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Abstract

The Λ0
b → Λ+

c K
+K−π− decay is observed for the first time using a data sample of

proton-proton collisions at centre-of-mass energies of
√
s = 7 and 8 TeV collected

by the LHCb detector, corresponding to an integrated luminosity of 3fb−1. The
ratio of branching fractions between the Λ0

b → Λ+
c K

+K−π− and the Λ0
b → Λ+

c D
−
s

decays is measured to be

B(Λ0
b → Λ+

c K
+K−π−)

B(Λ0
b → Λ+

c D
−
s )

= (9.26± 0.29± 0.46± 0.26)× 10−2,

where the first uncertainty is statistical, the second systematic and the third is
due to the knowledge of the D−

s → K+K−π− branching fraction. No structure on
the invariant mass distribution of the Λ+

c K
+ system is found, consistent with no

open-charm pentaquark signature.
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1 Introduction

Over the last two decades, a wealth of information has been accumulated on the decays
of hadrons containing b quarks [1]. Measurements of their decay rates and properties
have been used to test the Cabibbo-Kobayashi-Maskawa mechanism [2,3] describing weak
interactions within the Standard Model, and to examine various theoretical approaches,
such as the heavy quark effective theory [4] and the factorization hypothesis [5–8]. Although
many b-hadron decays have been observed with their branching fractions measured, a
large number of them remains either unobserved or poorly measured, most notably decays
of Λ0

b , Ξb and Ω−
b baryons. In the last years, the LHCb experiment has observed many

new Λ0
b decays to final states such as Λ+

c π
−π+π− [9], Λ+

c π
−pp [10], Λ+

c D
−
s [11], χc1pK

−,
χc2pK

− [12], ψ(2S)pK− and J/ψπ+π−pK− [13].1

In this Letter, the first observation of the Λ0
b → Λ+

c K
+K−π− decay (referred to

hereafter as signal channel) is reported, along with a measurement of its branching
fraction relative to that of the Λ0

b → Λ+
c D

−
s decay (normalisation channel). The analysis

uses a data sample of proton-proton (pp) collisions at centre-of-mass energies of
√
s = 7

and 8 TeV collected by the LHCb experiment, corresponding to an integrated luminosity
of 3 fb−1. The observation of the Λ0

b → Λ+
c K

+K−π− decay provides a laboratory to
search for open-charm pentaquarks with valence quark content cs̄uud that could decay
strongly to the Λ+

c K
+ final state. These states are a natural extension of the three narrow

pentaquark candidates with quark content cc̄uud observed in Λ0
b → J/ψpK− decays [14],

with the c̄ quark replaced by an s̄ quark. The recent discovery of a D+K− structure in
B− → D−D+K− decays [15,16], consistent with open-charm tetraquarks, also motivates
the search for open-charm pentaquarks.

Figure 1 shows the leading diagram contributing to the signal decay. Contributions to
the companion K+K−π− system could be through intermediate a−1 mesons, such as the
a1(1260)− state, which is found to dominate in B → D(∗)K∗0K− decays [17]. Decays of
Σ0
c → Λ+

c π
− or even Ξ0

c → Λ+
c K

− could also contribute to the signal.
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Figure 1: Feynman diagram of the leading contribution to the Λ0
b → Λ+

c K
+K−π− signal decay.

1The charge-conjugate process is implied throughout this Letter.
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2 Detector and simulation

The LHCb detector [18, 19] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c
quarks. The detector includes a high-precision tracking system consisting of a silicon-strip
vertex (VELO) detector surrounding the pp interaction region, a large-area silicon-strip
detector located upstream of a dipole magnet with a bending power of about 4 Tm, and
three stations of silicon-strip detectors and straw drift tubes placed downstream of the
magnet. The tracking system provides a measurement of the momentum, p, of charged
particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at
200 GeV/c. The minimum distance of a track to a primary pp collision vertex (PV), the
impact parameter (IP), is measured with a resolution of (15 + 29/pT)µm, where pT is
the component of the momentum transverse to the beam, in GeV/c. Different types of
charged hadrons are distinguished using information from two ring-imaging Cherenkov
detectors. Photons, electrons and hadrons are identified by a calorimeter system consisting
of scintillating-pad and preshower detectors, an electromagnetic and a hadronic calorimeter
(HCAL). Muons are identified by a system composed of alternating layers of iron and
multiwire proportional chambers.

The online event selection is performed by a trigger based on signal information only.
The trigger consists of a hardware stage, based on information from the calorimeter
system, followed by a software stage, which applies a full event reconstruction [20]. At the
hardware trigger stage, referred to as L0 trigger in the following, the Λ0

b→ Λ+
c K

+K−π−

and Λ0
b→ Λ+

c D
−
s candidates are required to include a hadron consistent with originating

from Λ0
b decays, and having high transverse energy deposited in the calorimeters. The

transverse energy threshold is 3.5 GeV. The software trigger, also named high-level trigger
(HLT), requires a two-, three- or four-track vertex with a significant displacement from
any PV. At least one charged particle must have a large transverse momentum and be
inconsistent with originating from any PV. A multivariate algorithm [21] is used for the
identification of displaced vertices consistent with the decay of a b-hadron.

Simulation is used to model the effects of the detector acceptance and the selection
requirements, to validate the fit models and to evaluate efficiencies. In the simulation,
pp collisions are generated using Pythia 8 [22] with a specific LHCb configuration [23].
Decays of unstable particles are described by EvtGen [24], in which final-state radiation
is generated using Photos [25]. The interaction of the generated particles with the
detector, and its response, are implemented using the Geant4 toolkit [26] as described
in Ref. [27].

3 Event selection

Candidate Λ+
c and D−

s hadrons are reconstructed through their decays to the pK−π+

and K+K−π− final states, respectively. The offline candidate selection is performed by
applying a loose preselection, followed by a multivariate analysis (MVA) to further suppress
combinatorial background originating from random combinations. To reduce systematic
uncertainties on the ratio of efficiencies between the signal and the normalisation channels,
the selection criteria of Λ+

c candidates are identical between the two channels.
A good-quality track with pT > 100 MeV/c and p > 1 GeV/c is required for each

2



final-state particle. Protons and antiprotons are required to have a momentum greater
than 10 GeV/c to improve their identification. All final-state particles are also required
to be inconsistent with originating from any PV by requiring a large χ2

IP, where χ2
IP is

defined as the difference in the χ2 of a given PV fit with and without the track under
consideration. Each Λ+

c baryon candidate is required to have at least one decay product
with pT > 500 MeV/c and p > 5 GeV/c, a good-quality vertex (i.e. small χ2

vtx), and
invariant mass within ±15 MeV/c2 of the known Λ+

c mass [1]. For the Λ+
c candidates, the

sum of transverse momenta of their decay products must exceed 1.8 GeV/c. The selection
criteria for D+

s candidates are similar to those of Λ+
c candidates.

The signal channel is reconstructed by combining Λ+
c , K+, K− and π− candidates,

while the normalisation channel is reconstructed by combining a Λ+
c with a D−

s candidate.
The combinations above form Λ0

b candidates, which are required to have a small χ2
vtx

and χ2
IP, and a decay time with respect to its associated PV greater than 0.2 ps, where

the associated PV is the one that gives the smallest χ2
IP. The angle between the Λ0

b

momentum and the vector pointing from the associated PV to the Λ0
b decay vertex,

θp, is required to be smaller than 11 mrad. The Λ0
b candidate is also required to have

at least one final-state particle with pT > 1.7 GeV/c, and its decay vertex significantly
displaced from any PV. Final-state tracks of signal and normalisation candidates must
pass stringent particle-identification requirements based on the information from RICH
detectors, calorimeter system and muon stations. To reject tracks that share the same
segment in the VELO detector, any track pair with the same charge among the Λ0

b decay
is required to have an opening angle larger than 0.5 mrad. A kinematic fit [28] of the
decay chain constrains the Λ0

b candidate to originate from the associated PV and the Λ+
c

candidate invariant mass to its known value [1].
The Λ0

b candidate could originate from B0 → D+K+K−π− or B0
s → D+

s K
+K−π−

decays, where a pion or kaon in D+ → K+π−π+ or D+
s (D+) → K+K−π+ decays is

misidentified as a proton. These background contributions are vetoed if the invariant
masses of the Λ+

c and Λ0
b candidates, evaluated by replacing the proton by either the

pion or kaon mass hypothesis, are within ±15 MeV/c2 of the known D+(D+
s ) mass and

±25 MeV/c2 of the known B0(B0
s) mass [1]. These vetoes are applied to both the signal

and the normalisation channels. For the signal decay, additional vetoes are applied if the
invariant mass of the K+π− or K+K−π− companion tracks falls within ±30 MeV/c2 of
the D0 or D−

s known mass, respectively [1].
Reconstructed candidates are further required to pass an MVA output threshold based

upon a multilayer perceptron (MLP) filter [29], designed to reject the combinatorial
background. The MLP classifier is trained using a signal sample of simulated Λ0

b →
Λ+
c K

+K−π− decays tuned on data and a background sample taken from the upper
sideband of the Λ0

b invariant mass spectrum in the range of 5.75 – 7 GeV/c2. A four-body
phase-space simulation is used for the signal sample to keep the MLP efficiency as uniform
as possible. The lower sideband is not used to avoid potential background contributions
from partially reconstructed decays. The MLP input includes the following variables: pT
sum of the Λ+

c decay products, minimal χ2
IP among the Λ+

c decay products, minimal pT
and minimal χ2

IP among the kaons originating directly from the Λ0
b decay, pT and χ2

IP of
the π− from the Λ0

b decay, pT sum of all π and K originating directly from the Λ0
b decay,

χ2
vtx of the Λ+

c candidate, χ2 of the flight distance between the Λ0
b decay vertex and the

associated PV, cos θp, χ
2 probability of the Λ0

b candidate vertex fit, and the difference of
longitudinal position between the Λ+

c and the Λ0
b decay vertices.
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The MLP response obtained from the training is also applied to the normalisation
channel sample. The optimal thresholds on the MLP response are obtained for the
signal and normalisation channels separately by maximising a figure-of-merit, defined
as S/

√
S +B, where S and B are the expected signal and background yields for Λ0

b

candidates within a ±2.5σ mass window around the known Λ0
b mass [1], where σ is the

mass resolution corresponding to about 12 MeV/c2. Both S and B are determined by
multiplying the initial yields of signal and background, obtained from a preliminary fit to
the preselected candidates, with the MLP selection efficiencies estimated from simulation
and sideband data, respectively. About 0.6% events in the signal channel contain multiple
candidates, only one candidate is retained by a random selection.

4 Signal yields and search for intermediate states

The yields in both the signal and normalisation channels are determined from an unbinned
extended maximum-likelihood fit to the corresponding invariant mass spectra of the
Λ+
c K

+K−π− system. The signal component is modelled by a sum of two Crystal Ball
functions [30] with a common mean of the Gaussian cores, with tail parameters fixed to
the values obtained from simulation. For both the signal and normalisation channels, the
combinatorial background is described by an exponential function, whose parameters are
varied freely and allowed to be different between the signal and normalisation channels.
For the signal channel, a significant contribution from Λ0

b → Σ+
c [→ Λ+

c π
0]K+K−π− decays

is present in the lower invariant mass region, which has the same final state as the π0

is not reconstructed. The shape of this background is obtained from a simulation of
Λ0
b → Σc(2455)+K+K−π− decays. For the normalisation channel, the Λ0

b → Λ+
c D

∗−
s decay

may be reconstructed as Λ0
b → Λ+

c D
−
s due to photon emission in the D∗−

s decay. The
shape of this background is obtained from simulated Λ0

b → Λ+
c D

∗−
s decays. The signal

decay can also contribute to the normalisation channel forming a background under the
D−
s mass peak. This background contribution is estimated from the D−

s sidebands of the
normalisation data sample, where the width of the sideband is chosen to be the same as
that of the D−

s mass window used in the normalisation channel selection. The invariant
mass distributions for the signal and normalisation channels are shown in Fig. 2 with the fit
projects overlaid. The signal yields are obtained to be N(Λ0

b → Λ+
c K

+K−π−) = 3 400±80
and N(Λ0

b → Λ+
c D

−
s [K+K−π−]) = 2 550 ± 60, respectively, where the uncertainties are

statistical only.
An open-charm pentaquark state could be revealed as a structure in the invariant

mass distribution of the Λ+
c K

+ system, shown in Fig. 3 for data and simulation. The data
distribution is background subtracted through the sPlot weighting technique [31], using
the Λ+

c K
+K−π− invariant mass as discriminating variable. No structure is observed. A

full amplitude analysis is needed to estimate the limit of the pentaquark contribution,
which is beyond the scope of this Letter.

Instead, a rich structure of known hadron contributions is visible in the background-
subtracted invariant mass distributions of the Λ+

c π
−, K+π− and K+K−π− systems, shown

in Fig. 4. The Σc(2455)0 and Σc(2520)0 resonances are visible in the Λ+
c π

− distribution.
A large K∗(892)0 resonance is observed in the K+π− projection. In the K+K−π− system,
a broad peaking structure at about 1.5 GeV/c2 is also observed. A similar structure is also
seen in B → D(∗)K∗0K− decays by the Belle experiment [17], and is explained as the tail
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Figure 2: Invariant mass distribution of (a) Λ0
b → Λ+

c K
+K−π− and (b) Λ0

b → Λ+
c D

−
s candidates.

Fit projections are overlaid as a blue solid line. For (a), the red solid line represents the signal
component, the blue dashed line is the background due to random combinations, and the violet
dotted line is the contribution from Λ0

b → Σ+
c K

+K−π− decays. For (b), the red solid line is
the normalization channel component, the violet dotted line is the Λ0

b → Λ+
c D

∗−
s background,

the green dashed-dotted line is the contribution from Λ0
b → Λ+

c K
+K−π− decays, and the blue

dashed line represents combinatorial background.
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Figure 3: Invariant mass distributions of Λ+
c K

+ candidates in the Λ0
b → Λ+

c K
+K−π− signal

channel for the simulation (red line) and the background-subtracted data (blue points with error
bars).

contribution of the a1(1260)− resonance.

5 Branching fraction ratio and efficiencies

The ratio of the branching fractions of the Λ0
b → Λ+

c K
+K−π− decay with respect to the

normalisation channel is determined by

B(Λ0
b → Λ+

c K
+K−π−)

B(Λ0
b → Λ+

c D
−
s )

=
N(Λ0

b → Λ+
c K

+K−π−)

N(Λ0
b → Λ+

c D
−
s [K+K−π−])

× (1)

εtot(Λ
0
b → Λ+

c D
−
s [K+K−π−])

εtot(Λ0
b → Λ+

c K
+K−π−)

× B(D−
s → K+K−π−),
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Figure 4: Invariant mass distributions of (a) the Λ+
c π

−, (b) K+π−, and (c) K+K−π− systems
in the Λ0

b → Λ+
c K

+K−π− signal channel, for the background-subtracted data. The red dashed
vertical lines indicate the veto mass intervals for D0 mesons in the K+π− distribution, and D−

s

in the K+K−π− distribution.

where B stands for the branching fraction of the corresponding decay. The signal and
normalisation yields are reported in Sec. 4. The total efficiencies εtot of the signal and the
normalisation channels are determined by the product

εtot = εacc × εsel × εL0 × εHLT × εPID, (2)

where εacc accounts for the LHCb geometrical acceptance, εsel is the efficiency of recon-
structing and selecting a candidate within the acceptance, εL0 is the L0 trigger efficiency
for the selected candidates, εHLT is the HLT efficiency for the selected candidates passing
the L0 trigger requirement, and εPID is the particle-identification (PID) efficiency for the
selected candidates that survive all trigger requirements. All efficiencies except for εL0
and εPID are determined from simulation, and the (pT, y) distributions of the simulated
Λ0
b baryons are weighted to match that of data, where y is the rapidity of the candidate.

The weights are obtained using the normalisation channel and applied to the signal decay.
To take into account the resonance contributions to the signal decay channel, the sim-

ulation uses a mixture of three decay modes: Λ0
b → Λ+

c a1(1260)−(→ K∗0K−), Λ+
c K

∗0K−

and non-resonant four-body phase space. The fractions are determined by fitting the
two-dimensional data distribution of K+π− and K+K−π− invariant masses.

The L0 efficiency of each hadron is computed using samples of well identified pions and
kaons from D0 → K−π+ decays and protons from Λ→ pπ− decays [32]. The efficiency is
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calculated in bins of transverse energy for the particles incident on the HCAL surface,
separately for its inner and outer regions. The PID efficiency is determined by the
calibration samples of D∗+ → D0(→ K−π+)π+ and Λ→ pπ− decays and is evaluated as
a function of track momentum, track pseudorapidity and event multiplicity.

The ratio between the total efficiencies for the signal and normalisation channels in
Eq. (1), is determined to be 0.78± 0.02, where the uncertainty accounts only for the size
of the simulation sample. The value differs from unity primarily due to different selection
efficiencies on the MVA responses for the signal and normalisation channels.

External inputs are used for the branching fractions B(D−
s → K+K−π−) = (5.39 ±

0.15)× 10−2 [1] and B(Λ0
b → Λ+

c D
−
s ) = (1.10± 0.10)× 10−2 [11]. In the latter case, while

the value is measured by the LHCb collaboration [11], its uncertainty is dominated by
the branching fraction of B0 → D+D−

s decays, and is essentially uncorrelated with the
present measurement.

6 Systematic uncertainties

All systematic uncertainties on the measurement of the ratio of branching fractions are
listed in Table 1. The total uncertainty is determined from the sum of all contributions in
quadrature. The dominant uncertainty is related to the resonance structure that is not
perfectly modeled by the simulation.

Uncertainties due to the fit model are considered. For the background due to random
combinations of final-state particles in both the signal and normalisation channels, the
exponential function is replaced by a second-order polynomial function. From the com-
parison to the default result, the relative uncertainty on the ratio of branching fractions is
0.9%. In the signal channel, the uncertainty due to the Λ0

b → Σ+
c K

+K−π− background
contribution is assessed by performing the fit with a widened mass region, resulting in

Table 1: Summary of systematic uncertainties on the ratio of branching fractions.

Source Uncertainty (%)
Combinatorial background 0.9
Shape of Λ0

b → Σ+
c K

+K−π− contribution 0.3
Λ0
b → Λ+

c K
+K−π− background in normalisation channel 0.8

Signal fit model 0.5
Simulation sample size 2.5
PID efficiency 0.4
Trigger efficiency 0.1
(pT, y) weight 0.8
Track multiplicity weight 0.8
Λ+
c Dalitz structure 1.4

Mixture fraction in simulation 0.2
Resonance structure 3.6
Multiple candidates 0.3
MVA selection 0.5
Total 4.9
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a relative uncertainty of 0.3%. For the normalisation channel, changing the yield of the
Λ0
b → Λ+

c K
+K−π− contribution within its uncertainty results in a relative 0.8% variation.

The systematic uncertainty due to the model for both signal and normalisation
channels, is studied by changing to a single Hypatia function [33], where the mean and
width parameters are left free while all other parameters are taken from simulation. This
results in a relative uncertainty of 0.5%.

The uncertainties on the ratio of efficiencies are evaluated. The uncertainty due to the
finite simulation sample size is evaluated from the expected efficiency variation in bins of
pT and y of the Λ0

b candidate as

σε =

√∑
i

εi(1− εi)Niwi

/∑
i

Niwi , (3)

for each bin i, where Ni is the number of generated events, wi is a correction weight, and
εi is the candidate efficiency. The normalisation of the weights is chosen such that the
denominator is equal to total number of generated events without the weighting. The
relative uncertainty is found to be 2.5%.

Pseudoexperiments are used to evaluate the systematic effects due to uncertainties on
the weights or efficiencies in different bins. For a given source, many pseudoexperiments
are generated, in which each produces a new set of weights or efficiencies according to
the central values and uncertainties following Gaussian distributions. The efficiency ratio
between the signal and normalisation channels is recomputed. The resulting efficiency
ratios from many pseudoexperiments of this source produce a Gaussian distribution
centering at the baseline value. The standard deviation of the Gaussian distribution is
taken as absolute uncertainty on the efficiency ratio for the given source. The procedure
is applied to obtain the systematic uncertainty related to the PID and trigger efficiencies
and to (pT, y) and track multiplicity weighting.

The tracking efficiency returned by the simulation is calibrated using a data-driven
method [34]. The uncertainty on the calibration sample size is propagated to the efficiency
ratio using pseudoexperiments, resulting in a systematic uncertainty of 0.8%. Because
the final states for signal and normalisation modes are identical, possible data-simulation
differences in hadron interactions with the detector material are assumed to be negligible.

The agreement between data and simulation for the Λ+
c → pK−π+ channel is tested by

comparing the Dalitz structure. The signal simulation sample is weighted in the m(pK−)
versus m(K−π+) plane to match the distribution of the background-subtracted data. The
uncertainty related to the limited sample size used for obtaining these weights is 1.1%,
obtained from pseudoexperiments. The uncertainty related to the choice of binning is
0.8%, determined by using an alternative binning. A total of 1.4% is assigned as systematic
uncertainty.

The contributions of the Λ0
b decays through the mixture of the three decay modes are

considered when generating the simulated events of the signal channel, and their fractions
are obtained by fitting the two-dimensional distribution of the K+K−π− and K+π−

systems in the background-subtracted signal data. The fractions are changed according
to the statistical uncertainty of the fit result, yielding 0.2% of relative uncertainty.

The simulation does not fully model the resonance structure, e.g. the contribution of
Σ0
c resonances, which is clearly seen in the Λ+

c π
− invariant mass distribution, as illustrated

in Fig. 4. By weighting the simulation to match the m(Λ+
c π

−) distribution in the data,
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a 1.3% variation of the ratio of branching fractions is found and assigned as systematic
uncertainty. Besides, differences between background-subtracted data and simulated signal
events are also observed in the invariant mass distributions of the Λ+

c K
+K− and K+K−

systems. To account for this discrepancy, the simulated sample is weighted according
to the Λ+

c K
+K− or K+K− mass distribution of background-subtracted data, and the

ratio of branching fractions is reevaluated. The two procedures return changes of 2.6%
and 2.0%, respectively. The three values are added in quadrature to account for the
uncertainty due to resonance structure.

Simulation does not account well for multiple candidates, which is found to be about
0.6% of the data sample in the signal channel. Half of this fraction is assigned as systematic
uncertainty due to the random choice to retain only one candidate.

The MVA selection criteria are optimized separately for the signal and normalisation
channels. As an alternative choice, the MVA selection of the normalisation channel is
fixed to be the same as that of the signal channel to test the robustness of the MVA
selection. The relative variation of the branching fraction ratio is 0.5%, which is assigned
as systematic uncertainty.

7 Results and summary

The first observation of the Λ0
b → Λ+

c K
+K−π− decay is presented, and the branching

fraction is determined using the Λ0
b → Λ+

c D
−
s decay as a normalisation channel. The

relative branching fraction is measured to be

B(Λ0
b → Λ+

c K
+K−π−)

B(Λ0
b → Λ+

c D
−
s )

= (9.26± 0.29± 0.46± 0.26)× 10−2,

where the first uncertainty is statistical, the second systematic, and the third is due
to the knowledge of the D−

s → K+K−π− branching fraction [1]. Using this ratio, the
Λ0
b → Λ+

c K
+K−π− branching fraction is determined to be

B(Λ0
b → Λ+

c K
+K−π−) = (1.02± 0.03± 0.05± 0.10)× 10−3,

where the third term includes the uncertainty on the branching fraction of the Λ0
b → Λ+

c D
−
s

decay [1]. The invariant mass distribution of the Λ+
c K

+ system is inspected for possible
structure due to open-charm pentaquarks, and no contribution is observed.
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