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Abstract

The first observation of the suppressed semileptonic B0
s → K−µ+νµ decay is re-

ported. Using a data sample recorded in pp collisions in 2012 with the LHCb
detector, corresponding to an integrated luminosity of 2 fb−1, the branching frac-
tion B(B0

s → K−µ+νµ) is measured to be (1.06± 0.05 (stat)± 0.08 (syst))× 10−4,
where the first uncertainty is statistical and the second one represents the combined
systematic uncertainties. The decay B0

s → D−s µ
+νµ, where D−s is reconstructed

in the final state K+K−π−, is used as a normalization channel to minimize the
experimental systematic uncertainty. Theoretical calculations on the form factors of
the B0

s → K− and B0
s → D−s transitions are employed to determine the ratio of the

CKM matrix elements |Vub|/|Vcb| at low and high B0
s → K− momentum transfer.
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The coupling of the electroweak interaction between up- and down-type quarks is
modulated by the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2]. Hadrons containing
a b quark can decay weakly via a virtual W boson to semileptonic final states through
the tree-level transitions b → c(W ∗ → `ν) and b → u(W ∗ → `ν), where `ν denotes a
charged lepton and a neutrino. These transitions involve the CKM matrix elements Vcb
and Vub, respectively, which obey the observed hierarchy |Vub|/|Vcb| ∼ 0.1, resulting in
the transitions b → c`ν being favored over b → u`ν. Semileptonic b-hadron decays are
an excellent ground for measuring |Vcb| and |Vub| since the factorization of the hadronic
and leptonic parts of the amplitudes eases theoretical calculations [3, 4]. Improving
the precision on the measurements of the CKM elements can be exploited to probe
possible deviations from the Standard Model of particle physics [5]. Existing |Vub| and
|Vcb| measurements show a discrepancy between those performed with exclusive decays,
where all the visible particles are reconstructed, and inclusive decays where only the
lepton is reconstructed [6]. The world average of the exclusive |Vub| results is dominated
by B0 → π−`+ν` measurements. The LHCb measurement using the baryonic decays
Λ0
b → pµ−ν̄µ and Λ0

b → Λ+
c µ
−ν̄µ [7] gives the ratio |Vub|/|Vcb| = 0.079± 0.006, as updated

in Ref. [6]. Besides the inclusive versus exclusive puzzle, measurements of |Vub|/|Vcb| are
important to constrain the CKM unitarity triangle [8, 9].

This Letter reports the first observation of the decay B0
s → K−µ+νµ, the measurement

of its branching fraction and of the ratio |Vub|/|Vcb| with B0
s → D−s µ

+νµ as a normalization
channel.1 The measurement of the branching fraction is performed in two regions of the
B0
s → K− momentum transfer or invariant mass squared of the muon and the neutrino,

q2, as well as integrated over the full q2 range. The ratio |Vub|/|Vcb| is derived in the two q2

regions using calculations of the form factors of the B0
s → K− and B0

s → D−s transitions
based on both light cone sum rule (LCSR) [10,11] and lattice QCD (LQCD) [12] methods.
The data sample consists of pp collisions recorded by the LHCb detector in 2012 at a
center-of-mass energy of 8 TeV corresponding to 2 fb−1 of integrated luminosity. The
LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range
2 < η < 5, described in detail in Refs. [13,14]. The trigger [15] consists of a hardware stage,
based on information from the calorimeter and muon systems, followed by a software
stage, which reconstructs charged particles. Simulation, produced with software packages
described in Refs. [16–18], is used to model the effects of the detector acceptance and the
imposed selection requirements.

In this analysis candidates for B0
s → K−µ+νµ and B0

s → D−s µ
+νµ decays are formed

by combining a muon with a kaon or a D−s candidate reconstructed through the decay
D−s → K+K−π−. The trigger and initial selection requirements are chosen to be similar
between these two modes. Events are retained by the hardware trigger due to the presence
of a high-pT muon, where pT is the momentum component transverse to the beam. The
software trigger [19] selects partially reconstructed B decays by combining a track or
a D−s candidate with a well identified muon candidate. The initial selection includes
requirements on the track kinematics and quality, particle identification, as well as on the
B0
s candidate kinematics and decay topology. The obtained samples for each of the decays

include background contributions dominated by b-hadron decays with additional tracks or
neutral particles in the final state. For the K−µ+ combinations, the main background
originates from Hb → µ+Hc(→ K−X)X ′, where Hb,c represents a hadron containing a b

1Throughout the paper, charge conjugate decays are implied.
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or a c quark and X(′) denotes unreconstructed particles. Decays to excited K∗ resonances,
B0
s → K∗−(→ K−π0)µ+νµ, and charmonium modes B → [cc̄](→ µ+µ−)K−X, where

[cc̄] = J/ψ, ψ(2S), are secondary background contributions. Other sources arise from b-
hadron decays where a track is misidentified as a kaon or a muon, and random combinations
of a muon and a kaon. In the D−s µ

+ combinations, the main (and irreducible) source of
background arises from B0

s → D∗−s (→ D−s γ)µ+νµ decays. Additional contributions include
decays to higher excitations of the D−s meson, B0

s → D∗∗−s (→ D−s X)µ+νµ, double-charm
decays of the type Bu,d,s → DsDX and semitauonic B0

s → D−s τ
+ντ decays.

To suppress background, the K−µ+ and D−s µ
+ candidates are required to be isolated

from other tracks in the event. A multivariate algorithm (MVA) is trained to determine if a
given track originates from the candidate, or from the rest of the event (ROE). A threshold
on the value of the MVA output is applied to the ROE track that appears to be the closest
to the signal. For K−µ+ candidates, two boosted decision tree (BDT) classifiers [20,21] are
used sequentially to further reduce the remaining background. A charged BDT classifier
is trained against a mixture of the main background components using, in addition to
the isolation MVA output, invariant masses formed by the least isolated ROE track with
respect to each of the muon or the kaon, and variables related to the B0

s , K
− and µ+

kinematics. The background passing the charged BDT requirement comprises decays
without an additional track, mainly of the type Hb → µ+Hc(→ K−P ), where P is either
a long-lived or a neutral particle. A second BDT classifier, denoted neutral BDT, involves
kinematic variables of the K− and B0

s candidates, the B0
s vertex position and quality,

the invariant mass formed by the signal kaon and any π0 meson in its vicinity; it also
exploits the asymmetry between the kaon momentum and an average momentum direction
formed by neutral particles in the vicinity of the kaon. The shapes of the BDT outputs
are calibrated with the decay B− → J/ψ(→ µ+µ−)K−, which is reconstructed both as a
K−µ+ candidate and fully reconstructed where the least isolated track near the K−µ+

pair is identified as µ−. Kinematic weighting accounts for data-simulation discrepancies
for the training of the classifiers.

The B0
s mass is represented by the corrected mass [22], defined as

mcorr =
√
m2
Y µ + p2

⊥/c
2 + p⊥/c, (1)

where mY µ is the invariant mass of the Y µ pair, with Y = K− or D−s , and p⊥ is the
momentum of this pair transverse to the B0

s flight direction. The flight direction is
defined as the vector between the positions of the primary pp collision vertex and the B0

s

decay vertex. In order to improve the separation between the B0
s → K−µ+νµ signal and

background, the uncertainty on mcorr is required to be σ(mcorr) < 100 MeV/c2. The shape
of σ(mcorr) is calibrated following a similar procedure as for the BDT classifiers. To derive
q2, the neutrino momentum is estimated using the B0

s flight direction and the known
B0
s mass. A two-fold ambiguity resulting from this estimate is resolved by choosing the

solution that is most consistent with the B0
s momentum predicted by a linear regression

method [23]. The fit to the mcorr distribution, used for the extraction of the B0
s → K−µ+νµ

signal, is performed in two q2 regions, respectively above and below 7 GeV2/c4 (“high” and
“low”), which are chosen to contain approximately the same expected signal yields.

For the B0
s → D−s µ

+νµ decay, a fit to the invariant mass of the D−s → K+K−π−

candidates is performed in 40 intervals of mcorr from 3000 to 6500 MeV/c2. This provides
the Ds yield as a function of mcorr and thus subtracts the background originating from
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combinations of random kaon and pion tracks. The obtained mcorr distribution is fit to
extract the B0

s → D−s µ
+νµ signal yield. For the B0

s → K−µ+νµ decay, the combinatorial
background is largely reduced by applying a topological criterion: the opening angle
between the directions of the K− and µ+ candidates in the plane transverse to the
pp collision axis is required to be less than 90 degrees. The efficiency of this requirement
on the signal is 93%, while it removes approximately 90% of the combinatorial background.

The efficiencies of the signal and normalization channels are derived from simulation and
take into account the effects of the triggers, reconstruction, selection, particle identification,
isolation procedure, MVA requirements and detector acceptance. Data-driven corrections
are applied to account for any mismodelling related to the kinematics, number of tracks
in the event and particle identification variables. The efficiency ratio between the signal
and normalization decays is εK/εDs = 1.109± 0.018, 0.553± 0.009 and 0.733± 0.009 for
q2 < 7 GeV2/c4, q2 > 7 GeV2/c4 and the full q2 range, respectively. The uncertainties
reflect the limited size of the simulated samples.

The fit template for the mcorr distribution of the B0
s → K−µ+νµ signal is obtained

from simulation, while the shapes for the background components are derived from
either simulation or control samples. The statistical uncertainties originating from the
finite samples used to obtain the templates are accounted for in the fits [24]. The main
background Hb → Hc(→ K−X)µ+X ′, whose yield is free in the fit, is obtained with a
simulated inclusive sample. The B0

s → K∗−(→ K−π0)µ+νµ background is modelled by
simulating a mixture of three resonances (K∗−(892), K∗−0 (1430) and K∗−2 (1430)) with
a substantial branching fraction to the K−π0 final state. Though the overall yield is
free, the mixture is fixed to certain proportions which are varied up to a factor of 2.5 for
systematic studies, according to available measurements of the decays B− → K∗−µ+µ−

and B− → K∗−η/φ [25]. The impact of a possible B0
s → K−π0µ+νµ nonresonant decay

has also been considered and found to be absorbed by the resonant mixture. The
charmonium background is dominated by B− → J/ψ(→ µ+µ−)K−X decays, with the
fraction of the B− → J/ψ(→ µ+µ−)K− channel exceeding 75%. Its shape is determined
with simulated B− → J/ψ(→ µ+µ−)K−X events while its yield is derived from the yield
of the B− → J/ψ(→ µ+µ−)K− signal peak in data. To recover that peak from K−µ+

combinations, the missing momentum of the µ− is calculated from the B− flight direction
and the known J/ψ mass. The background originating from the misidentification (MisID)
of a pion, proton or muon as a kaon; or a kaon, proton or pion as a muon is modelled using
data samples of hµ+ (K−h) candidates with an identical selection as for the main sample
but where h is a charged track which fails the kaon (muon) identification criteria. These
control samples are thus enriched in misidentified tracks of the different species. The
different contributions to the kaon and muon MisID are unfolded using control samples of
kinematically identified hadrons and muons [26]. These samples are used to derive the
probabilities that a particle belonging to a given species and with particular kinematic
properties would pass the kaon or muon criteria. With this method both the mcorr shape
and the yield of the MisID are constrained. The combinatorial background is modelled
with a separate data sample where a kaon and a muon from different events are combined.
The obtained pseudocandidates undergo the same selection as the signal candidates and
are corrected to reproduce the kinematic properties of the standard candidates.

The fit to the normalization channel B0
s → D−s µ

+νµ employs shapes obtained from
simulation. The B0

s → D−s µ
+νµ decay is modelled with the recent form factor predictions

of Ref. [27]. The main background originates from B0
s semimuonic decays to excitations
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Figure 1: Distribution of mcorr for (top) the signal B0
s → K−µ+νµ, with (left) q2 < 7 GeV2/c4

and (right) q2 > 7 GeV2/c4, and (bottom) the normalization B0
s → D−s µ

+νµ channel. The points
represent data, while the resulting fit components are shown as histograms.

of the D−s meson, with the dominant D∗−s → D−s γ decay represented by a specific shape,
and higher excitations D∗∗−s = [D∗−s0 (2317), D−s1(2460), D−s1(2536)] → D−s X modelled
by a combined shape. Other sources of background are the decays of the form B →
D−s DX and the semitauonic decay B0

s → D−s τ
+(→ µ+νµν̄τ )ντ . Due to similarity of their

shapes, the B0
s → D∗∗−s µ+νµ channels are grouped with Bs → D−s DX decays, while

B0
s → D−s τ

+(→ µ+νµν̄τ )ντ is combined with Bu,d → D−s DX decays.
The corrected mass distributions of the signal and normalization candidates are shown

in Fig. 1, with the binned maximum-likelihood fit projections overlaid. The B0
s → K−µ+νµ

yields for q2 < 7 GeV2/c4 and q2 > 7 GeV2/c4 regions are found to be NK = 6922 ± 285
and 6399 ± 370, respectively, while the B0

s → D−s µ
+νµ yield is NDs = 201450 ± 5200.

The uncertainties include both the effect of the limited data set and the finite size of the
samples used to derive the fit templates. Unfolding the two effects in quadrature shows
that they have similar sizes.

This is the first observation of the decay B0
s → K−µ+νµ. The ratio of branching

fractions is inferred as

RBF ≡
B(B0

s → K−µ+νµ)

B(B0
s → D−s µ

+νµ)
=

NK

NDs

εDs
εK
× B(D−s → K+K−π−), (2)
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Table 1: Relative systematic uncertainties on the ratio B(B0
s → K−µ+νµ)/B(B0

s → D−s µ
+νµ),

in percent.

Uncertainty All q2 low q2 high q2

Tracking 2.0 2.0 2.0
Trigger 1.4 1.2 1.6
Particle identification 1.0 1.0 1.0
σ(mcorr) 0.5 0.5 0.5
Isolation 0.2 0.2 0.2
Charged BDT 0.6 0.6 0.6
Neutral BDT 1.1 1.1 1.1
q2 migration – 2.0 2.0
Efficiency 1.2 1.6 1.6
Fit template +2.3

−2.9
+1.8
−2.4

+3.0
−3.4

Total +4.0
−4.3

+4.3
−4.5

+5.0
−5.3

with B(D−s → K+K−π−) = (5.39± 0.15)% [25] and gives

RBF(low) = (1.66± 0.08 (stat)± 0.07 (syst)± 0.05 (Ds))× 10−3,

RBF(high) = (3.25± 0.21 (stat) + 0.16
− 0.17 (syst)± 0.09 (Ds))× 10−3,

RBF(all) = (4.89± 0.21 (stat) + 0.20
− 0.21 (syst)± 0.14 (Ds))× 10−3,

where the uncertainties are statistical, systematic and due to the D−s → K+K−π− branch-
ing fraction. Table 1 summarizes the systematic uncertainties. It includes uncertainties on
the calibration and correction of the track reconstruction, trigger, particle identification,
selection variables, migration of events between q2 regions, efficiencies and the fit template
distributions. The largest systematic uncertainty originates from the fit templates and is
evaluated by varying the shape of the fit components according to alternative models and
also by modifying within its uncertainty the mixture of exclusive decays representing some
of the background contributions. In particular, the signal shape is varied using various
form factor models [28–31]. A similar procedure is applied to the normalization channel.
The tracking uncertainty comprises the limited precision on tracking efficiency corrections
obtained from control samples in data, and the uncertainty on modelling the hadronic
interactions with the detector material. The uncertainty on the q2 migration is related to
the limited accuracy of the evaluation of the cross-feed between low and high q2 regions
in simulation.

To determine the branching fraction B(B0
s → K−µ+νµ) and the ratio

|Vub|/|Vcb|, the predicted integrals of the form factors FFY = |Vxb|−2
∫ dΓ(B0

s→Y µ+νµ)

dq2
dq2

(Y = K−, D−s ; x = u, c) are required. The absolute branching fraction is calculated as
B(B0

s → K−µ+νµ) = τBs × |Vcb|2 × FFDs ×RBF. The inputs are the exclusive value of
|Vcb| = (39.5± 0.9)× 10−3 [25], the B0

s meson lifetime τBs = 1.515± 0.004 ps [25] and the
form factor integral FFDs = 9.15± 0.37 ps−1 based on a recent LQCD computation [27].
This leads to

B(B0
s → K−µ+νµ) = (1.06± 0.05 (stat)± 0.04 (syst)± 0.06 (ext)± 0.04 (FF))× 10−4,
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Figure 2: Measurements of |Vub|/|Vcb| in this Letter and in Ref. [7], and ratio inferred from the
PDG [25] averages of exclusive |Vub| and |Vcb| measurements, where the Λ0

b → pµ−ν̄µ result is
not included. The form factor calculation used in each case is mentioned [30–32].

where the uncertainties are statistical, systematic, from the external inputs (D−s
branching fraction, B0

s lifetime and |Vcb|) and the B0
s → D−s form factor inte-

gral, respectively. Combining the systematic uncertainties, the branching fraction is
B(B0

s → K−µ+νµ) = (1.06± 0.05 (stat)± 0.08 (syst))× 10−4.
The ratio of CKM elements |Vub|/|Vcb| is obtained through the relation

RBF = |Vub|2/|Vcb|2 × FFK/FFDs . For the FFK value, a recent LQCD prediction is used
for the high q2 range, FFK(q2 > 7 GeV2/c4) = 3.32± 0.46 ps−1 [30], while a LCSR calcu-
lation [31] is used for the low q2 range, FFK(q2 < 7 GeV2/c4) = 4.14± 0.38 ps−1, due to
the lower accuracy of LQCD calculations in this region. The obtained values are

|Vub|/|Vcb|(low) = 0.0607± 0.0015 (stat)± 0.0013 (syst)± 0.0008 (Ds)± 0.0030 (FF),

|Vub|/|Vcb|(high) = 0.0946± 0.0030 (stat)+ 0.0024
− 0.0025 (syst)± 0.0013 (Ds)± 0.0068 (FF),

where the latter two uncertainties are from the D−s branching fraction and the form
factor integrals. The discrepancy between the values of |Vub|/|Vcb| for the low and high
q2 ranges is related to the difference in the theoretical calculations of the form factors.
To illustrate this, the LQCD calculation in Ref. [30] gives FFK = 0.94± 0.48 ps−1 at low
q2, which can be compared to the chosen LCSR value, 4.14 ± 0.38 ps−1 [31]. Figure 2
depicts the |Vub|/|Vcb| measurements of this Letter, |Vub|/|Vcb|(low) = 0.061± 0.004 and
|Vub|/|Vcb|(high) = 0.095± 0.008, with the uncertainties combined. The |Vub|/|Vcb| mea-
surement obtained with the Λ0

b baryon decays [7], for which a form factor model based on
a LQCD calculation [32] was used, is also shown.

In conclusion, the decay B0
s → K−µ+νµ is observed for the first time. The branching

fraction ratios in the two q2 regions reported in this Letter represent the first experimental
ingredient to the form factor calculations of the B0

s → K−µ+νµ decay. Moreover, the
|Vub|/|Vcb| results will improve both the averages of the exclusive measurements in the
(|Vcb|, |Vub|) plane and the precision on the least known side of the CKM unitarity triangle.
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