
 Data Handling and Communication 353

9.6 Data Analysis and Programming Environment:
Distilling Information
René Brun

Data storage formats and analysis tools
Data from bubble chambers and optical spark chambers were recorded on
photographic film. Points on selected tracks were measured on the film and stored
on magnetic tape as “raw data” in relatively simple formats specific to each
experiment. Raw data from the early experiments using digitized spark chambers
and simple calorimeters were also stored in experiment-specific formats. Then the
reconstruction program was processing these events and writing a “Data Summary
Tape” (DST) with compact data types for the reconstructed tracks (direction,
momentum) or calorimeter information. The next step was data analysis: The task
was to assign or calculate particle masses and other quantities of interest, store
them and display selected information in histograms. During the 1960s, the
operation was optimized for the bubble chamber experiments by producing a suite
of programs THRESH, GRIND, and SLICE, implementing the three stages of
geometry, kinematics and assignment of mass to each particle: they could be used
by all experiments with little customizing [45]. During the early 1980s, it was
realized that this process could be simplified by storing the quantities of interest in
“n-tuples” (a simple row of n variables put into tables). The Physics Analysis
Workstation PAW [46] system developed in 1983 was based on row-wise n-tuples.
A user could interactively process the n-tuples data with simple queries.
Histograms were automatically viewed in many possible graphics formats on the
user workstation. The system became rapidly very popular for data analysis and n-
tuples grew larger. PAW n-tuples became the main analysis format for most
experiments at CERN and other labs between 1988 and 1998.

In 1995, the ROOT project was started based on the same philosophy as PAW,
but implemented in C++ and able to support more complex data types [47]. By
2000, ROOT had a built-in system capable of accepting most C++ constructs
found in the LHC experiments. ROOT had been selected in 1998 for the Tevatron
experiments at Fermilab, followed in 1999 by the RHIC experiments at BNL. All
LHC experiments, as well as most HEP or related laboratories in the world adopted
the ROOT system. ROOT was progressively interfaced with many other tools
(graphics, user interfaces, statistics, mathematical libraries, etc.), becoming de-
facto the new CERN Program Library. About 20,000 people download the ROOT
binary or source files every month and about 9,000 people are registered to the
ROOT Forum. Besides being used by more and more people in the scientific
domain, ROOT is also used in the car and oil industry, and in finance.

 T
ec

hn
ol

og
y

M
ee

ts
 R

es
ea

rc
h

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
E

R
M

A
N

 E
L

E
C

T
R

O
N

 S
Y

N
C

H
R

O
T

R
O

N
 @

 H
A

M
B

U
R

G
 o

n
05

/1
0/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

354 F. Hemmer & P. G. Innocenti

Programming Languages
For about four decades, FORTRAN was the main programming language. Simple
to learn and well adapted to small or medium size single process and sequential
applications, it was the language of CERNLIB, the CERN Program Library [48],
built from contributions of users developing simple algorithms, linear algebra or
general utilities with up to a few hundred lines of code. CERNLIB was very
popular in the scientific community: during the 1970s, it included task-oriented
packages with a few thousand lines of code, e.g. GD3 for basic graphics, HBOOK
[49] for histogramming, MINUIT [50] for fitting and minimization. At the same
time data structure management systems were developed. These contained both
numerical information and logical information about the object they describe, and
included HYDRA [45] for bubble chamber experiments and ZBOOK [51] for
electronic experiments. The ZEBRA system (ZBOOK+HYDRA) appeared in
1982, enabling the creation and management of a complex network of dynamic
data structures, and saving them to files in machine independent format.

With the advent of FORTRAN90, it would have been possible to upgrade
ZEBRA, taking advantage of the new features (similar to C structures), but this
did not happen: FORTRAN was less and less competitive with the new software
programming systems that provided user interfaces, graphics, network
communications and interfaces with the operating system and hardware devices.
With the increasing number of personal workstations and network connections,
more and more applications required calls to the operating system, file and network
system. These interfaces were typically implemented in the C language. For
example, in the PAW system a substantial fraction of the user interface and
graphics was in C.

The years 1990–1994 witnessed many discussions about the future language
for HEP. By the end of 1994, it was agreed that the programming language for
HEP was going to be C++. Two Research and Development projects were
launched: RD44 for the development of Geant4 and RD45 for the evaluation of
Object-Oriented data bases. Starting in 1995 the ROOT system also opted for C++.

Programming Environment
The size of programs has grown with time at a tremendous rate. In the early 1970s,
large programs were around 10,000 lines of code. CERNLIB was some 30,000
lines of FORTRAN and assembler in 1970. The HBOOK or HYDRA packages
contained around 15,000 lines in 1975. CERNLIB reached a maximum of about
150,000 lines in 1985, including the major packages. ZEBRA stabilized with about
30,000 lines in 1985. Geant3 started with ~10,000 lines in 1981 and reached
~200,000 lines in 1993; PAW reached a maximum in 1994 of ~250,000 lines.
During the 1970s, an experiment-specific code (essentially the reconstruction

 T
ec

hn
ol

og
y

M
ee

ts
 R

es
ea

rc
h

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
E

R
M

A
N

 E
L

E
C

T
R

O
N

 S
Y

N
C

H
R

O
T

R
O

N
 @

 H
A

M
B

U
R

G
 o

n
05

/1
0/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 Data Handling and Communication 355

program) was less than 10,000 lines, reaching about 100,000 lines at the start of
LEP in 1989. Today, Geant4 contains ~1.5 million lines, ROOT ~3 million lines,
with specific software on top of these packages weighing in at ~5 million lines per
experiment — not counting the analysis software by thousands of physicists. The
memory used by these programs was around a few tens of kilobytes in the 1970s.
The full simulation of the OPAL detector planned for LEP in 1981, including
electromagnetic and hadronic showers, could run on central computers having
only 1 MB of memory. From LEP to LHC experiments have grown in size and
complexity, and the signal to background ratio has become much more demanding:
today one sees simulation systems requiring 3000 times more memory! (Fig. 9.8)

Managing the source code of HEP software has always been a concern, even
when systems had only a few thousand lines of code, because the software
development has always been a joint effort in experiments. The PATCHY system
[52] was developed at the end of the 1960s for bubble chamber software. A PAM
file (PATCHY Master file) was common and read-only for all developers. Each
developer prepared his/her own file with changes or additions to the master file. A
PAM file was updated periodically by user consensus. PATCHY remained the
preferred solution in the 1980s until an interactive version of PATCHY, called
CMZ, appeared in 1989, making it easier to develop software on distributed
systems by using workstation with nice text editors. PATCHY/CMZ were replaced

Fig. 9.8. The Software hierarchy (MLOC ↔ Million Lines Of Code).

 T
ec

hn
ol

og
y

M
ee

ts
 R

es
ea

rc
h

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
E

R
M

A
N

 E
L

E
C

T
R

O
N

 S
Y

N
C

H
R

O
T

R
O

N
 @

 H
A

M
B

U
R

G
 o

n
05

/1
0/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

356 F. Hemmer & P. G. Innocenti

by the open source CVS (Concurrent Versioning System) appearing at the end of
the 1990s. With CVS, it became possible to edit/manage a central code repository
shared by hundred/thousand developers, showing differences between successive
versions and making easier code releases. Around 2005 an evolution of CVS,
called SVN (Sub Version System) was adopted for all developments in LHC
computing (and everywhere else). The GIT system replaced SVN around 2012,
offering improved capability to manage successive versions of code developed and
used by thousands of people. This trend will likely continue, following the
continuous requirements to manage many millions of lines of code.

Error reporting systems have also evolved in the wake of the growth of the
software size. From pure oral reports in coffee meetings or paper mail, huge
progress followed the installation of the local area CERNET, followed by BITNET
in the early 1980s, which brought worldwide e-mail exchange. The first web-based
systems appeared around 1995 allowing the visualization of the source code and
its documentation. The first common error reporting and managing system
SAVANNAH appeared in 2000, followed by the current JIRA system in 2012.
Several projects also host a discussion forum where users can report questions and
problems, so that more experienced users can help (e.g. the ROOT forum).

Outlook
Computing at CERN has followed and continues to follow the general trends in
the field. The computing languages C++, Python, Java are now the main languages
in science, industry, communication and information. This approach facilitates
communication among these various fields, but is also a important asset for the
careers of young scientists who seek employment outside High Energy Physics
(HEP).

General tools like ROOT will continue to evolve following the general trends
not specific to HEP like user interfaces, graphics and networking. A considerable
effort is devoted to integrate machine learning libraries and techniques to facilitate
the ever more complex data analysis phases. The Open Data philosophy
facilitating the use of experiments data for teaching will also require simple and
common user interfaces, professional documentation and data descriptions.

The detector simulation with the Geant family will have to evolve to cope with
the high luminosity machines and increasing energies. Factors of 10 to 100 in
processing speed will have to be gained, taking advantage of parallel architectures
and by integrating fast simulation algorithms into the full and therefore necessarily
slow simulation system. Machine learning techniques will enter this field to
optimize automatically the simulation and analysis processes.

 T
ec

hn
ol

og
y

M
ee

ts
 R

es
ea

rc
h

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
E

R
M

A
N

 E
L

E
C

T
R

O
N

 S
Y

N
C

H
R

O
T

R
O

N
 @

 H
A

M
B

U
R

G
 o

n
05

/1
0/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

