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We report measurements by the T2K experiment of the parameters θ23 and ∆m2
32 which gov-

ern the disappearance of muon neutrinos and antineutrinos in the three-flavor PMNS neutrino
oscillation model at T2K’s neutrino energy and propagation distance. Utilizing the ability of
the experiment to run with either a mainly neutrino or a mainly antineutrino beam, muon-like
events from each beam mode are used to measure these parameters separately for neutrino and
antineutrino oscillations. Data taken from 1.49 × 1021 protons on target (POT) in neutrino mode
and 1.64 × 1021 POT in antineutrino mode are used. The best-fit values obtained by T2K were
sin2 (θ23) = 0.51+0.06

−0.07

(
0.43+0.21

−0.05

)
and ∆m2

32 = 2.47+0.08
−0.09

(
2.50+0.18

−0.13

)
×10−3eV2/c4 for neutrinos (an-

tineutrinos). No significant differences between the values of the parameters describing the disap-
pearance of muon neutrinos and antineutrinos were observed. An analysis using an effective two-
flavor neutrino oscillation model where the sine of the mixing angle is allowed to take non-physical
values larger than 1 is also performed to check the consistency of our data with the three-flavor
model. Our data were found to be consistent with a physical value for the mixing angle.

INTRODUCTION

We present an update of T2K’s νµ and ν̄µ disappear-
ance measurement from [1] with a larger statistical sam-
ple and significant analysis improvements. Data taken up
until the end of 2018 are used. This is a beam exposure
of 1.49× 1021 (1.64× 1021) protons on target in neutrino
(antineutrino) mode; an increase by a factor of 2.0 (2.2)
over the previous result. While the same data were used
for the result reported in [2], the result reported here fo-
cuses on events containing νµ and ν̄µ candidates. These
events are used to search for potential differences between
neutrinos and antineutrinos and to test consistency with
the PMNS oscillation model, by adding additional de-
grees of freedom to the oscillation probability formulae
in the present analysis. These additional degrees of free-
dom are more straightforward to implement and interpret
when studying muon-like events only.

The mixing of the three flavors of neutrinos with-
out sterile neutrinos or non-standard interactions is usu-
ally described with the PMNS formalism [3, 4]. In this
formalism the vacuum oscillation probability is deter-
mined by 6 parameters: three angles (θ12, θ13 and θ23),
two mass squared splittings (∆m2

21 and ∆m2
32, where

∆m2
ij = m2

i −m2
j ) and a complex phase (δCP ). It is not

known whether the smaller of the two mass splittings
is between the two lightest states or the two heaviest
states. These two cases are called normal and inverted
ordering, respectively. νµ disappearance is not sensitive
to this ordering, so all results here assume the normal
mass ordering.

In this model, which assumes CPT conservation, νµ
and ν̄µ have identical survival probabilities for vacuum
oscillations. At T2K’s beam energy and baseline, the
effect of the neutrinos propagating through matter on
the muon neutrino survival probability is very small.
Therefore, if the oscillation probabilities for neutrinos
and antineutrinos differ by significantly more than ex-
pected, this could be interpreted as possible CPT viola-
tion and/or non-standard interactions [5, 6].

In the three-flavor analysis shown here, the oscillation
probabilities for νµ and ν̄µ are calculated using the stan-
dard PMNS formalism, but with independent parame-

ters to describe ν̄µ and νµ oscillations, i.e. θ̄23 6= θ23 and

∆m2
32 6= ∆m2

32, where the barred parameters affect the
antineutrino probabilities. As this data set does not con-
strain the other PMNS parameters, they are assumed to
be the same for ν and ν̄.

Whilst it allows the νµ and ν̄µ parameters to take dif-
ferent values, this three-flavor analysis does not allow
oscillation probability values not allowed by the PMNS
formalism. To test consistency with the PMNS formal-
ism we also present an analysis in which the oscillation
probabiity is allowed to exceed the maximum possible
PMNS value. In this analysis for computational simplic-
ity we approximate the probability for muon neutrino
disappearance using a ‘two-flavor’ only oscillation for-
mula with an effective mixing angle and mass splitting
that takes into account the information we know about
‘three-flavor’ mixing. sin2 (2θ) is then allowed to take val-
ues exceeding 1, where θ is the effective neutrino mixing
angle in this framework. This two-flavor approximation
gives probabilities that agree to better than 0.5% with
the full PMNS calculation across T2K’s neutrino energy
range at the best-fit parameter values from T2K’s joint
muon and electron-like event analysis [2].

EXPERIMENTAL APPARATUS

T2K [7] searches for neutrino oscillations in a long-
baseline (295 km) neutrino beam sent from the Japan
Proton Accelerator Research Complex (J-PARC) in
Tokai, Japan to the Super-Kamiokande (SK) detector.
SK [8, 9], is situated 2.5◦ off the axis of the beam, mean-
ing that it is exposed to a relatively narrow energy width
neutrino flux, peaked around the oscillation maximum
0.6 GeV.

The neutrino beam generation starts with 30 GeV pro-
tons which strike a graphite target, producing hadrons,
which are charge-selected and focused by three magnetic
horns [10], and decay in a 96 m long decay volume pro-
ducing predominantly muon neutrinos. Positively or neg-
atively charged hadrons are selected using the polarity of
the horns creating a beam dominated by neutrinos or
antineutrinos, respectively.
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A set of near detectors measures the unoscillated neu-
trino beam 280 m downstream of the interaction target.
The INGRID [11] detector is an array of iron/scintillator
sandwiches arranged in a cross pattern centered on the
beam axis. INGRID measures the neutrino beam direc-
tion, stability and profile [12].

The off-axis ND280 detector has three magnetised time
projection chamber (TPC) trackers [13] and two fine-
grained detectors (FGD1 made of CH, and FGD2 made
of 52% water 48% CH by mass) [14], surrounded by an
electromagnetic calorimeter [15]. A muon range detector
[16] is located inside the magnet yokes. The magnetized
tracker measures the momentum and charge of particles.
ND280 constrains the νµ and νµ flux, the intrinsic νe and
νe contamination of the beam and the interaction cross
sections of different neutrino reactions.

The far detector, SK [8, 9] is a 50 kt water Cherenkov
detector, equipped with 11,129 inward facing 20-inch
photomultiplier tubes (PMTs) that image neutrino inter-
actions in the pure water of the inner detector. SK also
has 1,885 outward-facing 8-inch PMTs instrumenting the
outer detector, used to veto events with interaction ver-
tices outside the inner detector.

ANALYSIS DESCRIPTION

The analysis presented here follows the same strategy
as T2K’s PMNS three-flavor joint fit to muon disappear-
ance and electron appearance data in [2]. A model is
constructed that gives predictions of the spectra at the
near and far detectors. This model uses simulations of
the neutrino flux, interaction cross sections and detector
response and has variable parameters to account for both
systematic and oscillation parameters. First a fit of this
model is performed to the near-detector data to tune and
constrain the neutrino flux and interaction cross-section
uncertainties. The results of this fit are then propagated
to the far detector as a multivariate normal distribution
described by a covariance matrix and the best-fit values
for each systematic parameter. The far-detector data
are then fit to constrain the oscillation parameters. This
section describes each part of the analysis focussing on
changes from the analysis reported in [1]. Where not
stated the same procedure as in [2] is used. Particularly,
the beam flux prediction, neutrino interaction modeling,
systematic uncertainties and near detector event selec-
tion are unchanged and the far-detector event selection
used in this result is a subset of that in [2].

Beam flux prediction

The T2K neutrino flux and energy spectrum prediction
is discussed extensively in [17]. The modeling of hadronic
interactions is constrained by thin target hadron produc-

tion data, from the NA61/SHINE experiment at CERN
[18–22]. Before the ND280 analysis, the systematic un-
certainties on the expected number of muon-like events
after oscillations at SK due to the beam flux model are
8% and 7.3% for the νµ and ν̄µ beams, respectively.

Neutrino interaction models

The νµ and ν̄µ oscillation probabilities are expected
to be symmetric, but their interaction probabilities with
matter are not. For example, the interaction cross section
for a charged-current quasielastic (CCQE) νµ interaction
on oxygen, is about 4 times higher than that for ν̄µ.

We model neutrino interactions using the NEUT in-
teraction generator [23]. The interaction cross-section
model and uncertainties used in this result are the same
as in [2]. This model is significantly improved compared
to the previous version of this analysis [1]. The treat-
ment of multinucleon so-called 2p2h interactions [24, 25]
has been updated, with new uncertainties accounting for
different rates of this interaction for neutrinos and an-
tineutrinos and for carbon and oxygen targets. We also
allow the shape of the interaction cross section for 2p2h
in energy-momentum transfer space to vary between that
expected for a fully ∆-exchange type interaction and that
expected for a fully non-∆-exchange like interaction.

An uncertainty on the shielding of nucleons by the nu-
cleus in CCQE interactions, modeled using the Nieves
random phase approximation (RPA) method, has been
added to the analysis [26–29]. The analysis also now
accounts for mismodeling that could take place due to
choosing an incorrect value for the nucleon removal en-
ergy in the CCQE process. Finally, a fit to external data
[30, 31] is now used to constrain our uncertainties on res-
onant single-pion production.

Near detector event selection

We define 14 samples of near-detector events, each tar-
geting a particular part of our flux or cross-section model.
All selected events must have a reconstructed charged
muon present as the highest momentum track, as we are
targeting charged-current (CC) neutrino interactions. In
neutrino beam mode, the muon is required to be nega-
tively charged to target neutrino interactions. The neu-
trino mode samples are separated by the number of pions
reconstructed: 0, 1 positively charged pion and any other
number of pions, giving samples enriched in CCQE, CC
single pion and CC deep inelastic scattering interactions,
respectively.

In antineutrino beam mode there is one set of samples
for positively charged muons and one set for negatively
charged muons, allowing a separate constraint of the neu-
trino and antineutrino composition of the beam. This is
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Sample Prediction Data

ν-mode 1Rµ 272.34 243

ν̄-mode 1Rµ 139.47 140

TABLE I. Number of events predicted using the best-fit os-
cillation parameter values from a previous T2K analysis [30],
and the number of data events collected for both 1Rµ samples.

important in antineutrino mode as the interaction cross
section for neutrinos is larger than for antineutrinos. The
antineutrino mode samples are separated by the number
of reconstructed tracks matched between the TPC and
FGD: 1 or more than 1, giving samples enriched in CCQE
and CC non-QE interactions, respectively. In both beam
modes, samples are further separated by which FGD their
vertices are reconstructed in. As in [2], the near-detector
data set for antineutrino mode is 1.38 times larger than
in [1], while the neutrino mode data set is the same size.

Far detector event selection

The analyses presented here target muon-like events.
SK is not able to distinguish neutrinos from antineutrinos
at an event by event level as it cannot reconstruct the
charge of the resulting muons. Hence, we form separate
samples of events from neutrino and antineutrino beam
mode to separately measure νµ and ν̄µ oscillations.

SK’s vertex position, momentum, and particle iden-
tification (PID) are reconstructed from the Cherenkov
rings produced by charged particles traversing the detec-
tor. PID is possible because muons scatter little due to
their large mass and hence produce a clear ring pattern,
while electrons produce electromagnetic showers result-
ing in Cherenkov rings with diffuse edges. The ring’s
opening angle also helps to distinguish between electrons
and muons. The samples used here require exactly one
muon-like Cherenkov ring and no other rings to be re-
constructed and are referred to as 1Rµ.

T2K’s reconstruction algorithm [32] fits the number
of photons and timing information from each SK PMT,
allowing better signal-background discrimination and a
fiducial volume increase of ∼20% over the previous al-
gorithm used in [1]. Both 1Rµ samples use the same
selection criteria as in [2]. Table I shows the number of
events predicted and observed for both 1Rµ samples.

Systematic uncertainties and oscillation analysis

Our model includes systematic uncertainties from the
neutrino flux prediction, the neutrino interaction cross-
section model and detector effects. We constrain sev-
eral of these uncertainties by fitting our model to ND280
near-detector data in bins of muon momentum and an-

gle. This ND280 constrained model is then used as the
prior in the fits to the far-detector data, where the SK
muon-like samples are binned in the neutrino energy re-
constructed using lepton momentum and angle assuming
a CCQE interaction. Table II shows the total systematic
error in each 1Rµ sample and a breakdown of the contri-
butions from each uncertainty source. The near-detector
fit introduces large anticorrelations between the param-
eters modeling the flux and cross-section uncertainties,
so Table II also lists the overall contribution to the un-
certainty from the combination of flux and cross-section
uncertainties.

The near-detector fit reduces the systematic error on
the expected number of events in the neutrino (antineu-
trino) mode 1Rµ sample from 15 (13)% to 5.5 (4.4)%.

Error source 1Rµ ν-mode 1Rµ ν̄-mode

Flux (constr. by ND280) 4.3% 4.1%

Xsec (constr. by ND280) 4.7% 4.0%

Xsec (all) 5.6% 4.4%

Flux + Xsec (constr. by ND280) 3.3% 2.9%

Flux + Xsec (all) 5.4% 3.2%

SK detector effects+FSI+SI 3.3% 2.9%

Total 5.5% 4.4%

TABLE II. Systematic uncertainty on the number of events
in each of the 1Rµ samples broken down by uncertainty
source. Neutrino cross-section parameter uncertainties (de-
noted ‘xsec’) are broken down by whether they are con-
strained by ND280 data or not. Uncertainties due to final
state interactions (FSI) and secondary interactions (SI) are
incorporated in the analysis by adding them to the SK detec-
tor effect uncertainty, so these are listed together.

In the three-flavor analysis, oscillation probabilities for
all events are calculated using the full PMNS formulae
[33], with matter effects (crust density, ρ = 2.6 g/cm3

[34]). We allow the values of θ23 and ∆m2
32 used in the

neutrino oscillation probability calculation to vary inde-
pendently from those used for the antineutrino oscilla-
tion probability, in order to search for differences between
neutrino and antineutrino oscillations.

In the two-flavor analysis, we use a modified version of
the canonical two-flavor oscillation formula [35], where
the disappearance probability for νµ (ν̄µ) is given by:

Pνµ→νµ
(
Pν̄µ→ν̄µ

)
≈ 1−α(ᾱ) sin2

(
1.267

∆m2[eV2]L[km]

E[GeV]

)
where α plays the role of the well-known effective two
flavor mixing angle, sin2 2θ. α differs from sin2 2θ in that
it is allowed to take values larger than 1. The effective
two-flavor ∆m2 used here can be obtained from the three-
flavor oscillation parameters using the following equation:

∆m2 =∆m2
32 + sin2 θ12∆m2

21

+ cos δCP sin θ13 sin 2θ12 tan θ23∆m2
21.
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We use independent oscillation parameters for neutrinos
and antineutrinos, with α and ∆m2 affecting neutrinos,
and ᾱ and ∆m2 affecting antineutrinos.

When α > 1.0, the νµ (ν̄µ) survival probability is nega-
tive at some points in (∆m2,Eν) parameter space. When
weighting our Monte Carlo to produce predicted spectra
for these points of parameter space this gives negative
oscillation probability weights for some events. We al-
low these negative event weights, but we do not allow
the total predicted number of events in any bin of our
event samples to be negative, setting them instead to
10−6 where this occurs.

For both the two-flavor and three-flavor analyses, a
joint maximum-likelihood fit to both 1Rµ samples is per-
formed. The likelihood used is a marginal likelihood
where all parameters except the parameters of interest
are marginalized over.

The priors for the nuisance parameters are taken from
the uncertainty model after the fit to ND280 data. Uni-
form priors are used in δCP , ∆m2

32 and sin2 θ23. θ12 and
∆m2

12 are fixed at their values from [36], due to their
negligible effect on the νµ survival probability. The prior
on θ13 is taken from [36].

We build frequentist confidence intervals assuming the
critical values for ∆χ2 from a standard χ2 distribution.
∆χ2 is defined as the difference between the minimum
χ2 and the value for a given point in parameter space.

RESULTS AND DISCUSSION

The reconstructed energy spectra of the νµ and ν̄µ
events observed during neutrino and antineutrino run-
ning modes are shown in Fig. 1. All fits discussed below
are to both 1Rµ samples unless stated otherwise.

Three-flavor analysis

For normal ordering, the best-fit values obtained
for the parameters describing neutrino oscillations are
sin2 θ23=0.51+0.06

−0.07 and ∆m2
32=2.47+0.08

−0.09 × 10−3 eV2/c4,
and those describing antineutrino oscillations are
sin2 θ̄23=0.43+0.21

−0.05 and ∆m2
32=2.50+0.18

−0.13 × 10−3 eV2/c4.

The best-fit value and uncertainty on ∆m2
32 obtained for

normal ordering are equivalent to those that would be
obtained on ∆m2

31 for inverted ordering.
Fig. 2 shows the confidence intervals on the oscillation

parameters applying to νµ overlaid on those for the pa-
rameters applying to ν̄µ. As the parameters for νµ and
ν̄µ show no significant incompatibility, this analysis pro-
vides no indication of new physics. We also show the
confidence interval for ∆m2

32 and sin2 θ23 from the fit to
electron-like and muon-like data in [2]. One can see by
comparing these results that T2K’s sensitivity to whether
sin2 θ23 is above or below 0.5 is driven by the electron-like
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FIG. 1. Reconstructed energy spectra for the neutrino mode
(top) and antineutrino mode (bottom) 1Rµ samples. The
lines show the predicted number of events under several os-
cillation hypotheses: ‘Joint νe/νµ analysis’ uses the best-fit
values from a joint fit of the PMNS model to electron-like
and muon-like data [2], ‘3-flavor νµ analysis’ uses the best
fit from three-flavor fit reported here to the muon-like data,
‘2-flavor νµ analysis’ uses the best-fit value in the two flavor
fit reported here to the muon-like data. The uncertainty on
the data includes all predicted event rates for which the mea-
sured number of data events is less than a Poisson standard
deviation from that prediction.

samples, as the νµ disappearance probability depends at
leading order on the sin2 (2θ23).

Two-flavor consistency check analysis

The best-fit values obtained on the effective two-
flavor oscillation parameters are ∆m2= 2.49+0.08

−0.08 eV2/c4,

α = 1.008+0.017
−0.016, ∆m2= 2.51+0.15

−0.14×10−3eV2/c4 , ᾱ =

0.976+0.029
−0.029. Fig. 3 shows the 68% and 90% confidence

intervals for (∆m2, α) and (∆m2, ᾱ). Both the 1σ con-
fidence intervals include values of α(ᾱ) ≤ 1.0, indicating
no significant disagreement between data and standard
physical PMNS neutrino oscillations. We also see good
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FIG. 2. 68% and 90% confidence intervals on sin2 θ23 and
∆m2

32 (blue) and sin2 θ̄23 and ∆m2
32 (black) from the three-

flavor analysis described here. Also shown are equivalent in-
tervals on sin2 θ23 and ∆m2

32 (red) from a joint fit to muon-like
and electron-like T2K data described in [2].
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FIG. 3. 68% and 90% confidence intervals on the two-flavor
analysis parameters affecting neutrinos (∆m2,α), and an-
tineutrinos (∆m2,ᾱ).

compatibility between the parameters affecting neutrinos
and antineutrinos.

Conclusions

We have shown separate measurements of the oscilla-
tion parameters governing νµ and ν̄µ disappearance in
long-baseline neutrino experiments using a significantly
larger data sample and a much improved model of sys-
tematic uncertainties than those used in T2K’s previous
measurement of these parameters in [1]. We also show
a consistency check between our data and the PMNS
framework, where sin2(2θ) is allowed to take values larger
than 1. In all analyses we find the neutrino and antineu-
trino oscillation parameters are compatible with each
other, and that our data are compatible with the PMNS

framework. The results from these fits improve upon the
sensitivity of and are not in significant disagreement with
previous similar results from the MINOS collaboration
[37] (both show values of ∆m2

32 around 2.5×10−3eV2/c4

and θ23 consistent with maximal mixing).
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