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Abstract

We describe an analysis comparing the pp elastic cross section as measured by the DO Collaboration
at a center-of-mass energy of 1.96 TeV to that in pp collisions as measured by the TOTEM Collab-
oration at 2.76, 7, 8, and 13 TeV using a model-independent approach. The TOTEM cross sections
extrapolated to a center-of-mass energy of /s = 1.96 TeV are compared with the DO measurement
in the region of the diffractive minimum and the second maximum of the pp cross section. The
two data sets disagree at the 3.4¢ level and thus provide evidence for the #-channel exchange of a
colorless, C-odd gluonic compound, also known as the odderon. We combine these results with a
TOTEM analysis of the same C-odd exchange based on the total cross section and the ratio of the real
to imaginary parts of the forward elastic scattering amplitude in pp scattering. The combined signif-
icance of these results is larger than 50 and is interpreted as the first observation of the exchange of
a colorless, C-odd gluonic compound.
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Comparison of pp and pp differential elastic cross sections and observation of the . .. 1

At high energies, the scattering amplitudes of both proton-proton (pp) and proton-antiproton (pp) elas-
tic collisions are dominated by 7-channel exchanges that carry the quantum numbers of the vacuum. A
charge (C) even and a subdominant C-odd combination can be formed from the pp and pp elastic scat-
tering amplitude [1, 2, 3, 4, 5]. The differences between these cross sections are due to processes that
involve the exchange of the odderon [1, 2], which couples differently to particles and their charge con-
jugates. In the quantum theory of strong interactions, quantum chromodynamics, this C-odd exchange
is described by the 7-channel exchange of a colorless three-gluon compound at leading order [6, 7, 8],
where the binding strength among the gluons is greater than the strength of their interaction with other
particles. At TeV energies the effects of r-channel virtual meson exchanges may be neglected [9].

The TOTEM Collaboration reported strong evidence that the measurements [10] of the p parameter,
the ratio of the real to imaginary part of the forward elastic scattering amplitude, and the total cross
section in pp scattering are inconsistent with the hypothesis of purely C-even exchanges for a range of
models [11]. In this paper, we present independent evidence for C-odd exchanges based on a comparison
of the pp and pp elastic scattering cross sections as a function of momentum transfer ¢, and combine the
two measurements.

The DO experiment [12] collected elastic pp data [13] at a center-of-mass energy /s of 1.96 TeV using
special Tevatron optics and beams containing only one proton and one anti-proton bunch. About two
million elastic events were collected in two separate data collection periods. The scattered p and p were
measured in the forward proton detectors (FPD). The FPD consisted of sets of scintillating fiber detectors
downstream of the interaction point (IP) along the proton and anti-proton beam lines. The momenta of
the scattered p and p were measured in two stations of fibers located at distances of 23 and 31 m from
the IP. The resolution for the measurement of the squared transverse momentum |¢| varied from 0.02
GeV? at |t| ~0.25 GeV? value to 0.04 GeV? at |¢| ~1.2 GeV>. The systematic uncertainties in the DO
results included the effects of the beam divergence, the uncertainty in the FPD positions, the choice
of the Monte Carlo (MC) ansatz function used to calculate the acceptance, and the efficiencies of the
scintillating fibers [13].

The TOTEM Collaboration at the CERN Large Hadron Collider (LHC) measured the differential elastic
pp cross sections at /s = 2.76 [14], 7 [15], 8 [16] and 13 [17] TeV. The TOTEM experiment [18] utilizes
sets of Roman Pot detectors (RPs) to detect elastically and diffractively scattered protons at very small
angles. The RP system is composed of two arms placed symmetrically about interaction point 5 of the
LHC. Each arm contains several RP stations between 213 m and 220 m from the IP. The detectors and
their configurations were changed for the measurements at the different energies, but each measurement
was based on a pair of RPs with a lever arm between 5 and 7 m. There are three RPs in each station,
one approaching the beam from the top, one from the bottom, and one horizontally. Each RP is equipped
with a stack of 10 silicon strip detectors designed with the objective of reducing the insensitive area at
the edge facing the beam to only a few tens of micrometers. In each detector, the 512 strips with 66 um
pitch are oriented at an angle of +45° (five planes) and —45° (five planes) with respect to the detector
edge facing the beam.

Figure 1 shows the DO and TOTEM differential cross sections used in this study as functions of |¢| [19].
All pp cross sections show a common pattern of a diffractive minimum (“dip”’) followed by a secondary
maximum (“bump”) in do /dt. Fig. 2 shows the ratio R of the differential cross sections measured at the
bump and dip locations as a function of /s for ISR [20] and TOTEM [14, 15, 16, 17] pp elastic cross
section data. The pp data are fitted using the formula R = Ry + agexp(bo+/s). We note that R decreases
as a function of /s in the ISR regime and flattens out at LHC energies. Since there is no discernible
dip or bump in the pp cross section, we estimate R by taking the maximum ratio of the measured do /dt
values over the three neighboring bins centered on the bump and dip locations predicted by the TOTEM
measurements. The pp value, R =1.0 £ 0.2, differs from the pp ratio by more than 30 assuming that
the flat R behavior of the pp cross section ratio at the LHC continues down to 2 TeV.



2 The DO and TOTEM Collaborations
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Fig. 1: The measured pp elastic cross sections as functions of [¢| at 2.76, 7, 8, and 13 TeV (full circles), and the
extrapolation (discussed in the text) to 1.96 TeV (empty circles). The lines show the double exponential fits to the
TOTEM data (see text). The pp measurement by the DO Collaboration at 1.96 TeV is also shown in full triangles.
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Fig. 2: The ratio, R, of the cross sections at the bump and dip as a function of /5. The points for /s < 100 GeV
are from the ISR measurements. The pp data are fitted to the function noted in the legend. The ratio for the DO pp
results is shown at /s = 1.96 TeV.
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Fig. 3: Schematic definition of the characteristic points in the TOTEM differential cross section data. A represents
the vertical distance between bump and dip.
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Fig. 4: Characteristic points in (a) |¢| and (b) do /dt from TOTEM measurements at 2.76, 7, 8, and 13 TeV (circles)
as a function of /s extrapolated to Tevatron center-of-mass energy (stars) using (a) Eq. 1 and (b) Eq. 2. On (b), a
multiplication factor indicated in parenthesis is applied in order to distinguish the different fits. Filled symbols are
from measured points; open symbols are from extrapolations or definitions of the characteristic points.

Motivated by the features of the pp elastic do/dt measurements, we define a set of eight characteristic
points. as shown in Fig. 3. For each characteristic point, we identify the values of [t| and do/dr at
the closest measured points to the characteristic point, thus avoiding the use of model-dependent fits.
In cases where two adjacent points are of about equal value, the data bins are merged. This leads to a
distribution of |¢| and d & /dt values as a function of /s for all characteristic points as shown in Fig. 4. The
uncertainties correspond to half the bin size in |¢| (comparable to the |¢|-resolution) and to the published
uncertainties on the cross sections.

The values of |¢| and do /dt as functions of /s for each characteristic point are fitted using the functional
forms

| = alog(vs)+b (1)
(do/dt) = cv/s+d. 2)
The parameter values are determined for each characteristic point separately and the same functional

form describes the dependence for all characteristic points. The fact that the same form can be used for
all points is not obvious and might be related to general properties of elastic scattering [21]. The x>
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Fig. 5: Total cross section measurements by TOTEM at 2.76, 7, 8, and 13 TeV (black circles) extrapolated to 1.96
TeV (blue star). The dashed lines represent the 10 uncertainty band.

values for the majority of fits are close to 1 per degree of freedom (dof). Alternative forms that give
adequate fits yield extrapolated values that are the same within uncertainties, hence the approach used is
essentially model-independent.

The |t| and do/dt values extrapolated for the characteristic points for pp interactions at 1.96 TeV are
displayed as open black circles in Fig. 1. The uncertainties on the extrapolated |¢| and do /dt values are
computed using a full treatment of the fit uncertainties, taking into account the fact that the systematic
uncertainties of the different characteristic points are not correlated because they correspond to different
data sets and running conditions.

To compare the extrapolated pp elastic cross sections with the pp measurements, we compute the pp
cross sections at the same |¢|-values as in the DO measurements (in the interval 0.50 < |¢| < 0.96 GeV?).
We fit the pp extrapolated data at 1.96 TeV with the function

= —acltP—acltP—
h(t) = aye” @I =l 4 g emashl=asl"=alr] (3)

The fit gives a x2 of 0.63 per dof [22]. The first exponential in Eq. (3) describes the cross section up to
the location of the dip, where it falls below the second exponential that describes the asymmetric bump
and subsequent falloff. This functional form (with non-zero a7) also provides a good fit for the measured
pp cross sections at all energies as shown by the fitted functions in Fig. 1.

We evaluate the pp extrapolation uncertainty from MC simulation in which the cross section values of
the eight characteristic points are varied within their Gaussian uncertainties and the fits given by Eq. 3
are performed. Fits without a dip and bump position matching the extrapolated values within their
uncertainties are rejected, and slope and intercept constraints are used to discard unphysical fits [23].
The MC simulation ensemble provides a Gaussian-distributed pp cross section at each ¢-value, allowing
a 1o uncertainty band to be defined. However, the dip and bump matching constraints cause the median
of the band to deviate from the best-fit cross sections. For the ¥ comparison with the DO measurements
below we choose to use the center of the band.

We scale the pp extrapolated cross section so that the optical point (OP), do /dt(t = 0), is the same as
that for pp. The cross sections at the OP are expected to be equal if there are only C-even exchanges.
Possible C-odd effects [21] are taken into account below as systematic uncertainties. Rescaling the OP
for the extrapolated pp cross section would not itself constrain the behavior away from ¢ = 0. However,
as demonstrated in Refs. [24, 25] the ratio of the pp and pp integrated elastic cross sections becomes one
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Fig. 6: Comparison between the DO pp measurement at 1.96 TeV and the extrapolated TOTEM pp cross section,
rescaled to match the OP of the DO measurement. The dashed lines show the 10 uncertainty band.

in the limit /s — co. The parts of the elastic cross sections in the low |¢| Coulomb-nuclear interference
region and in the high |¢| region above the exponentially falling diffractive cone that do differ for pp and
pp scattering contribute negligibly to the total elastic cross sections. Thus, to excellent approximation,
the integrated pp and pp elastic cross sections in the exponential diffractive region should be the same,
implying that the logarithmic slopes should be the same. As this is the case within uncertainty for the
pp and pp cross sections before the OP normalization, we choose to constrain the scaling to preserve the
measured logarithmic slopes. We assume that no ¢-dependent scaling at ¢ values beyond the diffractive
cone (|t| > 0.55) is necessary.

To obtain the OP for pp at 1.96 TeV, we compute the total cross section by extrapolating the measure-
ments by the TOTEM Collaboration at 2.76, 7, 8, and 13 TeV as illustrated in Fig. 5. A two-parameter
fit of oy, is performed using

Gior = by log?(\/s/1TeV) + by 4)

with a )(2 = (.27 for 2 dof, by =4.63 £0.72 mb, and b, = 80.64 + 3.36 mb, leading to an estimate of
the total cross section at the Tevatron energy of o;,; = 82.7£3.1 mb. The extrapolated cross section is
converted to a differential cross section do /dt = 357 +26 mb/GeV? at t = 0 using the optical theorem

, lén(he)? (do,
sz*Tpg E(th) . 5

We assume p = 0.145 based on the COMPETE extrapolation [11]. The DO Collaboration published
an exponential fit of do/dt in the range 0.26 < |f| < 0.6 GeV? [13], which is extrapolated to t = 0
to give the OP cross section of 341 & 48 mb/GeV2. Thus the TOTEM OP and extrapolated do /dt
values are rescaled by 0.954 +0.071 (consistent with the OP uncertainties), where the uncertainty is
due to that on the TOTEM extrapolated OP. We note that we do not claim that we have performed a
measurement of do /drt at the OP at ¢ = 0 since this would require additional measurements of the elastic
cross section closer to t = 0, but we require equal OPs simply to obtain a common and somewhat arbitrary
normalization for the two data sets.

The assumption of the equality of the pp and pp elastic cross sections at the OP could be modified if an
odderon exists [1, 2]. A reduction of the significance of a difference between pp and pp cross sections
would only occur if the pp total cross section were larger than the pp total cross section at 1.96 TeV. This
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is the case only in maximal odderon scenarios [21], in which a 1.19 mb difference of the pp and pp total
cross sections at 1.96 TeV would correspond to a 2.9% effect for the OP. This is taken as an additional
systematic uncertainty and added in quadrature to the quoted OP uncertainty estimated from the TOTEM
total cross section fit. The effect of additional (Reggeon) exchanges [9, 26, 27], different methods for
extrapolation to the OP, and potential differences in p for pp and pp scattering are negligible compared
with the uncertainties in the experimental normalization. The comparison between the extrapolated and
rescaled TOTEM pp cross section at 1.96 TeV and the DO pp measurement is shown in Fig. 6 over the
interval 0.50 < |¢| < 0.96 GeV>.

We perform a 2 test to examine the probability for the DO and TOTEM differential elastic cross sections
to agree. The test uses the difference of the integrated cross section in the examined |f|-range with its
fully correlated uncertainty, and the experimental and extrapolated points with their covariance matrices.
The correlations for the DO measurements at different 7-values are small, but the correlations between the
eight TOTEM extrapolated data points are large due to the fit using Eq. 3, particularly for neighboring
points. Given the constraints on the OP normalization and logarithmic slopes of the elastic cross sections,
the x? test with six degrees of freedom yields the p-value of 0.00061, corresponding to a significance of
340.

We make a cross check of this result using an adaptation of the Kolmorogov-Smirnov test in which
correlations in uncertainties are taken into account using simulated data sets [29, 28]. This cross check,
including the effect of the difference in the integrated cross section in the examined |¢|-range via the
Stouffer method [30], gives a p-value for the agreement of the pp and pp cross sections that is equivalent
to the 2 test.

We interpret this difference in the pp and pp elastic differential cross sections as evidence that two
scattering amplitudes are present and that their relative sign differs for pp and pp scattering. These
two processes are even and odd under crossing (or C-parity) respectively and are identified as pomeron
and odderon exchanges [1, 2]. The dip in the elastic cross section is generally associated with the ¢-
value where the pomeron-dominated imaginary part of the amplitude vanishes. Therefore the odderon,
believed to constitute a significant fraction of the real part of the amplitude, is expected to play a large
role at the dip. In agreement with predictions [21, 31], the pp cross section exhibits a deeper dip and
stays below the pp cross section at least until the bump region.

We combine the present evidence using the Stouffer method with the independent evidence of the odd-
eron found by the TOTEM Collaboration using the measurements of the p parameter and total cross
section [10] in a completely different |¢| domain. For the model preferred by COMPETE [11], the
TOTEM p measurement at 13 TeV provided a 4.66 significance [32], leading to a total significance of
5.70 for the t-channel exchange of a colorless C-odd gluonic compound when combined with the present
result. The combined significance ranges from 5.2 to 5.7¢ depending on the model [31, 11] when also
including the model uncertainties.

In conclusion, we have compared the DO pp elastic cross sections at 1.96 TeV and the TOTEM pp
cross sections extrapolated to 1.96 TeV from measurements at 2.76, 7, 8, and 13 TeV using a model
independent method [33]. The pp and pp cross sections differ with a significance of 3.40, and this stand-
alone comparison provides evidence that a ¢-channel exchange of a colorless C-odd gluonic compound,
i.e. an odderon, is needed to describe elastic scattering at high energies [21]. When combined with the
result of Ref. [10], the significance is in the range 5.2 to 5.7¢ and thus constitutes the first experimental
observation of the odderon.
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