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Abstract: In the context of the recently measured non-leptonic decays Bd → K∗0K̄∗0

and Bs → K∗0K̄∗0 we analyse the anatomy of the LV V observable that compares the

longitudinal components of Bs → V V and Bd → V V decays. This observable is cleaner

than the longitudinal polarisation fraction as it is afflicted only at subleading order in

a 1/mb expansion by the theoretical uncertainties arising in the transverse components

entering the polarisation fraction. Focusing on the particular case of Bd → K∗0K̄∗0 and

Bs → K∗0K̄∗0, we discuss the main sources of hadronic uncertainty in the SM. We find

for the SM prediction LK∗K̄∗ = 19.5+9.3
−6.8, which implies a 2.6σ tension with respect to the

most recent data, pointing to a deficit in the b → s transition of the non-leptonic decay

versus the corresponding b→ d transition. We discuss possible New Physics explanations

for this deviation, first at the level of the Weak Effective Theory and we identify that

the two Wilson coefficients C4 and C8g can play a central role in explaining this anomaly.

Finally, we briefly explore two different simplified New Physics models which can explain

the anomaly through a contribution either in C4 (Kaluza-Klein gluon) or in C8g, with a

significant amount of fine tuning, but possible connections to the b→ s`` anomalies.
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1 Introduction

The flavour anomalies observed in semileptonic rare B meson decays constitute one of the

most promising hints of New Physics (NP) found at LHC and B-Factories. Recent global

analyses of the set of observables governed by the b → s`` transitions [1, 2] provide a

small p-value (1.4%) for the Standard Model (SM), whereas simple NP hypotheses obtain

a much better description of the data, with pulls up to 6.5σ with respect to the SM (similar

results are obtained in other works [3–10]). A particularly promising setup combines Lepton

Flavour Universality Violating (LFUV) NP together with Lepton Flavour Universal (LFU)

NP, as proposed in Ref. [11], which improves the description of the data compared to the

SM by 7.4σ [2] once the anomalies in b→ c`ν decays are included.

If NP is indeed at the origin of the anomalies in semileptonic B decays, it is natural

to expect signals in other observables involving b → s transitions, possibly with different

realisations though sharing some common features. A natural place to explore the possi-

ble existence of these signals are non-leptonic B decays. This type of decays suffer from

larger uncertainties compared to semileptonic B decays and are therefore more difficult to
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compute with a high accuracy. In particular, branching ratios and polarisation fractions

receive contributions from transverse amplitudes that suffer from large uncertainties due

to power-suppressed but infrared-divergent weak annihilation and hard-spectator scatter-

ing [12, 13]. In this sense a deviation with respect to the SM prediction in non-leptonic

B decays requires one to be much more conservative regarding these uncertainties than in

the case of semileptonic B decays.

In this article we will thus follow a similar strategy to the one we used in Refs. [14, 15]

for semileptonic rare B decays and we establish a parallelism constructing observables in

non-leptonic B decays with a limited sensitivity to hadronic uncertainties. This can be

achieved using the Rsd observable introduced some time ago by two of us in Ref. [16]. This

observable was introduced at that time to find NP in neutral B-meson mixing. However, it

turns out to be particularly interesting now to find NP in the non-leptonic decay amplitudes

in the light of the b→ s`` anomalies for which optimized observables were introduced.

In b → s`` decays, one can build two different kinds of observables with a reduced

sensitivity to hadronic uncertainties: on the one hand, angular observables from decays

involving muons in the final state [15, 17] constructed exploiting heavy quark symmetry

and on the other hand, ratios of branching ratios with muons versus electrons in the

final state that test LFUV and where the dependence on the form factors cancels almost

exactly in the SM [18]. There are tensions in observables involving leptons of the second

family (for the former) and between the second and the first family of leptons (for the

latter). In this work we explore the parallel approach of using non-leptonic B decays

rather than semileptonic ones, comparing quark transitions involving quarks of the second

and first families instead of muons and electrons. More specifically, we compare transitions

involving s-quarks and d-quarks to benefit from the approximate U -spin symmetry of the

Standard Model in analogy with Lepton-Flavour Universality used to build the LFUV

ratios in b → s`` decays. The analogy has evident limitations: since both symmetries

are broken by fermion mass effects, the size of the corrections is easier to compute or

estimate for LFU (involving mainly QED) than for U -spin (involving QCD). However, even

in the nonleptonic case it is well known that ratios of this type offer many advantages in

reducing hadronic uncertainties, explaining the popularity of the ratio ξ to describe neutral-

meson mixing in lattice QCD and phenomenological studies. We may reach an even better

control of hadronic uncertainties by combining several approaches. In Refs. [16, 19, 20]

two of us showed that the specific structure of penguin-mediated non-leptonic B-decays

could lead to a better theoretical control on combinations of hadronic matrix elements

within factorisation approaches. In the case of vector final states, it is also known that the

decays into longitudinally polarised light mesons can be described more precisely than the

transverse ones within these factorisation approaches, providing a further guide to build

optimised observables (in analogy with the angular observables in semileptonic decays).

Finally, if the Bd-meson decays have been studied at B-factories extensively, LHCb is now

able to provide accurate measurements for many Bs-meson decays with the possibility to

assess the correlation between Bd and Bs mesons decaying into the same final state.

We will thus focus here on a type of observables for penguin-mediated non-leptonic

decays of B mesons into two vector particles, that we will refer as L-observables. These
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correspond essentially to the Rsd observable introduced in Ref. [16] in the case of Bd,s →
K∗0K̄∗0 (up to a phase space). We present here a detailed and complete anatomy of

this observable in the SM, updating the SM prediction and observing an increase in the

tension with the experimental measurement compared to Ref. [16]. We then discuss NP

explanations for the tension observed. We also point out possible improvements of the

theoretical prediction of this observable.

In Sec. 2 we develop the theoretical framework that will be used to compute the L

observable. We put a particular emphasis on the sources of hadronic uncertainties coming

from infrared divergences that affect mostly branching ratios and polarisations. In Sec. 3 we

construct this observable and we compute it. Then using the data of the previous section

we determine its experimental value and the pull. In Sec. 4 we explore possible solutions

in terms of NP shifts to Wilson coefficients in a model-independent EFT approach, before

considering particular models illustrating the difficulty to explain this non-leptonic anomaly

together with the b → s`` anomalies in Sec. 5. We finally conclude in Sec. 6. Appendices

are devoted to a discussion of the weak effective theory and QCD factorisation, the semi-

analyical description of relevant hadronic matrix elements, and complementary material

concerning the sensitivity of L to different sources of NP.

2 Theoretical framework

2.1 Helicity amplitudes

We start by considering the theoretical description of BQ → V V with Q = d, s. Since

the initial state has spin 0, the two vector mesons must have the same helicity, leading

to a description of the decay in terms of three helicity amplitudes A0, A+ and A−. In

naive factorisation one expects a hierarchy of the type: Ā0 > Ā− > Ā+ for a B̄ → V V

decay and A0 > A+ > A− for a B → V V decay. This hierarchy with a dominance

of longitudinal amplitudes is easy to understand by means of the V-A structure of the

SM [21]. Each amplitude is suppressed with respect to the previous one by O(Λ/mb) due

to helicity suppression [12]. The longitudinal amplitude in a b→ s transition is dominant

as compared to the positive helicity: the s quark is produced with an helicity −1/2 by

weak interactions (in the limit ms → 0), which is not affected by the strong interactions,

then the strange quark combines with the light spectator quark to form a V with a helicity

which can reach 0 or −1 but not +1. In Ā−, a light-quark helicity flip is required to obtain

both vector mesons with a negative helicity, whereas in Ā+, two helicity flips are required

to reach a positive helicity for both vector mesons. Each of these helicity flips yields a

suppression by a factor O(Λ/mb), as expected in naive factorisation.

2.2 Hadronic matrix elements

For a B̄Q meson decaying through a b → q penguin-mediated process into a V1V2 state

with a definite polarisation, the decomposition

Āf ≡ A(B̄Q → V1V2) = λ(q)
u Tq + λ(q)

c Pq , (2.1)
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is always possible, with the CKM factors λ
(q)
U = VUbV

∗
Uq. We denote by Tq and Pq the matrix

elements accompanying the λ
(q)
u and λ

(q)
c CKM factors respectively. In the SM, Pq is usually

associated to penguin topologies, whereas Tq receives contributions from tree topologies

(but it can also contain only penguin topologies in some decays). As discussed above, if

we consider the longitudinal polarisation, Tq and Pq can be computed using factorisation

approaches based on a 1/mb expansion (see Appendix A). In QCD factorisation [22], Tq and

Pq are affected by possibly large long-distance 1/mb-suppressed effects that will be discussed

in the next section. In the case of penguin mediated decays like B(d,s) → K∗0K̄∗0, it was

observed [19, 20] that the same type of (long-distance) infrared divergences affect both Pq
and Tq, so one can construct

∆q = Tq − Pq , (2.2)

free from these next-to-leading-order infrared divergences.

Using the unitarity relation λ
(q)
u + λ

(q)
c + λ

(q)
t = 0, we can write Eq. (2.1) in terms of

λ
(q)
u and λ

(q)
t

Āf = λ(q)
u ∆q − λ(q)

t Pq . (2.3)

The weak phase in λ
(q)
t is the angle βq, defined as

βq ≡ arg

(
−
VtbV

∗
tq

VcbV ∗cq

)
= arg

(
−λ

(q)
t

λ
(q)
c

)
, (2.4)

whereas λ
(q)
c is real to a very good approximation for both q = d, s, and λ

(q)
u = −λ(q)

c −λ(q)
t .

The CP-conjugate amplitude is given by

Af̄ = (λ(q)
u )∗Tq + (λ(q)

c )∗Pq = (λ(q)
u )∗∆q − (λ

(q)
t )∗Pq . (2.5)

If f = V1V2 is a CP-eigenstate, note that Af̄ is different from A = A(B → V1V2), even

though the two types of amplitudes are related:

Ā = Āf A = ηfAf̄ , (2.6)

where ηf is the CP-parity of the final state, given for j = 0, ||,⊥ respectively as η, η,−η
where η = 1 if V1 is the charge conjugate of V2 (this is the case for K∗0K̄∗0).

3 The L-observable for BQ → K∗0K̄∗0

3.1 Definition and experimental determination

The 2019 LHCb analysis with 3 fb−1 data measured the ratio of the untagged and time-

integrated decay rates [23]

BBd→K∗0K̄∗0

BBs→K∗0K̄∗0

= 0.0758 ± 0.0057(stat)± 0.0025(syst)

± 0.0016

(
fs
fd

)
, (3.1)
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The longitudinal polarisation of both modes has been measured as well. The average of

Bd → K∗0K̄∗0 from LHCb [23] and Babar[24]

fLHCb
L (Bd → K∗0K̄∗0) = 0.724± 0.051± 0.016, (3.2)

fBabar
L (Bd → K∗0K̄∗0) = 0.80+0.10

−0.12 ± 0.06, (3.3)

yields

fL(Bd → K∗0K̄∗0) = 0.73± 0.05, (3.4)

whereas the polarisation for the Bs → K∗0K̄∗0 mode is [23]:

fL(Bs → K∗0K̄∗0) = 0.240± 0.031(stat)± 0.025(syst) .

Most of the experimental determinations are made assuming no direct CP-violation;

however, the ones searching for CP violation found no hint in these decays [25].

One can notice already that the longitudinal polarisations are very different for these

two modes, although they are related by U -spin symmetry in its most obvious form, i.e.

the d↔ s exchange. In the SM, U -spin is broken only by the quark masses, and it is thus

expected to be fairly well obeyed (up to a 20-30% correction). We propose to define an

observable that will be sensitive to this effect but with a cleaner theoretical prediction:

LV1V2 =
Bb→s
Bb→d

gb→df
b→s
L

gb→sf
b→d
L

=
|As0|2 + |Ās0|2

|Ad0|2 + |Ād0|2
, (3.5)

where Bb→q (f b→qL ) refers to the branching ratio (longitudinal polarisation) of the B̄Q →
V1V2 decay governed by a b→ q transition. Aq0 and Āq0 are the amplitudes for the BQ and

B̄Q decays governed by b→ q with final vector mesons being polarised longitudinally and

gb→q = ω

√[
M2
BQ
− ΣV1V2

] [
M2
BQ
−∆V1V2

]
, (3.6)

stands for the phase space factor involved in the corresponding branching ratio, with ω =

τBQ
/(16πM3

BQ
), Σab = (ma + mb)

2 and ∆ab = (ma − mb)
2 and all quantities are CP-

averaged.

This observable is defined such that the dependence on the troublesome transverse

(parallel and perpendicular) amplitudes entering the branching ratio and longitudinal po-

larisation fraction cancel and it is close to the observable Rsd for the case of Bd,s → K∗0K̄∗0

up to a phase space factor [16].

Being purely sensitive to the longitudinal amplitudes, L is less affected by the hadronic

uncertainties which impact the transverse polarisation amplitudes significantly and which

are difficult to estimate within QCD Factorisation (QCDF) or other approaches based on

a 1/mb expansion. The choice of this observable thus avoids the difficulties encountered in

the interpretation of low longitudinal polarisation fractions observed in some non-leptonic

modes [12]. In this article we will focus on:

LK∗K̄∗ =
BBs→K∗0K̄∗0

BBd→K∗0K̄∗0

gb→df
Bs
L

gb→sf
Bd
L

=
|As0|2 + |Ās0|2

|Ad0|2 + |Ād0|2
, (3.7)

– 5 –



where the spectator quark Q of the initial b-flavoured meson and the quark q from the

b→ q transition coincide.

In the definition of LK∗K̄∗ and its connection with the longitudinal amplitudes |Aq0|2

in Eq. (3.7), we have not included the effect of Bs-meson mixing that arises in branching

ratios when measured at hadronic machines. This effect of time integration at hadronic

machines generates a correction of O(∆Γ/(2Γ)) discussed in Refs. [16, 26], which would

multiply the last term in Eq. (3.7) by:

1 +As∆Γys

1 +Ad∆Γyd

1− y2
d

1− y2
s

, (3.8)

where yq = ∆ΓBq/(2ΓBq) is well measured (yd is negligible and ys ' 0.065) and the

asymmetries −1 ≤ Aq∆Γ ≤ 1 combining CP violation in mixing and decay are difficult to

estimate theoretically, leading to a correction of at most 7%.

Since we use the LHCb measurement Eq. (3.1) and since there are other sources of

(theoretical and experimental) uncertainties, we treat Eq. (3.8) as a systematic uncertainty

of 7% combined in quadrature with the other uncertainties, leading to the experimental

value:

Exp : LK∗K̄∗ = 4.43± 0.92. (3.9)

3.2 Theoretical prediction in the SM and comparison with data

On the theory side, we have

Aq0 = (λ(q)∗
c + λ(q)∗

u ) [Pq + (αq)∗∆q] , (3.10)

Āq0 = (λ(q)
c + λ(q)

u ) [Pq + αq∆q] , (3.11)

where αq = λqu/(λ
q
c + λqu). We thus get

LK∗K̄∗ = κ

∣∣∣∣PsPd
∣∣∣∣2
 1 + |αs|2

∣∣∣∆s
Ps

∣∣∣2 + 2Re
(

∆s
Ps

)
Re(αs)

1 + |αd|2
∣∣∣∆d
Pd

∣∣∣2 + 2Re
(

∆d
Pd

)
Re(αd)

 , (3.12)

with the combinations of CKM factors (estimated using the summer 2019 CKMfitter up-

date [27–29] (see Table 3):

αd = (−0.0136+0.0095
−0.0096) + i(0.4181+0.0085

−0.0064), (3.13)

αs = (0.00863+0.00040
−0.00036) + i(−0.01829+0.00037

−0.00042), (3.14)

κ =

∣∣∣∣λsc + λsu
λdc + λdu

∣∣∣∣2 = 22.92+0.52
−0.30. (3.15)

From QCD factorisation and the discussion in Sec. 2, we have

∆d

Pd
= (−0.16± 0.15) + (0.23± 0.20)i,

∆s

Ps
= (−0.15± 0.22) + (0.23± 0.25)i, (3.16)
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so that the brackets in Eq. (3.12) are very close to 1, with the main uncertainty of 1%

from the term proportional to |αd|2 (which will be included in the theoretical uncertainties

below). The leading uncertainty in the theoretical evaluation of LK∗K̄∗ comes thus from

the ratio |Ps/Pd|, which we can attempt to estimate in different ways. A naive SU(3)

approach would consist in assuming

naive SU(3) :

∣∣∣∣PsPd
∣∣∣∣ = 1± 0.3 , (3.17)

while a naive factorisation approach would rather yield

fact SU(3) :

∣∣∣∣PsPd
∣∣∣∣ = f = 0.91+0.20

−0.17 , (3.18)

where the SU(3)-breaking ratio related to the form factors of interest is given by

f =
As
K∗K̄∗

Ad
K∗K̄∗

=
m2
Bs
ABs→K∗

0 (0)

m2
Bd
ABd→K∗

0 (0)
, (3.19)

and we used the values of Ref. [30] for the form factors to estimate f . A last possibility

amounts to using QCD factorisation. Using the same inputs as before, we obtain

QCD fact :

∣∣∣∣PsPd
∣∣∣∣ = 0.92+0.20

−0.18 . (3.20)

The QCD factorisation-based prediction follows the theoretical computations of the

different contributions to the amplitudes from Refs. [13, 31]. The numerical values of the

input parameters used are updated with respect to the ones in Ref. [31] and can be found

in Table 3 of Appendix A.

Observable 1σ 2σ

LK∗K̄∗ [12.7, 28.8] [7.5, 43]

Table 1: 1σ and 2σ confidence intervals for the SM prediction of LK∗K̄∗ within QCD

factorisation.

Hard-gluon exchanges with the spectator quark and weak annihilation feature 1/mb-

suppressed contributions exhibiting infrared divergences related to the endpoint of the

meson light-cone distribution amplitudes. These divergences are parametrised in the same

manner as in Ref. [31], involving two contributions XH and XA treated as universal for all

channels:

XH,A = (1 + ρH,Ae
iϕH,A) ln

(
mB

Λh

)
. (3.21)

We take ρH,A ∈ [0, 1] and ϕH,A ∈ [0, 2π] with flat distributions. This translates into

assigning a 100% uncertainty to the magnitude of such corrections.

We propagate the uncertainties by varying each input (given in Tab. 3) entering the

penguin ratios in Eqs. (3.17), (3.18) and (3.20) and the CKM contribution κ following
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Eq. (3.15), using Gaussian distributions. We determine then the distribution of L in each

case, leading to the 1σ ranges:

naive SU(3) : LK∗K̄∗ = 23+16
−12 1.9σ , (3.22)

fact SU(3) : LK∗K̄∗ = 19.2+9.3
−6.5 3.0σ , (3.23)

QCD fact : LK∗K̄∗ = 19.5+9.3
−6.8 2.6σ , (3.24)

where we put the level of discrepancy with experiment, in units of σ. We stress that these

discrepancies are obtained using the whole distribution for L and not just the 1σ confidence

intervals in the Gaussian approximation (see Tab. 1 for the 1 and 2σ confidence intervals).

In Tab. 2 we present the error budget for LK∗K̄∗ in the SM. The comparison with the error

budget of |Pd,s|2 shows that the impact of XA (XH) is reduced from 18% (2%) in |Pd,s|2 to

4% (0.2%) in LK∗K̄∗ . A similar reduction is observed for other inputs such as fK∗ , showing

the benefit of defining the ratio LK∗K̄∗ . It also indicates that the accuracy of the theoretical

prediction of LK∗K̄∗ could be improved significantly by determining the correlations among

the relevant B → K∗ form factors in order to compute the associated SU(3) breaking.

Moreover, the impact of the weak annihilation and hard-scattering divergences on the

uncertainty is subdominant and would not be affected strongly by using a different approach

for these power-suppressed infrared divergences.

From the comparison of the SM predictions Eqs. (3.22)-(3.24) with the experimental

result in Eq. (3.9), we see that all our theoretical estimates point towards a deficit in the

b→ s transition compared to the b→ d one for these penguin-mediated modes, in analogy

with the deficit observed in semileptonic decays to muons versus the decay to electrons in

b→ s`` decays.

Relative Error

Input LK∗K̄∗ |Ps|2 |Pd|2

fK∗ (−0.1%,+0.1%) (−6.8%,+7.1%) (−6.8%,+7%)

ABd
0 (−22%,+32%) − (−24%,+28%)

ABs
0 (−28%,+33%) (−28%,+33%) −

λBd
(−0.6%,+0.2%) (−4.6%,+2.1%) (−4.1%,+1.9%)

αK
∗

2 (−0.1%,+0.1%) (−3.6%,+3.7%) (−3.6%,+3.6%)

XH (−0.2%,+0.2%) (−1.8%,+1.8%) (−1.6%,+1.6%)

XA (−4.3%,+4.4%) (−17%,+19%) (−13%,+14%)

κ (−1.4%,+2.2%) − −
Others (−1.3%,+1.1%) (−2.7%,+2.5%) (−1.6%,+1.6%)

Table 2: Error budget of LK∗K̄∗ and |Pd,s|2. The relative error of each theoretical input

is obtained by varying them individually. The main sources of uncertainty are the form

factors, followed by weak annihilation at a significantly smaller level.
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4 Model-independent NP analysis

Even though the deviation in LK∗K̄∗ is not yet at the level of a troublesome discrepancy

with the SM, its potential connection with other B-flavour anomalies makes it interesting

to investigate it further in terms of possible SU(3)-breaking NP contributions. We may

explore in a model-independent way how to explain this anomaly via contributions only

to the Wilson coefficients of the b → s transition, while keeping the corresponding b → d

SM-like (or with opposite NP contributions).

This can be performed by using the weak effective theory, whose basis within the SM

we recall in Eq. (A.1) of App. A. Note that in the presence of generic NP, the basis of

operators must be extended since we expect this NP contribution to couple with different

strength to different flavours (and in particular to d and s quarks), there is no a priori

reason for it to yield “strong” and “electroweak” penguin operators with sums over all

quark flavours following the same pattern as in the SM [32].

However, for simplicity, and in parallel with the results of the global fits for NP in b→
s`` decays favouring SM operators or chirally-flipped versions of it, we consider here only

NP entering the Wilson coefficients associated with the SM operators Qi or the chirally-

flipped ones Q̃i as defined in Ref. [21] by exchanging V −A and V +A in all quark bilinears

constituting the operators. These right-handed currents would modify the longitudinal

amplitude by adding contributions that are functions of CNP
i −C̃i (where C̃i is the coefficient

of the chirally-flipped operator) leading to the structure A0[CSM
i ]+A0[CNP

i −C̃i]. In practice

this means that the NP contribution to each coefficient entering the longitudinal amplitude

should be interpreted as stemming not only from the standard operators but also from the

chirally flipped ones (with an opposite sign).

We consider the sensitivity of LK∗K̄∗ on each Wilson coefficient. We want to determine

if there is a dominant operator that can naturally explain the low experimental value of

LK∗K̄∗ , as it happens for b→ s`` with O9. We assume that NP enters as described above

with the further requirement that there are no additional NP phases, leading to real-valued

Wilson coefficients. We can then compute the hadronic matrix elements within QCD

factorisation exactly like in the SM. In Appendix B we provide semi-analytical expressions

for Pd and Ps, needed to compute LK∗K̄∗ in terms of Wilson coefficients. We provide

the explicit dependence on the infrared divergences XA and XH although their numerical

impact on the uncertainty is limited. Let us note in passing that the quantity ∆q is still

protected from infrared divergences in this NP extension: the structure of the longitudinal

hadronic amplitudes T and P is unchanged, and only the numerical values of Wilson

coefficients are modified compared to the SM (the protection of ∆ from infrared divergences

would not necessarily hold in more general NP extensions).

Considering the sensitivity of LK∗K̄∗ on each Wilson coefficient of the weak effective

theory individually, we can determine the coefficients where a limited NP contribution

would be sufficient to explain the discrepancy observed. We thus identify three dominant

coefficients: Cc1q, C4q and Ceff
8gq (see Fig. 1 and Fig. 5 in Appendix C). The strong dependence

on these coefficients with respect to the others can be seen already in the explicit form of
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Pd,s:

Ps = (1.98− 5.04i) + (2.37− 1.65i)Cc,NP
1s + (9.98 + 148.76i)CNP

4s − 7.98iCeff,NP
8gs + . . .

Pd = (2.17− 5.49i) + (2.60− 1.80i)Cc,NP
1d + (10.95 + 161.74i)CNP

4d − 8.76iCeff,NP
8gd + . . .

which translates into a dominant contribution for LK∗K̄∗ as well.

The reason behind this strong dependence on these coefficients can be understood in the

following way. Let us consider a penguin-mediated decay, so that the SM tree-level operator

Cc1s contributes through a closed cc̄ loop to the decay, putting its contribution at the same

level as the “strong” penguin operators i = 3 . . . 6 in the SM. A very similar contribution at

the level of the underlying SM diagrams comes thus from both Cc1s and C4s, as can be seen

from the V −A structure of the operators (this is also the case for Ceff
8gs with the emission

of a gluon coupling to a qq̄ pair). The effect of the diagrams is similar in the SM, but the

separation between long and short distances in the weak effective theory yields C4s and Ceff
8gs

much smaller than Cc1s, which must be compensated by larger weights in Eqs. (4.1) and

(4.1). The other penguin operators are suppressed either because of colour suppression (C3,

thus associated with 1/Nc factors in the QCD factorisation formula) or helicity suppression

(C5 and C6, which yield a vanishing contribution in the naive factorisation approach as they

must be Fierzed into (pseudo)scalar operators with vanishing matrix elements). In the SM,

the “electroweak” penguins i = 7 . . . 10 are suppressed. Their contributions might be very

significantly enhanced by NP which would not require such an electromagnetic suppression,

although it would be difficult to obtain then “electroweak” operators at the mb-scale since

they involve explicitly the quark electric charges. If we nevertheless allowed for such very

large contributions for the electroweak part (which we will discard in the following), the

same argument would apply as in the case of the “strong” penguins, so that the leading

contribution from the “electroweak” penguins would be C10q.

As can be seen in Fig. 5, the coefficient Cc1s requires a very large NP contribution

w.r.t. the SM of order 60% to reduce this discrepancy at 1σ. We will not pursue the
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Figure 1: The tension between the theoretical prediction (blue) and the experimental

value (orange) is reduced below 1σ for CNP
4s ' 0.25CSM

4s (upper plot) or Ceff,NP
8gs ' −Ceff,SM

8gs

(lower plot). The predictions are given for CNP
4s and Ceff,NP

8gs for a range corresponding to

100% of their respective SM values. The plots for the remaining Wilson coefficients can be

found in Appendix C.
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possibility of a contribution to Cc1q, as the size of the effect being so large at an absolute

scale is in conflict with recent analyses of the global constraints on this coefficient [33]

that suggest that the room for NP contributions is of O(10%) of the SM. Dijet angular

distributions [34], together with flavour bounds following from SU(2)L gauge invariance,

suggest bounds which are even tighter.

The penguin coefficient C4s requires a NP contribution of order 25% (which is inci-

dentally similar to the NP contribution needed in C9 for b → sµµ) in order to reduce

the discrepancy in LK∗K̄∗ at 1σ. The NP contribution needed is thus quite large but

not significantly constrained from other non-leptonic decays where many other coefficients

enter [22].

Finally, Ceff
8gs would require a NP contribution of order 100% of the SM in order to

obtain a similar reduction of the discrepancy. Although it might seem a large contribution,

it is actually very difficult to obtain a precise bound on this effective coefficient which

combines C8gs with some Wils0on coefficients of four-quark operators (see Appendix A).

Due to QCD loop effects, the constraint from b → sγ is actually on a linear combination

of the Wilson coefficients Ceff
7γs and Ceff

8gs at the scale µb [35]. Therefore, an effect in Ceff
8gs

can always be cancelled by an effect in Ceff
7γs so that the experimental bound from b → sγ

is obeyed (the same is also true for b → dγ [36]). Even without such a cancellation from

Ceff
7γs, the current measurements can accommodate a NP contribution to Ceff

8gs of the order

of the SM. Another more direct bound on Ceff
8gs is provided by the b → sg contribution to

inclusive non-leptonic charmless decays. The current bound on the b→ sg branching ratio

in Ref. [37] is at the level of 6.8%, whereas the SM contribution [38] is estimated at the

level of 0.5%, leaving room for a NP contribution to Ceff
8gs up to three times as large as the

SM one.

Naturally, in each case, if we allow for NP in both Cis and Cid, we may get the same

reduction of the discrepancy by assigning half of the NP contribution (with opposite signs)

Figure 2: 1σ and 2σ CL regions from LK∗K̄∗ allowing NP contributions to both C4s and

C4d.
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to both coefficients, as illustrated for C4 in Fig. 2. Thus, allowing NP in b→ d transitions in

addition to b→ s transitions requires smaller NP contributions in each type of transition,

and allows one to evade some of the bounds discussed above as they applied only to b→ s

transitions (e.g. C8gs). C8gd is constrained from b→ dγ.

5 Simplified NP models

Our model-independent analysis showed that LK∗K̄∗ is mostly sensitive to colour-octet

operators and to a lesser extent to the chromomagnetic operator. In the following, we will

consider NP models able to generate such contributions, and for concreteness, present the

formula for the case of b→ s transitions.

Concerning C4s, it is natural to search for a tree-level explanation in terms of NP and a

massive SU(3)c octet vector particle, i.e. a Kaluza-Klein (KK) gluon, also called axi-gluon,

comes naturally to mind. We parametrise its couplings to down quarks of different flavours

as

L = ∆L
sbs̄γ

µPLT
abGaµ + ∆R

sbs̄γ
µPRT

abGaµ . (5.1)

with ∆L,R
sb assumed real. We also define from Eq. (5.1) analogous flavour diagonal couplings

which we will denote as ∆L,R
qq .

We may consider the constraints from neutral-meson mixing through the effective

Hamiltonian of Ref. [39]

H∆F=2
eff =

5∑
j=1

CBsB̄s
j OBsB̄s

j +

3∑
j=1

C̃BsB̄s
j ÕBsB̄s

j ,

OBsB̄s
1 = [s̄αγ

µPLbα] [s̄βγµPLbβ] , (5.2)

OBsB̄s
4 = [s̄αPLbα] [s̄βPRbβ] , (5.3)

OBsB̄s
5 = [s̄αPLbβ] [s̄βPRbα] , (5.4)

where only the operators relevant for the discussion are displayed and where the operators

with a tilde are obtained by exchanging the chirality projectors PL and PR. We get the

matching contributions

CBsB̄s
1 =

1

2m2
KK

(
∆L
sb

)2 1

2

(
1− 1

NC

)
, (5.5)

C̃BsB̄s
1 =

1

2m2
KK

(
∆R
sb

)2 1

2

(
1− 1

NC

)
, (5.6)

CBsB̄s
4 = − 1

m2
KK

∆L
sb∆

R
sb , (5.7)

CBsB̄s
5 =

1

NCm2
KK

∆L
sb∆

R
sb , (5.8)

where mKK is the mass of the KK gluon. Using the two-loop Renormalisation Group

Equations of Refs. [40, 41] and the bag factors of Ref. [42] this translates to

∆MNP
Bs

∆MSM
Bs

× 10−10 =
(

1.1(CBsB̄s
1 + C̃BsB̄s

1 ) + 8.4CBsB̄s
4 + 3.1CBsB̄s

5

)
GeV2 , (5.9)
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for a NP scale around 5 TeV. This has to be compared with the outcome of global fits allow-

ing for NP in mixing [43, 44], favouring a value slightly above 1 for the ratio ∆M exp
Bs

/∆MSM
Bs

.

Encompassing the results obtained from these recent fits in a conservative manner, we con-

sider here
∆M exp

Bs

∆MSM
Bs

= 1.11± 0.09 . (5.10)

We obtain the allowed region shown in blue in Fig. 3 for real values of the Wilson coefficients

and neglecting the bag factor uncertainties related to CBsB̄s
4,5 .

Assuming that the KK gluon has universal flavour-diagonal coupling to the first two

generations of quarks, which is also needed to avoid unacceptably large effects in K − K̄
and/or D0− D̄0 mixings [46], our model generates 1 a NP contribution to C4s given at the

matching scale by

C4s = −1

4

∆L
sb∆

L
qq√

2GFVtbV
∗
tsm

2
KK

, (5.11)

(and similarly for C̃4s with L replaced by R). The couplings ∆L,R
sb are defined in Eq.(5.1)

while ∆L,R
qq stand for the corresponding flavour-diagonal couplings to up and down quarks

of the first two generations.

However, couplings of first generation quarks to KK gluons are strongly constrained

by di-jet searches [45]: (∆L
qq/mKK)2 < (2.2/(10 TeV))2. Allowing for NP also in b → d

transitions could increase the effect in LK∗K̄∗ , but since here the effect is bounded by

Bd − B̄d mixing, whose constraints are of the same order as Bs − B̄s mixing, one can only

gain a factor ≈ 2. Using this maximal coupling for the ∆L
qq couplings and setting the ∆R

qq

couplings to zero, we can see from Fig. 3 that a significant amount of fine-tuning is needed

to account for LK∗K̄∗ .

Alternatively, one could try to explain LK∗K̄∗ with a NP contribution in the chirally-

flipped coefficient C̃4s, given by Eq. (5.11) with the ∆L
sb and ∆L

qq couplings replaced by ∆R
sb

and ∆R
qq, respectively. In principle, one could exploit the fact that the couplings do not have

to respect an U(2) flavour symmetry (since up- and down-type quark couplings are not

related via SU(2)L), so that couplings to first-generation quarks could be avoided, which

would relax LHC bounds and reduce the fine-tuning needed in Bs − B̄s mixing. However,

as in the previous case, flavour universality for diagonal couplings to quarks is needed to be

able to make use of our expressions for LK∗K̄∗ . Moreover, according to QCD factorisation,

the dominant LO effect in LK∗K̄∗ originates from the term in Q4s with down quarks in

the bilinear summed over flavours. Therefore, (dominant) right-handed couplings cannot

be used to evade LHC bounds and still fine-tuning in Bs − B̄s mixing, like in the case of

left-handed couplings, is needed.

As indicated earlier, one could also try to explain LK∗K̄∗ with the Wilson coefficient

of the chromomagnetic operator O8gs. Here an effect of the order of the SM contribution

1Note that our model is only flavour universal with respect to four but not five flavours and does not

fulfill the requirements of Sec. 4. However, the effect of bottom quarks within the Q4s operator in LK∗K̄∗ is

O(αs)-suppressed within QCD factorisation and thus the impact of our model on LK∗K̄∗ can be mimicked

by a shift in C4s to a good approximation.
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Figure 3: Preferred regions from Bs− B̄s mixing (red) and LK∗K̄∗ (blue) for ∆R
qq = 0 and

the maximal value of ∆L
qq compatible with LHC searches assuming real couplings. Note

that explaining LK∗K̄∗ requires some fine-tuning in ∆L
sb vs ∆R

sb.

is required. C8gs can only be generated at the loop level and involves necessarily coloured

particles for which strong LHC limits exist. Therefore, a value of the order of the SM

contribution can only be obtained thanks to chiral enhancement.

A simplified model fulfilling these requirements features two vector-like quarks, one

SU(2)L doublet and one SU(2)L singlet (with a large coupling λ to the SM Higgs doublet)

and an additional neutral scalar particle [47]. In this setup, C8gs receives a contribution

which scales like λ/(mb/v) × v2/M2 w.r.t. the SM, where M is the NP scale. Inevitably

an effect in C7γs is generated at the matching scale M which however has free sign and

magnitude as it depends on the (not necessarily quantized) electric charges of the new

fermions and scalar inside the loop. Therefore, the electric charges of the new particles can

be chosen in such a way that in C7γs (at the mb scale) the NP contributions to C7γs and

C8gs (taken at the matching scale) cancel. As we need a NP contribution to C8gs of the

order of the SM one, and C7γs at the low scale is known at the 5% level, a tuning of the

order of 1/20 is necessary here.

Both simplified models allow for the possibility of a connection with the b → s`+`−

anomalies. On the one hand, the KK gluon may be part of the particle spectrum of a

composite/extra-dimensional model and is then accompanied by a Z ′ boson. This could

explain b→ s`+`− without violating LHC di-lepton bounds [48] due to the large sb coupling

of the Z ′ needed to explain LK∗K̄∗ , leading to NP contributions with the correct sign in

both types of anomalies. On the other hand, the model generating a large effect in C8g

could easily be extended by a vector-like lepton in order to account for b→ s`+`− [47].
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6 Conclusions

In this article, we have analysed the non-leptonic penguin decays Bd → K∗0K̄∗0 and

Bs → K∗0K̄∗0, where recent LHCb results indicate striking differences in the longitudinal

polarisation of these two modes. This is unexpected since they are related by U -spin and

should thus have a similar QCD and EW dynamics (up to tiny corrections due to the down

and strange quark masses).

We introduced the L-observable as a combination of polarisation fractions and branch-

ing ratios in order to compare the longitudinal amplitudes in both modes, as they can be

computed with better theoretical control in a 1/mb expansion such as QCD factorisation.

We exploited the fact that these penguin-mediated decays exhibit very similar hadronic ma-

trix elements for the “tree” and “penguin” contributions in the usual decomposition based

on CKM factors, so that these contributions are very strongly correlated. This means that

the L-observable is a measure of U -spin breaking between the penguin contributions to Bd
and Bs decays, with a deviation from the SM expectation between 2σ and 3σ depending

on the specific theoretical framework considered. This observation reinforces and puts on

a firmer ground the hint for NP already suspected by considering the difference between

the longitudinal polarisation fractions in these two modes. We performed a detailed error

budget analysis for LK∗K̄∗ and we found a relatively small impact of infrared divergences

coming from weak annihilation and hard-spectator scattering, compared to observables like

branching ratios or polarisation fractions involving troublesome transverse amplitudes.

We then interpreted this deviation in a model-independent approach using the weak

effective theory. For simplicity, we allowed NP only in SM Wilson coefficients or their

chirally-flipped counterparts. We identified three operators which could accommodate the

deviation with NP contributions at most as large as the SM. While C1q is already very

significantly constrained by other nonleptonic modes and LHCb bounds (up to the point of

excluding this solution), the situation is less constrained for the strong penguin coefficient

C4q and the chromomagnetic one Ceff
8gq where NP contributions of a similar size to the SM

one are allowed and could explain the deviation in LK∗K̄∗ . We discussed examples of

simplified NP models that could provide large contributions, at the price of accepting fine

tuning to accommodate the bounds on Bs − B̄s mixing and b → sγ. Interestingly, within

a general composite or extra-dimensional model [49], the Kaluza-Klein gluon contribution

to the b → s amplitude in Bs → K∗0K̄∗0 has the same sign as the Z ′ contribution to

b→ s`+`− w.r.t the SM. Therefore, if one accepts the fine-tuning in Bs − B̄s mixing, such

models can provide a common explanation of LK∗K̄∗ and b→ s`+`− data.

This hint of NP in LK∗K̄∗ could be sharpened with a precise estimate of U -spin breaking

in the form factors involved, as they drive the theoretical uncertainty of the SM predic-

tion and their correlation is not known precisely. A comparison of the theoretical and

experimental information on the polarisations in Bs → K∗φ and Bd → K∗φ could also be

valuable to check whether a similar tension arises. Complementary information could be

obtained also from pseudoscalar-vector and pseudoscalar-pseudoscalar penguin-mediated

modes (K0K̄∗0 and K0K̄0). Moreover, if the same source of NP is responsible for the

suppression of b→ sqq̄ versus b→ dqq̄ and b→ sµµ versus b→ see, it would be certainly
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interesting to perform a thorough study of b→ d`+`− modes compared to b→ s`+`− ones,

which should be accessible with more data from the LHCb and Belle II experiments. This

interplay between non-leptonic and semileptonic rare decays could prove highly beneficial

in the coming years to identify new B-flavour anomalies and understand their actual origin

in terms of physics beyond the SM.
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A Weak effective theory and QCD factorisation framework

The separation between short and long distances at the scale µb = mb is performed in the

weak effective theory to compute b-quark decays within the SM:

Heff =
GF√

2

∑
p=c,u

λ(q)
p

(
Cp1sQ

p
1s + Cp2sQ

p
2s +

∑
i=3...10

CisQis + C7γsQ7γs + C8gsQ8gs

)
. (A.1)

This effective Hamiltonian describes the quark transitions b → uūs, b → cc̄s, b → sq′q̄′

with q′ = u, d, s, c, b, and b → sg, b → sγ. Qp1s,2s are the left-handed current-current

operators arising from W -boson exchange, Q3s...6s and Q7s...10s are QCD and electroweak

penguin operators, and Q7γs and Q8gs are the electromagnetic and chromomagnetic dipole

operators. They are given by [22]:

Qp1s = (p̄b)V−A(s̄p)V−A , Q7s = (s̄b)V−A
∑
q

3

2
eq(q̄q)V+A ,

Qp2s = (p̄ibj)V−A(s̄jpi)V−A , Q8s = (s̄ibj)V−A
∑
q

3

2
eq(q̄jqi)V+A ,

Q3s = (s̄b)V−A
∑
q

(q̄q)V−A , Q9s = (s̄b)V−A
∑
q

3

2
eq(q̄q)V−A ,

Q4s = (s̄ibj)V−A
∑
q

(q̄jqi)V−A , Q10s = (s̄ibj)V−A
∑
q

3

2
eq(q̄jqi)V−A ,

Q5s = (s̄b)V−A
∑
q

(q̄q)V+A , Q7γs =
−e
8π2

mbs̄σµν(1 + γ5)Fµνb ,

Q6s = (s̄ibj)V−A
∑
q

(q̄jqi)V+A , Q8gs =
−gs
8π2

mb s̄σµν(1 + γ5)Gµνb , (A.2)

where (q̄1q2)V±A = q̄1γµ(1± γ5)q2, i, j are colour indices, eq are the electric charges of the

quarks in units of |e|, and a summation over q = u, d, s, c, b is implied. The NLO Wilson

coefficients at the scale µ = 4.2 GeV are given in Table 3.

A similar weak effective theory can be written for the b→ d transition by performing

the trivial replacement s → d. Neglecting the difference of mass between the d and s

quarks, the SM values of the Wilson coefficients are identical in both cases, and we omit

the d or s subscript in Table 3.

In the SM, Cc1 = Cu1 is the largest coefficient and it corresponds to the colour-allowed

tree-level contribution from the W exchange, whereas Cc2 = Cu2 is colour suppressed. QCD-

penguin operators are numerically suppressed, and the electroweak operators even more

so. It proves convenient to define the effective coefficients Ceff
7γ and Ceff

8g which are given in

the scheme of Ref. [22] as

Ceff
7γ = C7γ −

1

3
C5 − C6 , (A.3)

Ceff
8g = C8g + C5 , (A.4)

QCD factorisation relies on this weak effective theory to compute non-leptonic B-decay

hadronic matrix elements, by performing a further separation of scales between mb and
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the typical QCD scale, later reinterpreted in terms of a Soft-Collinear Effective Theory

(SCET). Following Refs. [13, 31] and using the same notation as in this reference, we have

for the vector modes for a given polarisation:

T (B̄d → K̄∗0K∗0) = AK̄∗K∗ [αu4 −
1

2
αu4,EW + βu3 + βu4 −

1

2
βu3,EW −

1

2
βu4,EW ]

+AK∗K̄∗ [βu4 −
1

2
βu4,EW ] ,

P (B̄d → K̄∗0K∗0) = AK̄∗K∗ [αc4 −
1

2
αc4,EW + βc3 + βc4 −

1

2
βc3,EW −

1

2
βc4,EW ]

+AK∗K̄∗ [βc4 −
1

2
βc4,EW ] ,

T (B̄s → K̄∗0K∗0) = AK̄∗K∗ [βu4 −
1

2
βu4,EW ]

+AK∗K̄∗ [αu4 −
1

2
αu4,EW + βu3 + βu4 −

1

2
βu3,EW −

1

2
βu4,EW ] ,

P (B̄s → K̄∗0K∗0) = AK̄∗K∗ [βc4 −
1

2
βc4,EW ]

+AK∗K̄∗ [αc4 −
1

2
αc4,EW + βc3 + βc4 −

1

2
βc3,EW −

1

2
βc4,EW ] .

(A.5)

The coefficients α and β involve form factors and convolutions of perturbative kernels

with light-cone distribution amplitudes multiplied by the Wilson coefficients of the weak

effective Hamiltonian. The difference between αui and αci occurs from the O(αs) penguin

contractions in P p4 and P p6 , and specifically from the loops with u or c quarks and a W

exchange (so that these contributions come with factors αs/(4π) and Cc1). This comes from

the fact that the effective Hamiltonian has a specific structure in the SM: only two types

of four-fermion operators Op1 and Op2 (p = u, c) involve explicitly different λ
(q)
p , whereas the

other operators treat all quarks on the same footing, they come from top loops and are

accompanied with a CKM term λ
(q)
t = −λ(q)

u − λ(q)
c leading to an identical contribution to

T and P .

As discussed in Refs. [16, 19, 20], this explains why the quantity ∆ defined in Eq. (2.2)

can be computed safely within QCD factorisation for penguin mediated decays because of

the cancellation of long-distance contributions. As a consequence of this cancellation, only

penguin contractions contribute to ∆, as can be seen by inspection of the formulae above,

leading to the following very simple expression within QCD factorisation:

∆ = AQM1M2

CFαs
4πN

C1[ḠM2(m2
c/m

2
b)− ḠM2(0)] , (A.6)

where the normalisation AQM1M2
is defined as:

AQM1M2
=
GF√

2
m2
Bq
fM2A

Bq→M1(0) , (A.7)

and ḠM2 is the penguin function defined in Ref. [19].
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Bd,s Distribution Amplitudes (at µ = 1 GeV) [50, 51]

λBd
[GeV] λBs/λBd

σB
0.383± 0.153 1.19± 0.14 1.4± 0.4

K∗ Distribution Amplitudes (at µ = 2 GeV) [52]

αK
∗

1 αK
∗

1,⊥ αK
∗

2 αK
∗

2,⊥
0.02± 0.02 0.03± 0.03 0.08± 0.06 0.08± 0.06

Decay Constants (at µ = 2 GeV) [30, 42, 53]

fBd
fBs/fBd

fK∗ f⊥K∗/fK∗

0.190± 0.0013 1.209± 0.005 0.204± 0.007 0.712± 0.012

Bd,s → K∗ form factors [30] and B-meson lifetimes (ps)

ABs
0 (q2 = 0) ABd

0 (q2 = 0) τBd
τBs

0.314± 0.048 0.356± 0.046 1.519± 0.004 1.515± 0.004

Wolfenstein parameters [27]

A λ ρ̄ η̄

0.8235+0.0056
−0.0145 0.22484+0.00025

−0.00006 0.1569+0.0102
−0.0061 0.3499+0.0079

−0.0065

QCD scale and masses [GeV]

m̄b(m̄b) mb/mc mBd
mBs mK∗ ΛQCD

4.2 4.577± 0.008 5.280 5.367 0.892 0.225

SM Wilson Coefficients (at µ = 4.2 GeV)

C1 C2 C3 C4 C5 C6

1.082 -0.191 0.013 -0.036 0.009 -0.042

C7/αem C8/αem C9/αem C10/αem Ceff
7γ Ceff

8g

-0.011 0.058 -1.254 0.223 -0.318 -0.151

Table 3: Input parameters used to determine the SM predictions.

B Semi-analytical expressions

In the following we provide the key elements to construct a semi-analytical expression of

LK∗K̄∗ . Specifically we give Ps and Pd in terms of Wilson coefficients and the parameters

XH and XA. κ is given in Eq. (3.15) and the last bracket in Eq. (3.12) has a negligible

impact and can be taken to be conservative 0.99 ± 0.01. We have followed the corrected

expression of Ref. [54] for the modelling of the weak annihilation in terms of XA.
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107 × Pd = i0.076Ceff
7γ − i8.8Ceff

8g + ((2.6− i1.8) + i0.13XA − i0.041X2
A − i0.025XH)Cc1

+ ((−0.045 + i0.39)− i0.61XA + i0.16X2
A + i0.035XH)Cc2

+ ((15.5 + i38.9) + i0.31XA + i0.25X2
A + i3.8XH)C3

+ ((11.0 + i156.9) + i0.25XA + i0.96X2
A − i0.54XH)C4

+ ((−7.4− i7.2) + i9.2XA − i3.3X2
A + i0.11XH)C5

+ ((11.0− i19.9) + i27.7XA − 8.9X2
A + i0.24XH)C6

+ ((3.7 + i3.8)− i4.7XA + i1.7X2
A + i0.00042XH)C7

+ ((i6.9)− i15.7XA + i5.0X2
A − i0.008XH)C8

+ ((−6.4− i19.4)− i0.55XA − i0.041X2
A − i1.9XH)C9

+ (−i81.9− 1.4XA − i0.15X2
A + i0.32XH)C10 , (B.1)

107 × Ps = i0.069Ceff
7γ − i8.0Ceff

8g + ((2.4− i1.7) + i0.16XA − i0.049X2
A − i0.026XH)Cc1

+ ((−0.041 + i0.45)− i0.74XA + i0.1X2
A + i0.037XH)Cc2

+ ((14.2 + i36.4) + i0.37XA + i0.3X2
A + i3.9XH)C3

+ ((10.0 + i142.7) + i0.31XA + i1.2X2
A − i0.56XH)C4

+ ((−6.7− i7.7) + i11.1XA − i3.9X2
A + i0.11XH)C5

+ ((10.0− i21.7) + i33.5XA − 10.8X2
A + i0.25XH)C6

+ ((3.4 + i4.0)− i5.7XA + i2.0X2
A + i0.00043XH)C7

+ ((i8.3)− i19.0XA + i6.0X2
A − i0.008XH)C8

+ ((−5.8− i18.1)− i0.66XA − i0.049X2
A − i2.0XH)C9

+ (−i74.3− 1.7XA − i0.18X2
A + i0.33XH)C10 . (B.2)

C Sensitivity to New Physics

We show how NP contributions can help to reduce the tension between theory and exper-

iment for LK∗K̄∗ , completing the results shown in Fig. 1 discussed in Sec. 4. In Fig. 4 we

show the 1σ-range for the NP contribution to each Wilson coefficient that is able to explain

the experimental value of LK∗K̄∗ , normalised to its SM value.

-2 0 2 4 6 8 10

Figure 4: 1σ intervals for the NP contribution to Wilson coefficients needed to explain

LK∗K̄∗ , normalised to their SM value.
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Figure 5: Sensitivity of LK∗K̄∗ to individual contributions of NP in all different CNP
is . For

each coefficient, the range of variation considered for the NP contribution corresponds to

100% of its SM value.
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