No exhaustive parameter search was conducted to obtain optimal convergence in either
case, so the results should be understood as showing both losses are feasible and lead to
approximations of the flat metric. Convergence is similar to the one achieved using the
Monge-Ampère loss. This shows that gradient descent is in principle also possible for more
complicated loss functions, depending on higher derivatives of the Kähler potential. Due
to its higher complexity, we have not pursued the Ricci loss further in this work. However,
it has the advantage that it can be extended to the case of constant Ricci scalar, which is

9We observe that σ gets larger as |ψ| gets larger.

35

1 2 3 4 5 6
k

10 2

10 1

-loss

Donaldson, = 0

1 2 3 4 5 6
k

Ricci-loss

Donaldson, = 0

Gradient descent optimization for
= 0 = 5 = 5 = 15

Figure 11: σ-accuracies achieved by an optimization of theH matrix using gradient descent
with respect to the Monge-Ampère loss on the left, and the Ricci loss of Equation (C.1)
on the right.

not further investigated here:

Rc =
1

M

M∑
a=1

w(za) |R(za)− c|2 , (C.2)

where c denotes the target curvature.

C.4 H networks with ψ dependence

We now want to find a network that describes a map from ψ to the Hermitian matrix
H. Since within the network we want to work with real numbers, we first have to choose
how to map the complex value ψ to a set of real input features. We have tried several
possibilities:

• Split into |ψ| and arg(ψ).

• Introduce an additional array of powers and compute |ψ|pi .

• Raise to a power and split into real and imaginary parts, Re[ψpi], Im[ψpi].

Following the choice of input features, we add some number of dense layers (how many
are best seems to depend on the range of ψ that we want to optimize over), each with a
sigmoid activation function. This number of dense layers is referred to above as the number
of hidden layers. In order to get the right number of parameters, a final dense layer with
trivial activation function maps from the last features to the required number of values.

During our experiments we observed that it is beneficial to multiply the final output
parameters by a modulation factor as in

Hout = σ(H̃)Ĥ , (C.3)

36

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
| |

10 2

10 1 Donaldson k = 6

Donaldson at k = 12, = 0

DenseModel-1 DenseModel-3

Figure 12: Accuracies achieved by two network architectures detailed in Section C.5 trained
over uniform values |ψ| < 10 using the MA loss. The shaded area points out the extrapola-
tion of the networks. As a comparison, the σ accuracies achieved by Donaldson’s algorithm
over real values of ψ are shown. The error band indicates the minimal and maximal values
measured over multiple complex angles.

where σ denotes the sigmoid-function. This makes it more stable for gradient descent to set
some output values to zero. Besides parametrizing the real and imaginary parameters of
the Hermitian H matrix directly, we also used a parametrization via the following Cholesky
decomposition:

L =

Hd

1 Hr + iH i

. . .
0 Hd

Nk

 , H = LL† , (C.4)

where now the diagonal entries are positive. This prevents negative or zero eigenvalues,
which may lead to non-definite metrics on the manifold. Our experiments indicate that
this leads to slightly more stable gradient descent training.

C.5 Network architectures

The following is a brief summary of different network architectures used to produce the
results in the above figures.

DenseModel-1

For the first model, we start with the input features |ψ| and arg(ψ), followed by a single
hidden layer of dimension equal to the basis size Nk, in our case N6 = 205. This is
motivated by the fact that due to our choice of symmetric manifold, we expect relatively
few independent components of H. To construct the final H matrix, we use the Cholesky
decomposition.

37

DenseModel-2

This model is exactly the same as the above, except that now we use two hidden layers of
dimension Nk, each.

DenseModel-3

As input features we take the real and imaginary parts of ψ raised to the powers 1, 2, 3,
and 1/2. This is followed by a single hidden layer of size Nk. The output H is constructed
using the decomposition of a Hermitian matrix into real and imaginary components.

D Details on metric training

Here we provide more details about the training of the metric learning networks and our
hyperparameter choices.

D.1 NN with homogeneous coordinate input (ψ = 10)

For this input and output setup, we have performed some hyperparameter searches. We
tried learning rates of 10−i with i ∈ [3, 6] and L2 weight decays with parameter 10−i with
i ∈ [4, 8]. We also tried different activation functions (leaky ReLU, GELU, ELU, Tanh)
and optimizers (ADAM, Adagrad, SGD) as well as varying the number of hidden layers and
the nodes in the hidden layers. We also included dropout or batch norm layers, but this
did not significantly change our results. In the end, we got good results already for a rather
small, simple, feedforward neural net (without dropout or batch norm), with learning rate
10−4, no weight decay, leaky ReLU activation and ADAM optimizer. We chose a rather
large batch size of 900 (memory-wise, this is not a problem since each individual training
sample is not too big). We summarize the architecture and the number of parameters in
Table 2. As explained in Section 2.7, the input to the neural network consists of the real
and imaginary part of the point on the quintic expressed in homogeneous ambient space
components (10 nodes), of the real and imaginary part of ψ (two components), and of a
True/False encoding of which of the ambient space coordinates is used for pulling back
and as a patch coordinate (5 components). For the sake of concreteness, we compute and
compare the CY metrics at ψ = 10 on a dataset with 50000 points, which we split according
to train:test=90:10, and we train for 20 epochs. During training, we monitor the training
and the test loss and stop earlier if they start to diverge (which does not happen).

We found that the linear metric perturbation only improves the error measure σ marginally
as compared to the FS metric. We also observed that the overlap and Kähler loss grow
rapidly for the additive ansatz if we do not actively optimize for them in contrast to the
multiplicative ansatz. This means that the parameters λi in (2.23) need to be rather fine-
tuned in the former case. For these reasons we focus on the multiplicative loss. The results
were shown in the main text (cf. Section 2.7.1) for ψ = 10.

Finally, we want to remark that these results do not change if we include ψ as an input
to the NN and train it for different complex structures. A different approach would be to
learn the metric g for different (fixed) ψ and train a second NN that interpolates g (instead
of H as described in Section 2.6.1). Since providing ψ as additional input to the NN in
the training process worked well, we have not pursued this second option further.

38

Layer Number of Nodes Activation Number of Parameters
input 17 – –

hidden 1 100 leaky ReLU 1800
hidden 2 100 leaky ReLU 10 100
hidden 3 100 leaky ReLU 10 100
output d2 identity 101 d2

Table 2: Neural network architecture for the neural network that approximates the CY
metric directly by optimizing a loss function that combines the various consistency condi-
tions for the CY metrics.

Layer number nodes Activation Regularization Initialization
input 10 – – –

hidden 1 1000 ReLU L2(10−6) Nk(0, 10−4), Nk(0, 10−3)

hidden 2 1000 ReLU L2(10−6) Nk(0, 10−4), Nk(0, 10−3)

hidden 3 1000 ReLU L2(10−6) Nk(0, 10−4), Nk(0, 10−3)

output 9 – L2(10−4) Nk,b(0, 10−2)

Table 3: Neural network architecture for each ‘patch’ neural network that approximates
the CY metric.

D.2 NN with affine coordinate input (LDL output 0 < |ψ| < 10)

This class of NNs has one NN for each patch and the output is in the LDL decomposition
of the metric (2.25). We then readily compute the metric from this output. Each of these
networks has trainable parameters as shown in Table 3. The initialization is chosen such
that the initial network is close to the Fubini study metric. During training we monitor
how close the network is to the Fubini Study metric.

We have trained this network using 50000 points for each patch and overlap region and
validated the network using 10000 points respectively in the range 0 < |ψ| < 10. The
respective loss weights were λMA = 1, λoverlap = 0.1, and λdJ = 0.1. We used ADAM
with an initial learning rate of 10−4, reducing it when reaching a plateau. We trained our
network for 200 epochs with a batchsize of 5000.

We have performed experiments with various architectures and different training objectives.
We have varied the size of the hidden layers, the respective loss weights, and between
multiplicative and additive metric corrections. We have also performed experiments on
different complex structure ranges.

Unlike in the NNs with homogeneous coordinate inputs, we observe that the overlap is
crucial. One possible explanation is the fact that we are training five independent networks
which do not have to share any common property unlike in the homogeneous case where
only one network deals with points from all patches. For these experiments we choose the
points used to evaluate the overlap as follows. In order to make the patches the networks
are defined on overlap, we slightly relax the numerical coordinate prescription. Instead
of always dividing by the largest homogeneous coordinate such that all values are smaller
than one, we allow values up to 1 + ε. This guarantees that we do not require our neural
network to make predictions very far away from where it is trained to make predictions
on.

39

References

[1] S. T. Yau, “On the Ricci curvature of a compact Kähler manifold and the complex
Monge-Ampère equation I,” Comm. Pure Appl. Math. 3 (1978) 339–411.

[2] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory Vol. 2: 25th
Anniversary Edition. Cambridge Monographs on Mathematical Physics. Cambridge
University Press, 11, 2012.

[3] M. Headrick and T. Wiseman, “Numerical Ricci-flat metrics on K3,” Class. Quant.
Grav. 22 (2005) 4931–4960, arXiv:hep-th/0506129.

[4] S. K. Donaldson, “Some numerical results in complex differential geometry,” arXiv
Mathematics e-prints (2005) , arXiv:math/0512625 [math.DG].

[5] M. R. Douglas, R. L. Karp, S. Lukic, and R. Reinbacher, “Numerical solution to the
hermitian Yang-Mills equation on the Fermat quintic,” JHEP 12 (2007) 083,
arXiv:hep-th/0606261.

[6] M. R. Douglas, R. L. Karp, S. Lukic, and R. Reinbacher, “Numerical Calabi-Yau
metrics,” J. Math. Phys. 49 (2008) 032302, arXiv:hep-th/0612075.

[7] V. Braun, T. Brelidze, M. R. Douglas, and B. A. Ovrut, “Calabi-Yau Metrics for
Quotients and Complete Intersections,” JHEP 05 (2008) 080, arXiv:0712.3563
[hep-th].

[8] V. Braun, T. Brelidze, M. R. Douglas, and B. A. Ovrut, “Eigenvalues and
Eigenfunctions of the Scalar Laplace Operator on Calabi-Yau Manifolds,” JHEP 07
(2008) 120, arXiv:0805.3689 [hep-th].

[9] M. Headrick and A. Nassar, “Energy functionals for Calabi-Yau metrics,” Adv.
Theor. Math. Phys. 17 no. 5, (2013) 867–902, arXiv:0908.2635 [hep-th].

[10] L. B. Anderson, V. Braun, R. L. Karp, and B. A. Ovrut, “Numerical Hermitian
Yang-Mills Connections and Vector Bundle Stability in Heterotic Theories,” JHEP
06 (2010) 107, arXiv:1004.4399 [hep-th].

[11] L. B. Anderson, V. Braun, and B. A. Ovrut, “Numerical Hermitian Yang-Mills
Connections and Kahler Cone Substructure,” JHEP 01 (2012) 014,
arXiv:1103.3041 [hep-th].

[12] A. Ashmore, Y.-H. He, and B. A. Ovrut, “Machine learning Calabi-Yau metrics,”
arXiv:1910.08605 [hep-th].

[13] W. Cui and J. Gray, “Numerical Metrics, Curvature Expansions and Calabi-Yau
Manifolds,” JHEP 05 (2020) 044, arXiv:1912.11068 [hep-th].

[14] S. Kachru, A. Tripathy, and M. Zimet, “K3 metrics from little string theory,”
arXiv:1810.10540 [hep-th].

[15] S. Kachru, A. Tripathy, and M. Zimet, “K3 metrics,” arXiv:2006.02435
[hep-th].

40

http://dx.doi.org/10.1017/CBO9781139248570
http://dx.doi.org/10.1017/CBO9781139248570
http://dx.doi.org/10.1088/0264-9381/22/23/002
http://dx.doi.org/10.1088/0264-9381/22/23/002
http://arxiv.org/abs/hep-th/0506129
http://arxiv.org/abs/math/0512625
http://dx.doi.org/10.1088/1126-6708/2007/12/083
http://arxiv.org/abs/hep-th/0606261
http://dx.doi.org/10.1063/1.2888403
http://arxiv.org/abs/hep-th/0612075
http://dx.doi.org/10.1088/1126-6708/2008/05/080
http://arxiv.org/abs/0712.3563
http://arxiv.org/abs/0712.3563
http://dx.doi.org/10.1088/1126-6708/2008/07/120
http://dx.doi.org/10.1088/1126-6708/2008/07/120
http://arxiv.org/abs/0805.3689
http://dx.doi.org/10.4310/ATMP.2013.v17.n5.a1
http://dx.doi.org/10.4310/ATMP.2013.v17.n5.a1
http://arxiv.org/abs/0908.2635
http://dx.doi.org/10.1007/JHEP06(2010)107
http://dx.doi.org/10.1007/JHEP06(2010)107
http://arxiv.org/abs/1004.4399
http://dx.doi.org/10.1007/JHEP01(2012)014
http://arxiv.org/abs/1103.3041
http://arxiv.org/abs/1910.08605
http://dx.doi.org/10.1007/JHEP05(2020)044
http://arxiv.org/abs/1912.11068
http://arxiv.org/abs/1810.10540
http://arxiv.org/abs/2006.02435
http://arxiv.org/abs/2006.02435

[16] A. Tripathy and M. Zimet, “A plethora of K3 metrics,” arXiv:2010.12581
[hep-th].

[17] H. Ooguri and C. Vafa, “On the Geometry of the String Landscape and the
Swampland,” Nucl. Phys. B 766 (2007) 21–33, arXiv:hep-th/0605264.

[18] R. Blumenhagen, J. Conlon, S. Krippendorf, S. Moster, and F. Quevedo, “SUSY
Breaking in Local String/F-Theory Models,” JHEP 09 (2009) 007,
arXiv:0906.3297 [hep-th].

[19] F. Ruehle, “Data science applications to string theory,” Phys. Rept. 839 (2020)
1–117.

[20] G. Tian, “On a set of polarized kähler metrics on algebraic manifolds,” Journal of
Differential Geometry 32 no. 1, (July, 1990) 99–130.

[21] M. Larfors, A. Lukas, and F. Ruehle, “Calabi-Yau Manifolds and SU(3) Structure,”
JHEP 01 (2019) 171, arXiv:1805.08499 [hep-th].

[22] M. R. Douglas, S. Lakshminarasimhan, and Y. Qi, “Numerical Calabi-Yau metrics
from holomorphic networks,” arXiv:2012.04797 [hep-th].

[23] E. Calabi, “On kähler manifolds with vanishing canonical class,” in Algebraic
geometry and topology. A symposium in honor of S. Lefschetz, vol. 12, pp. 78–89.
1957.

[24] P. Candelas, A. Dale, C. Lutken, and R. Schimmrigk, “Complete Intersection
Calabi-Yau Manifolds,” Nucl. Phys. B 298 (1988) 493.

[25] A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.,
pp. 8024–8035. Curran Associates, Inc., 2019.
http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[26] M. Abadi et al., “Tensorflow: Large-scale machine learning on heterogeneous
distributed systems,” CoRR abs/1603.04467 (2016) , arXiv:1603.04467.
http://arxiv.org/abs/1603.04467.

[27] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, and
S. Wanderman-Milne, “JAX: composable transformations of Python+NumPy
programs,”. http://github.com/google/jax.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

[29] A. Strominger, “Superstrings with Torsion,” Nucl. Phys. B 274 (1986) 253.

[30] C. Hull, “Compactifications of the Heterotic Superstring,” Phys. Lett. B 178 (1986)
357–364.

[31] G. Lopes Cardoso, G. Curio, G. Dall’Agata, D. Lust, P. Manousselis, and

41

http://arxiv.org/abs/2010.12581
http://arxiv.org/abs/2010.12581
http://dx.doi.org/10.1016/j.nuclphysb.2006.10.033
http://arxiv.org/abs/hep-th/0605264
http://dx.doi.org/10.1088/1126-6708/2009/09/007
http://arxiv.org/abs/0906.3297
http://dx.doi.org/10.1016/j.physrep.2019.09.005
http://dx.doi.org/10.1016/j.physrep.2019.09.005
http://dx.doi.org/10.4310/jdg/1214445039
http://dx.doi.org/10.4310/jdg/1214445039
http://dx.doi.org/10.1007/JHEP01(2019)171
http://arxiv.org/abs/1805.08499
http://arxiv.org/abs/2012.04797
http://dx.doi.org/10.1016/0550-3213(88)90352-5
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://github.com/google/jax
http://dx.doi.org/10.1016/0550-3213(86)90286-5
http://dx.doi.org/10.1016/0370-2693(86)91393-6
http://dx.doi.org/10.1016/0370-2693(86)91393-6

G. Zoupanos, “NonKahler string backgrounds and their five torsion classes,” Nucl.
Phys. B 652 (2003) 5–34, arXiv:hep-th/0211118.

[32] M. F. Atiyah, R. Bott, and L. Garding, “Lacunas for hyperbolic differential
operators with constant coefficients II,” Acta. Math. 131 (1973) 145–206.

[33] S. K. Donaldson, “Scalar curvature and projective embeddings II,” Q. J. Math. 3
(2005) 345–356.

[34] X. Wang, “Canonical metrics on stable vector bundles,” Comm. Anal. Geom. 13
(2005) 253–285.

[35] L. B. Anderson, J. Gray, A. Lukas, and B. Ovrut, “Stability Walls in Heterotic
Theories,” JHEP 09 (2009) 026, arXiv:0905.1748 [hep-th].

[36] A. Strominger, S.-T. Yau, and E. Zaslow, “Mirror symmetry is T duality,” Nucl.
Phys. B 479 (1996) 243–259, arXiv:hep-th/9606040.

[37] A. Meurer et al., “Sympy: symbolic computing in python,” PeerJ Computer Science
3 (Jan., 2017) e103.

[38] S. Krippendorf and M. Syvaeri, “Detecting Symmetries with Neural Networks,”
Machine Learning: Science and Technology 2 no. 1, (2020) 015010,
arXiv:2003.13679 [physics.comp-ph].

42

http://dx.doi.org/10.1016/S0550-3213(03)00049-X
http://dx.doi.org/10.1016/S0550-3213(03)00049-X
http://arxiv.org/abs/hep-th/0211118
http://dx.doi.org/10.1007/BF02392039
http://dx.doi.org/10.1093/qmath/hah044
http://dx.doi.org/10.1093/qmath/hah044
http://dx.doi.org/10.1088/1126-6708/2009/09/026
http://arxiv.org/abs/0905.1748
http://dx.doi.org/10.1016/0550-3213(96)00434-8
http://dx.doi.org/10.1016/0550-3213(96)00434-8
http://arxiv.org/abs/hep-th/9606040
http://dx.doi.org/10.7717/peerj-cs.103
http://dx.doi.org/10.7717/peerj-cs.103
http://dx.doi.org/10.1088/2632-2153/abbd2d
http://arxiv.org/abs/2003.13679

	1 Introduction
	2 Ricci-flat CY metrics
	2.1 Ricci flatness from a Monge-Ampère equation
	2.2 CY example: quintic hypersurfaces
	2.3 Metric ansätze
	2.4 Accuracy measures
	2.5 Finding metrics with machine learning
	2.6 Learning the Kähler potential
	2.7 Learning the metric directly

	3 CY metrics with SU(3) structure
	3.1 Learning an ansatz
	3.2 Learning the SU(3) structure directly

	4 Conclusions and future directions
	A Sampling
	A.1 Sampling by solving for the dependent coordinate
	A.2 Illustration of rejection sampling
	A.3 Homogeneous sampling in projective space

	B Algebraic metrics and Donaldson's algorithm
	B.1 Constructing the monomial basis
	B.2 Donaldson's algorithm

	C Details for training H networks
	C.1 Supervised training with Donaldson's algorithm
	C.2 Learning H by minimizing the Monge-Ampère loss (at constant psi)
	C.3 Learning H by minimizing the Ricci loss
	C.4 H networks with psi dependence
	C.5 Network architectures

	D Details on metric training
	D.1 NN with homogeneous coordinate input (psi=10)
	D.2 NN with affine coordinate input (LDL output 0<psi<10)

