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1. Introduction

Inspired by the analytic S-matrix bootstrap of the 60’s [1], the recent reincarnation of the
bootstrap philosophy in perturbative quantum field theory aims at constructing physical quantities
directly from the knowledge of their expected analytic structure, without ever having to resort to
Feynman diagrams. It has been developed to the highest perturbative order for n-particle amplitudes
in planar [2] N = 4 Super Yang Mills (SYM) theory [3, 4] with n = 6,7 [5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16], following a remarkable earlier conjecture on the all-loop structure of amplitudes
for any n by Bern, Dixon and Smirnov [17], as well as the exploration of its consequences at strong
coupling, that Alday, Maldacena and subsequent collaborators carried out [18, 19, 20, 21] via the
gauge/string duality [22].

The cornerstone of the amplitude bootstrap is the construction of an ansatz for the amplitude,
based on certain reasonable assumptions about the general class of functions in which it “lives”, as
well as about the specific function arguments, where the kinematic dependence enters. In its various
refinements over the years, new computations go hand in hand with a deeper understanding of
important properties of quantum field theory, which prune the initial space of functions containing
the amplitude, thereby greatly facilitating its identification.

In the original formulation of the amplitude bootstrap at symbol [23] and polylogarithmic
function [24, 25, 26] level, it was the property of physical singularities, as dictated by unitarity [27],
that was key for obtaining the six-particle maximally helicity violating (MHV) amplitude at 3
and 4 loops [6, 7, 8], and of the next-to-maximallly helicity ivolating (NMHV) amplitude at two
loops [5]. Then, it was the appreciation of the consequences of dual superconformal symmetry [28],
in the form of the Q̄-equation [29], which led to the determination of the aforementioned NMHV
amplitude at 3 and 4 loops [9, 10]. In upgrading the method from six to seven particles, crucial
predictions for the set of potential singularities of the amplitude came from cluster algebras [30],
enabling in turn the calculation of the 3-loop MHV symbol [10]. And further restrictions on the
double discontinuity structure of amplitudes, stemming from the Steinmann relations [31, 32, 33],
were instrumental for pushing the computations to 5 loops for the six-particle amplitude [12], and to
3 and 4 loops for the NMHV and MHV helicity configurations of the seven-particle amplitude [13],
respectively.

In this contribution, we will mainly focus on two recently discovered analytic properties, and
their implications. First, we will discuss the extended Steinmann relations, which essentially gen-
eralize the ordinary Steinmann relations, so as to hold not only for double, for also for any higher
multiple discontinuity [16]. Very interestingly, cluster algebras provide equivalent restrictions on
multiple discontinuities, by means of the cluster adjacency property [34, 35]. The fact that extended
Steinmann/cluster adjacency holds not only for amplitudes, but also for individual Feynman inte-
grals [36], thus opens the exciting possibility, that the amplitude bootstrap reveals, for the first time,
a universal property of quantum field theory, with far wider applicability.

The second new property we will discuss is the (cosmic Galois) coaction principle [37, 38,
39, 40], which is based on an established operation for decomposing elements in the space of
functions containing the amplitude into simpler building blocks, known as the coaction [41, 42,
43, 44]. The coaction principle then asserts that, loosely speaking, an element in this space can
be a candidate amplitude or a derivative thereof, only if its building blocks have already appeared
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as amplitudes or their derivatives at lower loops. In this manner, it provides significant guidance
towards constructing the minimal relevant function space that only contains amplitudes and their
derivatives, and thus maximally simplifies their determination.

Having presented the extended Steinmann/cluster adjacency and coaction principle properties,
we will then move on to present new results based on their application: These are the 6-loop NMHV
and 7-loop MHV six-particle amplitude, as well as the symbol of the 4-loop NMHV seven-particle
amplitude. This contribution to the proceedings of CORFU2019 is based on the publications [14,
15, 16], where many more details and background material may be found. For an earlier review of
the amplitude bootstrap see [45], as well as the review sections of [13, 35].

Before concluding this introduction, let us also briefly mention alternative approaches for the
computation of planar N = 4 SYM amplitudes. The first nontrivial amplitude at six points and two
loops was obtained analytically by means of Feynman diagrams in simplified quasi-multi-Regge
kinematics [46, 47], which nevertheless provides the full answer in general kinematics due to the
dual conformal symmetry of the theory [48, 18, 49, 50]. Other formulations of the integrand of
the theory are also amenable to direct integration [51]. In addition, apart from bootstrap “bound-
ary data”, the Q̄-equation [29] additionally provides alternative representations for amplitudes, as
integrals over a collinear limit of amplitudes with higher multiplicity and MHV degree, and lower
loop order. These representations have been successfully evaluated at the level of the symbol, for
all 2-loop MHV amplitudes [52] (which was also promoted to a function for n = 7 in [53]), as well
as the 2-loop NMHV 8-particle amplitude [54], more recently.

Finally, the integrability-based Pentagon Operator Product Expansion (OPE) [55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66, 67] is tantamount to an infinite kinematic expansion around the
collinear limit, where every term in the expansion has a known Mellin-Barnes-like integral rep-
resentation. At multiplicity n = 6, the integrand is completely known, and thus it is in principle
possible to resum this kinematic expansion, at least order by order in perturbation theory. This
resummation was initiated in [68], see also [69, 70, 71]. At higher multiplicity, this is no longer
possible in general (but see [72, 73] for some tree-level exceptions), due to the fact that the so-called
matrix part of the integrand is only known in recursive, and not closed, form [67].

2. Planar Amplitudes: Symmetries and Kinematics

We will be focusing on ’t Hooft’s planar limit [2], where the number of colors N→ ∞ with its
product g2

Y MN with the gauge theory coupling held fixed. The latter is the only surviving parameter
of the theory, and we will be denoting the perturbative expansion of any quantity F with respect to
it as

F =
∞

∑
L=0

g2LF(L) , g2 =
g2

Y MN
16π2 . (2.1)

In the planar limit, a single color structure becomes dominant for n-gluon amplitudes, an overall
trace of the gauge group generators (see for example the review [74]). We will thus be exclusively
considering its coefficient, the color-ordered amplitude. Due to its relation to the trace, it possesses
a discrete dihedral symmetry, namely it is invariant under cyclic shifts i→ i+ 1 of the particle
labels, as well as under reflections i→ n+1− i, where the equivalence n+ i∼ i is understood.
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We will also be restricting our attention to N = 4 SYM theory [3, 4], where all fields are
massless and in the adjoint representation. Their remaining quantum numbers are therefore mo-
menta and helicities, and thanks to the supersymmetry of the theory, the entire on-shell content of
the theory can be combined in the superfield [75],

Φ = G++η
A
ΓA +

1
2! η

A
η

BSAB +
1
3! η

A
η

B
η

C
εABCDΓ̄

D + 1
4! η

A
η

B
η

C
η

D
εABCDG− . (2.2)

In the above, G±, ΓA/Γ̄A and SAB are on-shell gluons, fermions and scalars with helicity ±1,±1/2
and 0 respectively, ηA is a Graßmann variable of helicity 1/2, A is a fundamental index of the SU(4)
R-symmetry of the theory, and ε is the Levi-Civita tensor, see also [76] for a review.

With the help of the superfield (2.2), we can thus combine different amplitudes related by
supersymmetry, to a single color-ordered superamplitude A(Φ1, . . .Φn), which also inherits the
discrete symmetries of its gluon part. It will also be convenient to split this superamplitude into
sectors of different helicity degree k

A(Φ1, . . . ,Φn) = An,0 +An,1 + . . .+An,n−4 , An,k : Graßmann-η degree 4k+8 , (2.3)

by expanding Φi and collecting all terms of the same power in η . From (2.2), it is evident that An,0

will contain the Maximally Helicity Violating (MHV) gluon amplitudes where all but two helicities
are positive. For k < 0 or k > n− 4 the gluon component and the entire superamplitude An,k will
vanish, and R-symmetry invariance also restricts the Graßmann degree to be a multiple of 4.

It is also worth noting that different helicity degrees k and k̄ = n−4− k are related by parity
or spatial reflection tranformations, which essentially amount to complex conjugation of spinors.
As a result, we may always restrict k≤ bn−4

2 c, where bxc denotes the integer part of x. Thus for the
cases n = 6,7 that we will consider in this contribution, only An,0, An,1, or in other words only the
MHV and Next-to-MHV (NMHV) superamplitudes, will be relevant for our discussion. Evidently,
amplitudes obeying k = (n−4)/2, and thus also A6,1, will be invariant under parity.

Finally, let us turn to the kinematic dependence of the amplitude. The dual conformal symme-
try [48, 18, 49, 50] of planar N = 4 SYM, which acts on dual position variables xi related to the
usual momenta by

pi ≡ xi+1− xi , (2.4)

implies that amplitudes depend on fewer kinematic variables than in a generic gauge theory. In
particular, after factoring out a universal infrared-divergent factor known as the BDS-like ansatz
(we will come back to this point later) [20], see also [77], An,k depends on 3n− 15 (instead of
3n− 10) kinematic variables.1 In other words, instead of the algebraically independent subset of
the n(n−3)/2 distinct Mandelstam invariants

si,..., j−1 ≡ (pi + pi+1 + . . .+ p j−1)
2 = (xi− x j)

2 ≡ x2
i j (2.5)

one must instead pick the algebraically independent subset of their distinct n(n− 5)/2 conformal
cross ratios

ui j ≡
x2

i j+1x2
i+1 j

x2
i jx

2
i+1 j+1

. (2.6)

1The number of kinematic variables is equal to the independent components of the points xi, minus the dimension
of the 4D conformal group or Lorentz group, for planar N = 4 SYM or a generic massless gauge theory, respectively.
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Particularly for n = 6,7, the notation
ui ≡ ui−1,i+2 (2.7)

is also used. Expressing all the cross ratios in terms of an independent subset is possible with the
help of (conformal) Gram determinant constraints, which simply encode the fact that no more than
d vectors can be linearly independent in d dimensions. Nevertheless, in practice these parametriza-
tions of the kinematics turn out to be quite complicated.

Instead, it proves significantly more advantageous to parametrize massless, planar, dual con-
formal invariant kinematics in terms of momentum twistors [78], which are also reviewed for ex-
ample in [79]. In a nutshell, these variables stem from the fact that we can represent xµ ∈ R1,3 as
projective null vectors XM ∈ R2,4, X2 = 0, X ∼ λX . This SO(2,4) vector XM is also equivalent to
an antisymmetric representation X IJ of SU(2,2), given that the two algebras are isomorphic. The
latter can be built out of two copies of the fundamental representation ZI of SU(2,2), or, after com-
plexifying, SL(4,C). The momentum twistors are precisely these Z’s, and we see that each point in
R1,3 is mapped to a pair of points, namely a line in momentum twistor space. Similarly to X , they
are also defined up to rescalings Z ∼ tZ, and so they may be equivalently viewed as homogeneous
coordinates on complex projective space P3. One can show that the usual Mandelstam invariants
(2.5) can be expressed in terms of momentum twistors as

x2
i j ∝ 〈i−1i j−1 j〉 , (2.8)

up to proportionality factors that drop out from conformally invariant quantities, where

〈i jkl〉 ≡ 〈ZiZ jZkZl〉= det(ZiZ jZkZl) (2.9)

is a four-bracket of momentum twistors.
Conformal transformations of the dual positions x map to SO(2,4) rotations of X , and in turn

to SL(4,C) transformations of the momentum twistors. Therefore the space of dual conformal
invariant kinematics can be written as a 4× n matrix, whose columns are the cyclically ordered
momentum twistors/homogeneous CP3 coordinates defined up to rescalings, and modulo SL(4,C)
transformations. In the Appendix, we provide examples of explicit parametrizations, or coordinate
frames, on the space of six- and seven-particle kinematics. It is worth noting that this space of
momentum twistor kinematics is also equivalent to the quotient Gr(4,n)/(C∗)n−1 of a Graßman-
nian [30]. This may be seen by recalling that the Graßmannian Gr(m,n) is defined as the space
of m-dimensional planes going through the origin in n-dimensional space, and thus may also be
realized as an m×n matrix, this time modulo GL(4,C) transformations.

To summarize, in the planar limit (color-ordered, super-)amplitudes in N = 4 SYM only
depend on the particle number n, the helicity degree k, 3n− 15 variables in the space of dual
conformally invariant kinematics, and the order L of loops or perturbative corrections.

3. Multiple Polylogarithms and Symbols

Having specified the quantum numbers and kinematic variables that A(L)
n,k depends on, let us

now move on to describe the class of functions it belongs to. A great deal of evidence from all
explicit calculations to date, as well as from an analysis of the integrand [80] , suggests that at
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least for k = 0,1, A(L)
n,k can be expressed in terms of Goncharov or multiple polylogarithms (MPL)

[24, 25, 26] (see also the review [81]) of weight m = 2L. A function Fm is defined to be an MPL of
weight m if its total differential obeys

dFm = ∑
φβ∈Φ

F
φβ

m−1 d logφβ , (3.1)

such that that Fφα

m−1 is an MPL of weight m−1,

dF
φβ

m−1 = ∑
φα∈Φ

F
φα ,φβ

m−2 d logφα , (3.2)

and so on, with the recursive definition terminating with the usual logarithms (m = 1) on the left-
hand side, and rational numbers (m = 0) as coefficients of the total differentials on the right-hand
side. The set Φ of arguments of the dlogs is called the symbol alphabet, and it encodes the positions
of the possible branch points of F . This iterative structure is part of the coaction operation ∆

[41, 42, 43, 44] (sometimes loosely referred to as a coproduct), which ‘decomposes’ an MPL of
weight m to linear combinations of pairs of MPLs with weight {m−m1,m1} for m1 = 0,1, . . .m.

In particular, the total differential (3.1) is essentially equivalent to the {m− 1,1} component
of ∆,

∆m−1,1Fm = ∑
φβ∈Φ

F
φβ

m−1⊗
[

logφβ mod (iπ)
]
. (3.3)

The coaction may be repeatedly applied to either the first or the second factor of the pair when
m1 > 1, yielding a further decomposition. As a result of the coassociativity of the coaction there is
a unique decomposition of an MPL of weight m into subspaces of MPLs with weight {m1, . . . ,mr},
such that ∑

r
i=1 mi = m. Denoting the projection of the coaction on each of these subspaces by

∆m1,...,mr , then equations (3.1) and (3.2) combine to yield the {m−2,1,1} coproduct,

∆m−2,1,1Fm = ∑
φα ,φβ∈Φ

F
φα ,φβ

m−2 ⊗ logφα ⊗ logφβ , (3.4)

where here, and in what follows, identification of logφ factors up to iπ is implied. Furthermore,
maximally iterating the procedure we just described defines the symbol [82, 23],

S[Fm] = ∆1, . . . ,1︸ ︷︷ ︸
m times

Fm = ∑
φα1 ,...,φαm

F
φα1 ,...,φαn

0 [logφα1⊗·· ·⊗ logφαm ] , (3.5)

where one typically also simplifies the notation by replacing logφαi → φαi for compactness.
As comparison between (3.1) and (3.3) reveals, derivatives only act on the rightmost factor of

the coaction, and the same carries over to the symbol. Similarly, it can be shown that the singulari-
ties or discontinuities of MPLs are encoded in the leftmost factor of their coaction. Particularly at
symbol level, the discontinuity of Fm when going around a potential branch point φβ = 0, is given
by

S[Discφβ
(Fm)] = 2πi ∑

φα1 ,...,φαm

F
φα1 ,...,φαn

0 δα1β [φα2⊗·· ·⊗φαm ] , (3.6)

namely it is equivalent to clipping off the first entry.
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4. Symbol Alphabets and Cluster Algebras

Once we have identified MPLs as the class of functions that contains A(L)
n,k , the next step is to

clarify how the symbol alphabet depends on the kinematic variables. For n = 6, this was achieved
by an explicit two-loop computation [46, 47], as well as by the analysis of closely related inte-
grals [83, 84]. For general n, strong motivation comes from the cluster algebra structure [30] of the
space of kinematics.

More precisely, we already mentioned in section 2 that the space of momentum twistor kine-
matics can be realized as the quotient Gr(4,n)/(C∗)n−1 of a Graßmannian. The latter space is
naturally endowed with a cluster algebra structure, so it is sensible to explore any implications it
may have on the symbol alphabet.

There already exist many excellent introductions to cluster algebras [85, 86, 87, 88], as well as
articles with detailed review sections on their relation to scattering amplitudes [89, 35], so we will
not attempt to repeat this here. Instead, we will briefly highlight their main features, and outline a
simple example of a Graßmannian cluster algebra, which is relevant for our discussion.

Cluster algebras [90, 91, 92, 93] are commutative algebras equipped with a distinguished set
of generators ai, the cluster variables, grouped into overlapping subsets {a1, . . . ,ad} of rank d,
the clusters. Starting from an initial cluster, they may be constructed recursively by a mutation
operation on the cluster variables. They may also be generalized to contain frozen variables or
coefficients {ad+1, . . . ,ad+m}, whose main difference from the cluster variables is that they do not
mutate.

For our purposes, cluster algebras can be described by directed graphs or quivers. In figure
1, we depict the initial cluster of the Gr(4,6) cluster algebra, relevant for six-particle scattering.
Cluster and frozen variables correspond to the unboxed and boxed vertices of the graph, and we
observe that they are all four-brackets, or equivalently Plücker coordinates, namely 4×4 minors of
the 4×n matrix realization of Gr(4,n), here for n = 6. Nevertheless, frozen and cluster variables
also have an important difference: The former are always of the form 〈i, i+1, i+2, i+3〉, modulo
n+ i∼ i identifications, whereas this is not the case for the latter.

〈1234〉

〈1235〉

〈1245〉

〈1345〉

〈2345〉

〈1236〉

〈1256〉

〈1456〉

〈3456〉

〈1234〉

〈1235〉

〈1356〉

〈1345〉

〈2345〉

〈1236〉

〈1256〉

〈1456〉

〈3456〉

Figure 1: Left: The quiver diagram for the Gr(4,6) initial cluster. Right: The quiver that arises by mutating
〈1245〉 of the initial cluster, where the effect of the mutation is described in eqs. (4.1) and (4.2) for the
variable, and below eq. (4.3) for the arrows of the quiver.
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As we mentioned, mutations only act on cluster variables. Letting ak be a cluster variable, the
arrows of a cluster containing it encode the information of how it will transform under mutation as
follows,

ak→ a′k =
1
ak

(
∏

arrows i→k
ai + ∏

arrows k→ j
a j

)
. (4.1)

For example, mutating 〈1245〉 in the left of figure 1, we obtain

〈1245〉 → 〈1235〉〈1456〉+ 〈1345〉〈1256〉
〈1245〉

= 〈1356〉 , (4.2)

where the last equality is obtained by means of the following Plücker relation2 ,

〈cde f 〉〈abe f 〉−〈bde f 〉〈ace f 〉+ 〈ade f 〉〈bce f 〉= 0. (4.3)

for e = 1, f = 5,a = 2,b = 3,c = 4 and d = 6.
Apart from ak → a′k, in the new quiver resulting from this mutation, all the rest of the cluster

variables and coefficients remain unchanged. However, the arrows connecting them are obtained
by modifying those of the cluster before the mutation of ak as follows:

• For each path i→ k→ j add an arrow i→ j, except if both i and j are frozen variables.

• Reverse the direction of all arrows pointing to or originating from k.

• Remove any pairs of arrows pointing in opposite directions,�.

In this manner we see, for example, that the mutation of 〈1245〉 we performed on the Gr(4,6)
initial cluster, leads to the new cluster depicted on the right of figure 1.

We have thus specified all the rules of the game, and obtaining the entire cluster algebra is just
a matter of applying them over and over at each vertex of every quiver we encounter. For Gr(4,n)
with n = 6,7, relevant for scattering amplitudes with the same particle multiplicity n, we see that
after a certain number of mutations, we return to a cluster we had encountered before. Namely the
cluster algebra is finite.3 The initial quiver for generic Gr(4,n), from which the n = 7 case may be
studied with the same set of rules we spelled out, is depicted in figure 2.

Specifically, for Gr(4,6) (Gr(4,7)), one finds 9 (42) different cluster variables, distributed
in 14 (833) distinct clusters (the order of the variables of each cluster does not matter). Quite
remarkably, in [30] these cluster variables were found to precisely agree with the symbol alphabet
of the then known six- and seven-particle amplitudes, thus lending support to the expectation that
the same should hold true to all loops.

More precisely, the cluster variables are homogeneous polynomials of four-brackets, and to
obtain the symbol alphabet one needs to consider a complete set of multiplicatively independent,
scale-invariant combinations thereof, also including the frozen variables.

2This identity is equivalent to the Schouten identity, as can be seen by the duality between Gr(4,6) and Gr(2,6),
which replaces a four-bracket with a spinor bracket of its complement, e.g. 〈1234〉 → 〈56〉.

3In the Dynkin classification of finite cluster algebras, Gr(4,6) and Gr(4,7) can thus be shown to correspond to the
A3 and E6 cluster algebras (with coefficients), respectively.
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〈1234〉

〈1235〉

〈1245〉

〈1345〉

〈2345〉

〈1236〉

〈1256〉

〈1456〉

〈3456〉

. . .

. . .

. . .

. . .

〈123n−1〉

〈12n−2n−1〉

〈1n−3n−2n−1〉

〈n−4n−3n−2n−1〉

〈123n〉

〈12n−1n〉

〈1n−2n−1n〉

〈n−3n−2n−1n〉

Figure 2: Quiver diagram for the initial Gr(4,n) cluster.

For the six-particle amplitude, or equivalently Gr(4,6), a convenient such choice for the sym-
bol alphabet is [16]4

a1 =
〈1245〉2〈3456〉2〈6123〉2

〈1234〉〈2345〉 . . .〈6123〉
, m1 =

〈1356〉〈2346〉
〈1236〉〈3456〉

, y1 =
〈1345〉〈2456〉〈1236〉
〈1235〉〈1246〉〈3456〉

, (4.4)

as well as two more cyclic transformations l1→ l1+i with l ∈ {a,m,y} induced by shifting Zm→
Zm−2i on the right-hand side. The cluster variables, also known as A -coordinates, are color-coded
in blue.

For the seven-particle amplitude, or Gr(4,7), a choice for the corresponding symbol alphabet
is [10]

a11 =
〈1234〉〈1567〉〈2367〉
〈1237〉〈1267〉〈3456〉

, a41 =
〈2457〉〈3456〉
〈2345〉〈4567〉

,

a21 =
〈1234〉〈2567〉
〈1267〉〈2345〉

, a51 =
〈1(23)(45)(67)〉
〈1234〉〈1567〉

, (4.5)

a31 =
〈1567〉〈2347〉
〈1237〉〈4567〉

, a61 =
〈1(34)(56)(72)〉
〈1234〉〈1567〉

,

where we have again denoted the cluster A -coordinates in blue, and

〈a(bc)(de)( f g)〉 ≡ 〈abde〉〈ac f g〉−〈ab f g〉〈acde〉 , (4.6)

together with ai j obtained from ai1 by cyclically relabeling the momentum twistors Zm→ Zm+ j−1.
It is interesting to note that for n = 7, and more generally when n is odd, any cluster A -coordinate
can be rendered invariant under rescalings Zi→ tZi by suitable products of powers of frozen vari-
ables.

4Note that any set of equal size, consisting of multiplicatively independent combinations of these letters, would
make an equally valid choice. Indeed, in the original literature [5, 6, 7, 8, 9] the letters ui and 1− ui were used. The
relation with the presently used alphabet is ai = ui/(ui−1ui+1) and mi = 1−1/ui.

8
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5. Hexagon and Heptagon Functions

In the previous sections, we described the essential characteristics of the function spaces con-
taining six- and seven-particle amplitudes in N = 4 SYM theory. The virtue of the bootstrap
method is that it evades Feynman diagrams by first constructing these spaces, and then pinning
down the amplitude by comparing with certain kinematic limits, where independent information
for the latter can be obtained. Here, we will briefly describe how these function spaces are con-
structed, including certain additional analytic properties they obey.

As a consequence of locality, amplitudes can only have singularities when intermediate par-
ticles go on-shell. Particularly for massless planar theories in the Euclidean region, this happens
if and only if the Mandelstam invariants (2.5), or equivalently four-brackets 〈ii−1 j j−1〉 become
zero or infinite. Given that the singularities of multiple polylogarithms are encoded in the first
entry of their symbols, and that most of the letters in (4.4)-(4.5) also contain different types of
four-brackets, this implies the first entry condition [27]:

First symbol entry of An,k ∈


ai , i = 1, . . . ,3 , for n = 6 ,

a1i , i = 1, . . . ,7 , for n = 7 .
(5.1)

Not every sequence of letters of a given alphabet yields a symbol that corresponds to a func-
tion, as the latter also has the property that its double derivatives with respect to two different
independent variables commute. Namely the function F (as well as its coproducts) obeys

∂ 2F
∂xi∂x j

=
∂ 2F

∂x j∂xi
, i 6= j, (5.2)

where particularly for An,k the independent variables xi,x j can be any subset of the 3n− 15 inde-
pendent cross ratios, or of the x-coordinates provided in the appendix for n = 6,7. This condition,
when computed using eqs. (3.1) and (3.2), induces linear relations

|Φ|

∑
α,β=1

Diαβ Fφα ,φβ = 0 , i = 1,2, . . . , l , (5.3)

between the double coproducts Fφα ,φβ , where |Φ| denotes the size of the alphabet, known as the
{m− 2,1,1} integrability conditions. As was discussed in [13], there exist l = 26 equations for
the 92 = 81 double coproducts when n = 6, and l = 729 equations for the 422 = 1764 double
coproducts when n = 7. The matrix D is purely numeric, i.e. independent of the kinematics, and is
provided for n = 6,7 as an ancillary file accompanying the arXiv submission of this contribution.

These equations, allow us to recursively construct the space of weight-m functions built out of
the n-particle alphabet with n = 6,7, which we shall denote Hn,m, from Hn,m−1, as follows: Given
a basis of functions on Hn,m−1, consider their {m−2,1} coproduct representation (3.3), and attach
another letter to them to the right in all possible ways. In this {m− 2,1,1} tensor product space
that resembles eq. (3.4), Hn,m is obtained by imposing (5.3) on its elements. Thus the bootstrap
procedure transforms amplitude computations to linear algebra, and in the past software relying on
finite field methods, such as IML [94], SageMath [95] or SpaSM [96], has been used in order
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to solve the resulting large systems of linear equations efficiently. More recently, packages or
frameworks with dedicated capabilities for constructing integrable symbols, such as SymBuild
[97] or FiniteFlow [98], have also appeared.

The procedure we described works equally well for functions or for their symbols, and guaran-
tees that if Hn,m−1 has physical branch cuts, so will Hn,m, with one type of exception for the case
of functions: The space of solutions of the integrability conditions (5.3) also contains functions
such as

ζm−1 logφα (5.4)

where ζm−1 is the Riemann zeta function and φα is a letter that cannot appear as a first entry (5.1),
which do not have physical branch cuts.

We thus have to eliminate such functions from our space, and one way to do so is by noting
that the branch point at φα = 0 also manifests itself as a pole in the derivative of the function. So
we may ensure that the function is analytic at φα = 0 by imposing that the corresponding residue
of its derivative, or equivalently its left coproduct factor, due to (3.1), vanishes as φα → 0.

In practice, it is more convenient to impose such branch cut conditions on kinematic limits
where more letters vanish simultaneously. Here we will only mention one of the limits that has
been used in the literature for n = 6, the soft or multi-Regge limit. For the six-particle alphabet
(4.4), in a particular orientation it amounts to5

soft1 : a1→ ∞ , a3→
1
a2

, m2→
√

a1√
a2

, m3→
√

a1
√

a2 , y1→ 1 , with a2,y2,y3,m1
√

a1 fixed ,

(5.5)
and in this limit functions in H6,m should additionally obey [7, 11]

Fm1
∣∣
soft1

= Fy3
∣∣
soft1

= Fy2
∣∣
soft1

= 0 . (5.6)

We also obtain two more limits and corresponding branch cut conditions by cyclic permutation.
To reiterate, at this stage we may define the space of hexagon or heptagon symbols as the

set of symbols made of the alphabets (4.4) or (4.5) and first entry as dictated by eq. (5.1), that are
constructed recursively in weight by imposing the integrability conditions (5.2). The corresponding
space of n-gon functions at weight m, Hn,m, may be defined by additionally imposing branch cut
conditions such as eq. (5.6) at each weight for n = 6. Analogous relations may also be derived for
n = 7 [99, 100].

6. Extended Steinmann Relations & Cluster Adjacency

The space of functions Hn,2L we have constructed so far is certainly large enough to encompass
the L-loop n-particle amplitude for n = 6,7, and it was indeed used at the initial stages of the
bootstrap [5, 6, 7, 8, 9, 10]. Nevertheless, it is also largely redundant, in the sense that it additionally
contains functions that need never appear in the amplitude or its derivatives. Here, we will focus
on one of the main discoveries reported in this contribution, the extended Steinmann relations

5In the more conventional cross ratios (2.7), this limit is equivalent to u1→ 1,u2,u3→ 0 with ui/(1−u1) held fixed
for i = 2,3.
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or cluster adjacency, which drastically simplify the construction of Hn,2L by eliminating all such
redundancies visible at symbol level.

To this end, it will be instructive to first review the usual Steinmann relations [31, 32, 33],
which demand that the double discontinuities of any Feynman diagram (and thus of the amplitude
they contribute to) vanish when taken in overlapping channels. As we’ve seen in section 3, a dis-
continuity is labeled by the Mandelstam invariant si,..., j−1 which is analytically continued around its
branch point. By virtue of the Cutkosky rules [101], at the same time this discontinuity is obtained
by placing on-shell the internal particles whose total energy equals si,..., j−1, namely by replacing
their propagators with delta functions. This is the notion of a cut, which splits the Feynman diagram
into two parts, as seen in figure 3.

1

2

3 4

5

6

vs.

1

2

3 4

5

6

Figure 3: Illustration of the channels s345 and s234 for 3→ 3 kinematics. The discontinuity in one channel
should not know about the discontinuity in the other channel.

In the same vein, overlapping channels correspond to cut lines that intersect, namely they
divide the external particles of the Feynman diagram into four non-empty sets. In the example
of the figure, these sets are {2}, {3,4}, {5}, and {6,1}. Focusing on three-particle Mandelstam
invariants, but allowing the number of external particles n to be arbitrary, the Steinmann relations
at the level of the amplitude then imply

Discs j, j+1, j+2

(
Discsi,i+1,i+2 (An,k)

)
= 0 , for j = i±1, i±2 , (6.1)

with obvious generalizations to higher-particle Mandelstam invariants as well. In particular, we will
not be considering two-particle invariants, since it is necessary for an invariant to be independent
for the sake of analytic continuation. That is, no other Mandelstam invariant is allowed to change
sign but the one we analytically continue, and this is generically not the case with two-particle
invariants.

As eq. (3.6) reveals, at the level of the symbol a discontinuity around φβ = 0 amounts to clip-
ping off this particular letter from its first entry, with iterated discontinuities obtained by applying
this procedure repeatedly. Therefore the Steinmann relations are statements about which letters can
appear next to each other in the first two entries of the symbol. Inspecting the n = 6,7 letters (4.4)-
(4.5), we see that only ai and a1i are proportional to three-particle invariants. Therefore, letting F
denote the appropriately normalized amplitudes, or any of their coproducts, or any finite integral
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weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

First entry 1 3 9 26 75 218 643 1929 5897 ? ? ? ? ?

Steinmann 1 3 6 13 29 63 134 277 562 1117 2192 4263 8240 ?

Ext. Stein. 1 3 6 13 26 51 98 184 340 613 1085 1887 3224 5431

Table 1: The dimensions of the hexagon, Steinmann hexagon, and extended Steinmann hexagon spaces at
symbol level.

within the space of MPLs with these alphabets, eq. (6.1) may be recast as [12, 13]

Steinmann Relations:

{
Fai,ai+1 = 0 ,1≤ i≤ 3 , for n = 6
Fa1i,a1i+δ = 0 , δ = 1,2 , 1≤ i≤ 7 , for n = 7

}
if F function of weight 2 .

(6.2)
Remarkably, analysis of a wealth of data obtained by the amplitude bootstrap, reveals that

these restrictions on adjacent pairs of symbol letters apply not only in the first two slots, but to all
depths in the symbol. In other words, the bootstrap points, for the first time, to a new property we
will refer to as the extended Steinmann relations [16]. For the case at hand, it reads that for any
amplitude (coproduct) or Feynman integral F within the hexagon or heptagon function space Hn,m,
6

Extended Steinmann Relations:

{
Fai,ai+1 = 0 ,1≤ i≤ 3 , for n = 6 .
Fa1i,a1i+δ = 0 , δ = 1,2 , 1≤ i≤ 7 , for n = 7 .

(6.3)

In other words, all physical, integrable functions within Hn,m obey7 an additional 3 conditions for
n = 3, and 14 for n = 7, on their double coproducts. In tables 1 and 2, we provide the dimension
of Hn,m (first line), as well as the dimensions of its subspaces additionally satisfying the Stein-
mann (second lines) or extended Steinmann (third line) relations, eqs. (6.2) and (6.3), respectively.
Clearly, the drastic reduction in the size of the latter subspace implies that it is far simpler to con-
struct, yet still contains all the physical quantities we are interested in. From this point onwards,
we will therefore incorporate the condition (6.3) in the construction of our space Hn,m, and denote
the latter as the extended Steinmann n-gon space.

Remarkably, it has been observed that the extended Steinmann relations are equivalent to the
following rule (under the assumption of the initial entry condition) [34],

Cluster adjacency: In a symbol whose alphabet contains Gr(4,n) cluster A -coordinates,
two of them can appear consecutively only if there exists a cluster where they both appear.

For every cluster A -coordinate, cluster adjacency thus gives rise to the notion of its neighbor
set [35], the union of all clusters containing the A -coordinate in question, which in other words
contains all the other variables (including the frozen ones), that can appear next to it in the symbol.

6These results for n = 6 were initially reported at Amplitudes 2017, in a talk by one of the authors [102].
7Note that the integrability conditions in combination with (6.2) automatically imply that the latter equations hold

also when the order of letters is reversed, so we do not need to consider them separately.
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weight n 0 1 2 3 4 5 6 7

First entry 1 7 42 237 1288 6763 ? ?

Steinmann 1 7 28 97 322 1030 3192 9570

Ext. Stein. 1 7 28 97 308 911 2555 6826

Table 2: The dimensions of the heptagon, Steinmann heptagon, and extended Steinmann heptagon spaces
at symbol level.

For n = 6, these neighbor sets are

ns[〈1245〉] = {〈1245〉,〈2456〉,〈1345〉,〈1246〉,〈1235〉, & frozen variables.} , (6.4)

ns[〈1235〉] = {〈1235〉,〈2456〉,〈2356〉,〈1356〉,〈1345〉,〈1245〉, & frozen variables.} , (6.5)

as well as their cyclic permutations, two for the first line and five for the second.
As we’ve discussed, actual symbol letters are conformally invariant, namely products of the

cluster and frozen variables that are invariant under rescalings of the twistors, i.e. homogeneous.
Considering such products on the right-hand side of eqs. (6.4)-(6.5) then defines the corresponding
homogeneous neighbor sets,

hns[〈1245〉] = hns[a1] = {a1,m2,m3,y1,y2y3} , (6.6)

hns[〈1235〉] = {a1,a2,
m1

y2
,

m2

y2y3
,m3,y1y2y3} . (6.7)

again plus cyclic permutations. In the first line we could also promote the left-hand side to the
conformally invariant letter a1, since 〈1245〉 is the only cluster variable it depends on. This is not
possible for the second line, relevant for the remaining letters mi,yi.

For n = 7, all letters depend on a single A -coordinate. We can thus directly focus on the
homogeneous neighbor sets, which are generated by

hns[a11] = {a11,a14,a15,a21,a22,a24,a25,a26,a31,a33,a34,a35,a37,a41,a43,a46,a51, (6.8)

a53,a56,a62,a67}
hns[a21] = {a11,a13,a14,a15,a17,a21,a23,a24,a25,a26,a31,a33,a34,a36,a37,a41,a43, (6.9)

a45,a46,a52,a53,a55,a57,a62,a64,a66}
hns[a41] = {a11,a13,a16,a21,a23,a24,a26,a31,a33,a35,a36,a41,a43,a46,a51,a62,a67} (6.10)

hns[a61] = {a12,a17,a23,a25,a27,a32,a34,a36,a42,a47,a52,a57,a61} , (6.11)

together with images under parity transformations, a2i ↔ a3,i−1 and a4i ↔ a5i, as well as cyclic
permutations.

It is easy to check that the Steinmann relations (6.2) and (6.3) per se, essentially correspond
to eqs. (6.6) and (6.8), respectively. This also reveals that the equivalence between Steinmann rela-
tions and cluster adjacency at the level of the function space Hn,2L is quite nontrivial: Namely, first
entry, integrability and extended Steinmann relations automatically imply a number of additional
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double coproduct conditions (22 for n = 6 and for 448 for n = 7), which coincide with those pre-
dicted by the remaining cluster adjacent homogeneous neighbor sets, eqs. (6.7) and (6.9)-(6.11). In
total, double coproducts Fφα ,φβ of all functions F ∈Hn,m obey 41 (1191) linear relations for n = 6
(7). Conversely, cluster adjacency provides some of these relations, which may also be thought of
as implying some of the “simplest” integrability conditions.

Before closing this section, let us stress again that extended Steinmann/cluster adjacency holds
not only for the entire amplitudes, but also for individual integrals [34, 36]. Thus it may well be
that the amplitude bootstrap reveals, for the first time, a universal property of quantum field theory,
with far wider applicability. In N = 4 SYM, this property has been observed also for the n-point
MHV amplitude at one and two loops [103].

7. Coaction Principle

7.1 Amplitude Normalizations

So far, we have mentioned that it is possible to factor out a universal infrared-divergent part
AIR

n from the amplitude,
An,k = AIR

n Afin
n,k , (7.1)

such that we can focus entirely on the finite, normalized amplitude Afin
n,k. It is important to bear in

mind, however, that this factorization is not unique: Similarly to the difference between renormal-
ization schemes in any gauge theory, there is still freedom in adding certain finite terms to AIR

n . A
main thesis of our work is that it is meaningful to tune the definition of this normalization factor,
such that the remaining finite, normalized amplitude becomes simpler to compute, and manifests
certain important physical and mathematical properties. The coaction principle we will discuss in
this section, is precisely such a mathematical property.

Indeed, the strategy of tuning AIR
n has already proven fruitful once in the past. Initially, this

factor was chosen to be the BDS ansatz [17], which is essentially the exponentiated one-loop
amplitude, times the cusp anomalous dimension Γcusp,

1
4

Γcusp(g2) = g2−2ζ2 g4 +22ζ4 g6−
[
219ζ6 +8(ζ3)

2
]

g8 + · · · , (7.2)

in turn known to all loops [104] thanks to the integrability of planar N = 4 SYM, see for example
the review [105] and references therein. However, neither the BDS ansatz, nor the respective
normalized amplitude individually satisfy the Steinmann relations, even though the product of the
two, namely the full amplitude, does.8 This implies that the BDS-normalized amplitude is harder
to bootstrap, since it is only contained in the larger space whose dimension is indicated in the first
line of tables 1 and 2 for n = 6,7, and whose construction is more challenging than the spaces of
the lines below, due to its size.

Nevertheless, when n is not a multiple of 4, it is possible to modify AIR
n , such that the resulting

Afin
n,k does obey the (extended) Steinmann relations, and hence is contained in the spaces of smaller

8This is a simple consequence of the fact that the 1-loop amplitude also has dependence on three-particle Mandel-
stam invariants, and of the non-distributivity of analytic continuation over multiplication. Note that the 1-loop amplitude
per se does satisfy the Steinmann relations, but generic powers thereof, and thus also its exponential, do not.

14



Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes Georgios Papathanasiou

dimension, depicted in the second (and third) line of tables 1 and 2. This is known as the BDS-like
ansatz [20], which first appeared as a natural choice for AIR

n at strong coupling. It is obtained from
the BDS ansatz by removing all dependence on three-particle invariants in a unique conformally
invariant manner, such that when replacing (7.1) in (6.1), the normalization factor commutes with
the discontinuities.

For concreteness, we denote the BDS-like normalized amplitude as

En,k ≡
An,k

A(0)
n,0 ABDS-like

n

, nmod4 6= 0 , (7.3)

where AIR
n → ABDS-like

n , and it proves more convenient to additionally divide by the tree-level MHV
superamplitude, A(0)

n,0. The precise form of the BDS and BDS-like ansätze will not be important for
our purposes (it may be found in the original references, or e.g. [106, 77]), however their ratio is
closely related to the 1-loop correction to En,0 , where

ABDS
n

ABDS-like
n

= exp
[

Γcusp

4
E

(1)
n,0

]
, (7.4)

and, explicitly for n = 6,7,

E
(1)

6,0 =
7

∑
i=3

Li2

(
1− 1

ui

)
, (7.5)

E
(1)

7,0 =
7

∑
i=1

[
Li2

(
1− 1

ui

)
+

1
2

log
(

ui+2ui−2

ui+3uiui−3

)
logui

]
. (7.6)

With the help of (7.4), it is easy to convert between BDS and BDS-like normalizations. For ex-
ample, the BDS-normalized MHV amplitude, originally expressed in terms of an exponentiated
remainder function Rn, is related to En,0 by

eRn = e−
Γcusp

4 E
(1)
n,0 En,0 . (7.7)

Given the drastic reduction of the relevant function space that was achieved when modifying
the amplitude normalization from BDS to BDS-like, it is natural to ask whether any further mod-
ifications with similar effect can be made. Any such modification can no longer depend on the
kinematics, as it would otherwise spoil the first entry condition, or the Steinmann relations.

Therefore the only potential freedom in modifying the amplitude normalization is by a coupling-
dependent constant, ρ(g2). Indeed, as we will explain shortly, at least for n = 6 it is advantageous
to define a new, “cosmic” normalization [15, 16],

E ′6,k ≡
E6,k

ρ(g2)
, (7.8)

such that the space containing E ′6,k and its iterated derivatives contains the minimal amount of in-
dependent constants, and respects a coaction principle. In particular, the latter will be instrumental
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in determining the value of ρ(g2), which we quote here to 7 loops,

ρ(g2) = 1+8(ζ3)
2 g6−160ζ3ζ5 g8 +

[
1680ζ3ζ7 +912(ζ5)

2−32ζ4(ζ3)
2
]

g10

−
[
18816ζ3ζ9 +20832ζ5ζ7−448ζ4ζ3ζ5−400ζ6(ζ3)

2
]

g12

+
[
221760ζ3ζ11 +247296ζ5ζ9 +126240(ζ7)

2−3360ζ4ζ3ζ7−1824ζ4(ζ5)
2

−5440ζ6ζ3ζ5−4480ζ8(ζ3)
2
]

g14 + O(g16). (7.9)

When first introduced, the computation of the normalization factor (7.9) was carried out order
by order in perturbation theory, in parallel with the amplitude. Very recently, however, a finite-
coupling conjecture for the latter has been made [107].

Note that S[ρ] = 1, therefore at symbol level there is no difference between the BDS-like and
cosmic normalizations. As the seven-particle bootstrap has only been carried out at symbol level
to date, the status of its cosmic normalization is unclear (see however ref. [100]).

7.2 The role of transcendental constants

Before describing the coaction principle, it will be necessary to give some background on the
inclusion of transcendental constants in the function spaces we are constructing. These constants
generically arise when setting arguments of multiple polylogarithms, that our function spaces con-
sist of, to specific values. For example, the Riemann zeta function for m > 1 may be obtained as an
evaluation of the weight-m classical polylogarithm Lim(z),

ζm = Lim(1) . (7.10)

For the purposes of this contribution, it will be sufficient to consider a class of transcendental
constants that are simple generalizations of the Riemann zeta function, known as multiple zeta
values (MZVs),

ζm1,...,ml ≡ ∑
k1>···>kd>0

1
km1

1 · · · k
ml
d

. (7.11)

Let us start by noting that if we have a space of (non-constant) functions at weight p, with
basis elements

F(p)
ip

, ip = 1,2, . . . ,dp , (7.12)

then every weight-m constant we add to this space as an independent basis element, will increase
its dimension by

dp→ dp +dp−m , (7.13)

for p ≥ m, with d0 = 1. In other words, the addition of an independent constant, for example ζm,
also automatically implies the inclusion of a whole tower of functions,

ζm F(p−m)
ip−m

, in = 1,2, . . . ,dp−m , (7.14)

at higher weight. In our recursive construction of the function space, to date there exists no clean
separation of this tower from the rest of the functions. The conclusion is thus that one should try to
include as few of these independent constants in the function space as possible.

16



Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes Georgios Papathanasiou

On the other hand, it is important to note that the promotion of all n-gon symbols of tables 1
and 2 to functions requires the inclusion of certain independent constants. Let us now flesh out how
this comes about, when carrying out this promotion by additionally imposing branch cut conditions
such as eq. (5.6) at each weight, as we have already mentioned.

Concretely, suppose we have already constructed the basis of non-constant functions (7.12)
at weight p. Attaching another letter and solving the integrability conditions then gives a {p,1}
coproduct representation of the weight-(p+1) space, and additionally evaluating them as indicated
in the left-hand side of eq. (5.6) yields a linear combination of the weight-p functions in the soft
limit where we impose our branch cut condition. This linear combination can be at most equal to a
constant in the limit, since it is essentially equal to the discontinuity of the weight-(p+1) function
around the potential branch points where the letters, excluding those that can appear as first entries,
vanish in the limit. Thanks to the function-level analog of eq. (3.6), this discontinuity can indeed
be proven to be a constant.

Sometimes it is possible to absorb this constant in a redefinition of the functions. For example,
for n = 6 and p = 2 one may choose the basis (7.12) as{

Li2

(
1− 1

ui

)
, log2 ai

}
, i = 1,2,3. (7.15)

Then, we consider the subspace of these functions, spanned by the coproducts contributing to the
branch cut condition (5.6) of the functions at one weight higher. Furthermore, we restrict to the
space of constant functions within this subspace.

For our example, it turns out that three of the functions (7.15) appear as m1,y2 or y3 coproducts
at weight p+1 = 3, and they are all constants in the corresponding soft limit (5.5),{

Li2
(

1− 1
u1

)
, log2 a2−log2 a3, 4Li2

(
1− 1

u2

)
+4Li2

(
1− 1

u3

)
+log2 a1+log2 a2

}
→{0,0,−8ζ2} .

(7.16)
If we shift the functions (7.15) by a constant ci and c′i, respectively then the right-hand side of
eq. (7.16) becomes

{c1,c′2− c′3,4c2 +4c3 + c′1 + c′2−8ζ2} . (7.17)

Any solution for ci,c′i, such that the above combinations are equal to zero, will therefore imply
that all constant functions in the soft limit we are considering will vanish. The corresponding
equations for the two cyclically related soft limits may be obtained from eq. (7.17) by letting
ci→ ci+1, c4 ≡ c1, similarly for the primed constants, and in this example it follows immediately
that all three sets of equations have a unique solution ci = 0, c′i = 4ζ2. In other words, if we shift

log2 ai→ log2 ai +4ζ2 , (7.18)

in our weight-2 basis (7.15), then in the soft limit (5.5) and its cyclic permutations, all of its sub-
spaces contributing to three weight-3 branch cut conditions of the type (5.6) will yield a space
of constant functions that shrinks to zero, and so these conditions will be automatically satisfied.
Therefore we do not need to add ζ2 as an independent basis element at this weight.
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weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L = 1 1 3 4

L = 2 1 3 6 10 6

L = 3 1 3 6 13 24 15 6

L = 4 1 3 6 13 27 53 50 24 6

L = 5 1 3 6 13 27 54 102 118 70 24 6

L = 6 1 3 6 13 27 54 105 199 269 181 78 24 6

L = 7+ 1 3 6 13 27 54 105 200 338 331 210 85 27 6 1

Table 3: The number of independent {n,1,1, . . . ,1} coproducts of the MHV and NMHV amplitudes through
L = 6 loops. A green number denotes saturation. The final line gives the number using all known loop orders
together, including 7 loop MHV.

While it is always possible to set the space of all constant functions in one limit to zero,9 this
is generally not the case for multiple limits. That is, at higher weight one cannot in general solve
the analog of (7.17) and its cyclic images simultaneously. At best, we can solve a subset of these
equations, whose rank equals the dimension of our basis of non-constant functions dp. Then, the
independent linear combinations of constants, analogous to eq. (7.16), that the latter functions will
reduce to, we will also need to include as elements in our basis at weight p. This will in turn
guarantee that the branch cut conditions (5.6) of all the weight-(p+1) non-constant functions will
have a solution, and that we can therefore maintain them in our space.

Finally, let us emphasize that for a given amplitude normalization there exists an absolutely
minimal space of functions that contains the L-loop amplitude: This is spanned not only by the
transcendental functions appearing in amplitude at weight 2L, but also all of their {2L−k,1, . . . ,1}
coproducts. In other words, we also include the span of all the weight-(2L− 1) functions in the
derivative of the amplitude, then compute all of their derivatives and construct the span again, and
repeat k times. The dimensions of these spaces, based on the existing data and for the cosmic
normalization, which will be justified in the next subsection, are depicted in table 3. We observe
that the dimension of the weight-(2L− k) function space generated in this fashion increases with
k until it saturates at k = L. Conversely, if we drop any of the weight-k functions of the saturated
space when building our space bottom-up, by increasing the weight by one at each step, we are
guaranteed that at weight 2k, this space will not be large enough to contain the amplitude.

So for a given normalization, this top-down exploration of the span of the amplitude and its
iterated coproducts is useful because it exposes the set of independent constants we need to include
in our space, which may even be smaller than what is required to promote every symbol into a
function. More importantly however, this span changes in size as we change normalization. It can
can therefore guide the choice of optimal normalization, in conjunction with the coaction principle,

9This is equivalent to choosing the base point of integration for our multiple polylogarithms to lie within this limit,
and justifies why the MZVs we introduced in eq. (7.11) is sufficient for our discussion, as follows: The three soft limits
are connected by collinear limits, where the space of functions reduce to so-called harmonic polylogarithms [108]. These
in turn are known to evaluate to MZVs at their endpoints.
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as we will now explain.

7.3 The coaction principle

In section 3, we mentioned that hexagon and heptagon function spaces belong to the broader
class of multiple polylogarithms, which admit a natural coaction operation ∆ on them, and partic-
ularly focused on its ∆m,1,...,1 components. When restricting to classical polylogarithms, the full
coaction is also simple to write down,

∆(Lin(z)) = 1⊗Lin(z)+
n−1

∑
k=0

Lin−k(z)⊗
logk z

k!
, (7.19)

whereas for generic MPLs it may be found in the original literature [41], or for example in the
review [81]. At the practical level, it has also been implemented in the Mathematica package
PolyLogTools [109], see also the HyperlogProcedures [110] package in Maple, as well
as the latter’s native MPL functionality [111].

What is more, the coaction naturally also extends to the transcendental constants MPLs eval-
uate to, in particular it is consistent to define [43, 44]

∆(iπ) = (iπ)⊗1 , (7.20)

whereas from eqs. (7.10) and (7.19) it follows that

∆(ζ2m+1) = 1⊗ζ2m+1 +ζ2m+1⊗1 . (7.21)

Since the coaction is compatible with multiplication,

∆(ab) = ∆(a)∆(b) , (7.22)

with the latter defined component-wise on the right hand side, the last two equations, for example,
imply

∆(ζ 2
2m+1) = (ζ 2

2m+1)⊗1+2ζ2m+1⊗ζ2m+1 +1⊗ (ζ 2
2m+1) . (7.23)

While the coaction is valid by construction on the space of all multiple polylogarithms G , a
rather nontrivial closure has been observed on certain subspaces H ⊂ G ,

∆H ⊂H ⊗
[
G mod (iπ)

]
. (7.24)

The factor on the right may in fact carve out only a subspace of G , but the crucial aspect of the
above statement lies in the left factor: For any element in H , the left factor of the coaction must
also lie in H . This is the (cosmic Galois) coaction principle, which can be shown to be equivalent
to the action of a symmetry group on H , analogous to the action of the Galois group on solutions to
polynomial equations [39]. It has hence been coined the “cosmic Galois group” by mathematician
Pierre Cartier [37].

If the coaction principle (7.24) holds, it implies powerful constraints that have the form of
exclusion principles, or “superselection rules”, in Cartier’s words. For example, assume that at a
given instance we have knowledge of H up to weight 3, and we observe that it does not contain the
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Weight Multiple Zeta Values Appear at (1,1,1) Independent Constants

0 1 1 1

1 − − −

2 ζ2 ζ2 −

3 ζ3 − −

4 ζ4 ζ4 ζ4

5 ζ5, ζ2ζ3 5ζ5−2ζ2ζ3 −

Table 4: For weight m≤ 5, we display first the complete set of MZVs, followed by the linear combinations
that appear in H6,m when the functions are evaluated at (1,1,1), followed by the independent constants
contained in this space.

constant ζ3. Then, since ζ3 appears on the left factor of the coaction on ζ 2
3 , eq. (7.23), the coaction

principle predicts that ζ 2
3 will not appear in H at weight 6.

Indeed, constraints of this type have been observed to hold in the space spanned by the coeffi-
cient of the logarithmic divergence of certain vacuum graphs with 2L edges at L loops [38, 40], as
well as by the polylogarithmic part of the anomalous magnetic moment of the electron through four
loops [112]. They have also been observed in tree-level scattering amplitudes in string theory, con-
necting different orders in the expansion with respect to the inverse string tension α ′ [113]. Finally,
the coaction principle has been proved for certain Feynman integrals in a motivic setting [39].

These occurrences of the coaction principle offer ample motivation to explore whether it also
holds when H is the function space containing the N = 4 SYM amplitudes and their derivatives.
Of course, part of its content holds automatically due to the fashion in which we construct this
space, where functions at weight m are promoted to ∆m,1 components at one weight higher. The
novel import of eq. (7.24) resides in the fact that, as shown in eqs. (7.20)-(7.23), transcendental
constants also exhibit structure under the coaction map, even though they are in the kernel of ∆m,1.

Since non-constant functions are in any case captured by ∆m,1 or more generally ∆m,1,...,1, we
will therefore search for nontrivial manifestations of the coaction principle at certain kinematic
points, where the function spaces containing our amplitudes evaluate to constants. Focusing on
the amplitude with n = 6 particles, in particular we will examine the point ai = ui = 1 or (1,1,1),
which is arguably the most natural place to look, since all functions remain finite there, and it is
also invariant under dihedral transformations. In table 4, we display what the saturated space of
amplitudes and their derivatives, in the sense we discussed in the previous section and in table 3
more specifically, evaluates to at (1,1,1) up to weight 510. In addition we display the constants
we have to include as independent basis elements in our function space, as we described in the
previous subsection. Note that while the latter constants must necessarily also appear at (1,1,1),
the converse is not true.

A first observation from table 4 is that ζ2 is not needed as an independent constant in the

10Up to this weight, the BDS-like and cosmic normalization don’t differ, so the data presented in table 4 holds for
both.
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space of amplitudes and their derivatives. This was also the case when the space of Steinmann
hexagon symbols was minimally promoted to functions in the previous subsection, and in fact the
two spaces can be shown to coincide up to the weight shown in the table. In particular, notice that
the difference between the dimension the symbols of table 1 and of the saturated functions of table
3, is precisely accounted for by the addition of ζ4 as a basis element, see also eq. (7.13).

Secondly, notice that if a coaction principle were to hold in the space of the BDS-like normal-
ized amplitude at the kinematic point (1,1,1), then the absence of ζ3 would also imply the absence
of ζ 2

3 , as we explained earlier in this section. Unfortunately, this is not the case, as the 3-loop MHV
amplitude evaluates to

E
(3)

6,0 (1,1,1) =
413
3

ζ6 +8(ζ3)
2 . (7.25)

The presence of this ζ 2
3 is also at odds with our first observation. Namely the latter constant has to

be added as an independent basis element on top of what is minimally needed to as to promote all
hexagon symbols to functions.

Therefore, the coaction principle strongly motivates absorbing the factor proportional to ζ 2
3 in

a redefinition of the normalization,

E
(3)

6,0 (1,1,1)≡
(
ρE ′(1,1,1)

)(3)
= E ′(3)(1,1,1)+ρ

(3) with ρ = 1+8(ζ3)
2g6 +O(g8) . (7.26)

On the right-hand side, we recognize the first correction to the factor (7.9) governing the cosmic
normalization (7.8). This is how the coaction principle allows us to determine this normalization
also at higher loops, when combined with a few more reasonable assumptions [15], in parallel with
the amplitude11.

We wish to stress that changing from BDS-like to cosmic normalization is not merely a re-
organization of the same information, similarly to how changing from BDS to BDS-like was not.
Had we not carried out the former change, we would have had to include ζ 2

3 (and further constants
appearing in ρ beyond three loops) as an independent constant when building the function space
from the bottom up, which would also induce a whole tower of extra functions at higher weight, as
per the discussion around eq. (7.13). So the cosmic normalization reduces the size of the space we
need to need to bootstrap, and thus facilitates the identification of the amplitude within this space.

For the sake of simplicity so far we only talked about the MHV amplitude, but it’s worth
emphasizing that normalization by the same factor ρ simultaneously renders the analogous func-
tion entering the description of the NMHV amplitude, denoted as E ′(L) (with the prime some-
times dropped), compatible with the coaction principle as well, at least up to the loop order so
far computed. The fact that the same factor is required for both helicity configurations points
towards its ubiquity; and assuming it holds at higher loops, it also predicts that the difference
E ′(L)(1,1,1)−E ′(L)(1,1,1) respects the coaction principle even when computed by truncating ρ at
one lower loop order.

Having analyzed the role of transcendental constants, and of the coaction principle in most
efficiently absorbing them into the normalization of the amplitude, we can now spell out explicitly
our complete bottom-up definition of the space of functions H6,m relevant for bootstrapping six-
particle amplitudes. The space H6,m inherits the properties and definitions already discussed in

11As we have already mentioned, more recently a finite-coupling conjecture for ρ has appeared [107].
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sections 5 and 6, namely it consists of multiple polylogarithms made of the 9-letter symbol alphabet
of eq. (4.4) plus cyclic, obeying the first entry condition, eq. (5.1), the extended Steinmann relations
(6.2), as well as integrability. In addition, we require that functions in this space satisfy branch cut
conditions such as eq. (5.6), and only include even zeta values except ζ2, namely

ζ4 , ζ6 , ζ8 , ζ10 , ζ12 , . . . . (7.27)

as independent constants. We have constructed H6,m up to weight m = 12 at function level and
up to m = 13 at symbol level, as well as m = 14 when restricting the final symbol entry to the
subset known to be relevant for MHV amplitudes. We have confirmed that it respects the coaction
principle not only at point (1,1,1), but also in several other points and lines in the space of kine-
matics. We form an ansatz for the amplitude in the BDS-like normalization, where boundary data
for the latter is available, expressing it in terms of a basis in H6,m with undetermined coefficients,
times the normalization conversion factor ρ , which may also contain certain undetermined coeffi-
cients. By comparing with the boundary data, we fix all undetermined coefficients, and thus both
the cosmically normalized amplitude and ρ , as we move on to discuss next.

8. Results

In the previous two sections, we exposed the conceptual developments underlying the most
recent refinement of the amplitude bootstrap: On the one hand the extended Steinmann relations,
or equivalently cluster adjacency, which maximally simplify the spaces of symbols in which the
amplitudes live; and on the other hand the coaction principle, which similarly guides the elimination
of any redundancies in the corresponding function-level spaces. Let us now present two concrete
applications of these developments, the computation of the six-particle (N)MHV amplitude to (six)
seven loops, and the symbol of the seven-particle NMHV amplitude to four loops.

8.1 The Six-Particle Amplitude at Six and Seven Loops

In table 5 we detail the sequence of steps taken in order to find a unique solution for our ansatz
for the L-loop n = 6 (MHV, NMHV) amplitude [15], along with the number of undetermined
parameters at any given step. Line 1 is equal to the dimension of the bottom-up space H6,2L,
whose construction we described in sections 5 through 7. Line 2 amounts to imposing the discrete
dihedral and parity symmetries of the amplitude, which we reviewed in section 2. The third line
refers to constraints on the final entry of the symbol, arising from dual superconformal symmetry
in the form of the Q̄-equation, as we briefly mentioned in the introduction, and we will expand on
particularly for n = 7 in the next subsection.

All remaining lines refer to particular kinematic limits where we may obtain independent infor-
mation on the behavior of the amplitude, starting with the strict collinear limit, whose divergences
are completely captured by the BDS ansatz. Then follows the high energy or multi-Regge kine-
matics (MRK), which is a very rich subject owing to the development of an effective description of
the latter by Balitsky, Fadin, Lipatov and Kuraev in QCD, that was then extended to planar N = 4
SYM [114, 115, 116, 117, 118, 119, 9, 68, 120, 121]. Because of dual conformal symmetry, it is
equivalent to the soft limit (5.5), and one needs to analytically continue away from the Euclidean
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Constraint L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1. H6 6 27 105 372 1214 3692?

2. Symmetry (2,4) (7,16) (22,56) (66,190) (197,602) (567,1795?)

3. Final-entry (1,1) (4,3) (11,6) (30,16) (85,39) (236,102)

4. Collinear (0,0) (0,0) (0∗,0∗) (0∗,2∗) (1∗3,5∗3) (6∗2,17∗2)

5. LL MRK (0,0) (0,0) (0,0) (0,0) (0∗,0∗) (1∗2,2∗2)

6. NLL MRK (0,0) (0,0) (0,0) (0,0) (0∗,0∗) (1∗,0∗2)

7. NNLL MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,0∗)

8. N3LL MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

9. Full MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

10. T 1 OPE (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

11. T 2 OPE (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Table 5: Remaining parameters in the ansätze for the (MHV, NMHV) amplitude after each constraint is
applied, at each loop order. The superscript “∗” (“∗n”) denotes an additional ambiguity (n ambiguities)
which arises only due to lack of knowledge of the cosmic normalization constant ρ at the given stage.
The “?” indicates an ambiguity about the number of weight 12 odd functions that are “dropouts”; they
are allowed at symbol level but not function level. The seven-loop MHV amplitude was constrained in a
somewhat different order. As the parameter counts are not directly comparable it is omitted from the table.

region in order to obtain a nontrivial result. As can be seen from the aforementioned limit, it is
natural to organize perturbative expansion of the amplitude also with respect to the order of the
divergent logarithm, logL−p−1 a1, denoted as the (next-to)p-leading-logarithmic (NpLL) approxi-
mation. A remarkable consequence of the integrability of the theory is that this double expansion
can be computed at any loop order and logarithmic approximation, not only for n = 6 [122], but
also at arbitrary multiplicity [123].

Finally, the table contains the expansion around the collinear limit, arranged in dofferent pow-
ers of a particular cross ratio T → 0, which is governed by the Pentagon OPE [55, 56, 57, 59, 61,
62, 63, 64, 65, 66, 67] also mentioned in the introduction. That is, while the resummation of the
entire OPE is a challenging endeavor, individual terms in this expansion can be straightforwardly
evaluated using the methods of [58, 60]. As we move down each column of the table, the com-
plete determination of the amplitude for both helicity configurations at the given loop order occurs
with the first (0,0) table entry we encounter. Any entries below the latter then provide consistency
checks of our unique solution.

The table clearly shows the difference between six loop MHV and all other cases shown, in
that one parameter survives all the way through the multi-Regge limit and O(T 1) OPE constraints.
The same is true for the seven-loop MHV amplitude, whose parameter counts we have not included
in the table, since it was computed somewhat differently.

With the new six- and seven-particle amplitudes at hand, we may proceed to analyze their
behavior at various interesting kinematic subspaces and points, either numerically or analytically.
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As an illustration, in figure 4 we plot the remainder function (7.7) on the line ai = 1/u or ui = u,
normalized by its value at u = 1, across loop orders, also including the strong coupling prediction
of Alday, Gaiotto and Maldacena (AGM) [20]. Once normalized in this way, the functions are
almost indistinguishable for u < 1, and maintain quite similar shapes also for u > 1.
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Figure 4: Normalized perturbative coefficients of the remainder function, R(L)
6 (u,u,u)/R(L)

6 (1,1,1), for
L = 2 to 7, plotted along with the strong-coupling result of AGM. The curves all have a remarkably similar
shape for u. 1.

On the analytic side, one rather interesting observation was that at the origin in the space of
cross ratios (2.7), namely the limit where all three ui→ 0, the remainder function (i.e. logarithm of
the BDS-normalized MHV amplitude) behaves as

R6 = c1P1 + c2P2 + c0 +O(ui) , (8.1)

where Pi denotes the two symmetric quadratic polynomials in logui,

P1 = P2 +
3

∑
i=1

log2 ui , P2 =
3

∑
i=1

logui logui+1 , (8.2)

and c(L)i are constants, in particular combinations of zeta values. For example, their values at six
and seven loops are:

c(6)1 =
2033119

160
ζ10−159ζ4(ζ3)

2−240ζ2ζ3ζ5−420ζ3ζ7−204(ζ5)
2 , (8.3)

c(7)1 = −8404209697
44224

ζ12 +1620ζ6(ζ3)
2 +3252ζ4ζ3ζ5 +2520ζ2ζ3ζ7

+1224ζ2(ζ5)
2 +4704ζ3ζ9 +4368ζ5ζ7 +20(ζ3)

4 , (8.4)

c(6)2 =
2532489

80
ζ10 +126ζ4(ζ3)

2 +160ζ2ζ3ζ5 , (8.5)

c(7)2 = −9382873343
22112

ζ12−1360ζ6(ζ3)
2−2568ζ4ζ3ζ5−1680ζ2ζ3ζ7

−816ζ2(ζ5)
2−8(ζ3)

4 , (8.6)

24



Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes Georgios Papathanasiou

c(6)0 =
54491355251

265344
ζ12−

5741
4

ζ6(ζ3)
2−3620ζ4ζ3ζ5−3780ζ2ζ3ζ7

−1836ζ2(ζ5)
2−4704ζ3ζ9−5208ζ5ζ7−14(ζ3)

4 , (8.7)

c(7)0 = −3768411721
1280

ζ14 +
52815

4
ζ8(ζ3)

2 +31187ζ6ζ3ζ5 +38850ζ4ζ3ζ7

+18750ζ4(ζ5)
2 +42336ζ2ζ3ζ9 +39312ζ2ζ5ζ7 +156ζ2(ζ3)

4

+55440ζ3ζ11 +61824ζ5ζ9 +31560(ζ7)
2 +560(ζ3)

3
ζ5 . (8.8)

Apart from the relative number-theoretic simplicity of the coefficients, the important aspect to note
is that the degree of the divergent logarithms is always two, independent of the loop order, and that
no linear term is present. Based on these observations, and harnessing the power of the Pentagon
OPE, the authors of [107] have very recently conjectured the form of the coefficients ci at finite
coupling.

8.2 The Symbol of the Seven-Particle NMHV Amplitude at Four Loops

In section 6, we mentioned that the extended Steinmann relations are equivalent to the property
of cluster adjacency, when considering their effect on the transcendental functions appearing in
N = 4 SYM amplitudes and integrals contributing to them. In fact, there exists one aspect in
which cluster adjacency is somewhat stronger: As it has become apparent more recently [35], it
also constrains any potential rational factors in the amplitude12, as well as relates the rational and
transcendental parts. This becomes particularly relevant for non-MHV amplitudes, which indeed
have such nontrivial rational parts.

So in this subsection, we will precisely describe how this cluster adjacency property can be
exploited in order to construct the symbol of the seven-particle NMHV amplitude E7,1 at four
loops [14]. To this end, we will need to first briefly recall the general structure of En,1.

The rational part of superamplitudes in N = 4 SYM theory respects both superconformal and
dual superconformal symmetry, in other words it is Yangian invariant [127]. As such, it is best
described by generalizing momentum twistors to supertwistors,

Zi→Zi = (Zi |χi) , (8.9)

where the fermionic components χi are related to fermionic dual coordinates, very similarly to
how the bosonic twistors Zi are related to the bosonic dual coordinates xi. Particularly for En,1,
the building blocks of its rational part are known as R-invariants, and for momentum supertwistors
Za, . . . ,Ze, they may be defined as [28, 128, 129]

[abcde] =
δ 0|4(χa〈bcde〉+ cyclic

)
〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉

, (8.10)

where the bosonic four-bracket has already been defined in (2.9), and the fermionic delta function
is given by δ 0|4(ξ ) = ξ 1ξ 2ξ 3ξ 4 for the different SU(4) components of ξ . Thus χi serves the
purpose of packaging the different bosonic components of the superamplitude together, similarly
to the Graßmann variable η in (2.2), and it can in fact be expressed in terms of the latter.

12For more recent work in this direction see also [124, 125, 126].
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Not all R-invariants are independent, as they obey identities of the form [28, 130]

[abcde]− [bcde f ]+ [cde f a]− [de f ab]+ [e f abc]− [ f abcd] = 0 , (8.11)

for any set of six supertwistors. The identities are in turn not all independent, leaving [131]

# linearly independent n-particle R-invariants =
(

n−1
4

)
, (8.12)

namely 5 and 15 independent R-invariants relevant for NMHV scattering amplitudes with n = 6
and n = 7 external legs, respectively.

Focusing on n = 7 from now on, we may simplify the notation by denoting the R-invariants by
the two points not contained in them,

(12) = [34567] , (13) = [24567] , (14) = [23567] , (8.13)

and similarly for their cyclic copies. By convention, we will assume that the right-hand side is
always ordered, so that ordering on the left-hand side doesn’t matter.

With the help of the above definitions, the (non-manifestly cyclically symmetric) tree-level
superamplitude may be written as [128]

E
(0)

7,1 = (12)+(14)+(34)+(16)+(36)+(56) , (8.14)

and more generally at higher loops one may write

E
(L)

7,1 = e(L)12 (12)+ e(L)13 (13)+ e(L)14 (14)+ cyclic, (8.15)

bearing in mind, however, that the quantities ei j are not uniquely defined, due to the identities
(8.11). This ambiguity can be resolved by expressing all R-invariants in terms of a basis of 15
thereof, and a convenient choice of basis in the literature [29] consists of E

(0)
7,1 , as well as (12),

(14), and their cyclic images. Then, eq. (8.15) takes the form [13]

E
(L)

7,1 = E(L)
0 E

(0)
7,1 +

(
E(L)

12 (12)+E(L)
14 (14)+ cyclic

)
, (8.16)

where now the coefficients of the R-invariants are well-defined symbols in H7,2L, and are related
to the objects ei j as

E(L)
0 =

7

∑
i=1

e(L)i i+2, E(L)
14 = e(L)14 − e(L)16 − e(L)46 , E(L)

12 = e(L)12 − e(L)16 − e(L)24 − e(L)46 . (8.17)

Next, let us proceed to explain how to compute these nontrivial building blocks of E
(L)

7,1 at L = 4.
The first step in which cluster adjacency plays an instrumental role, is in the simplification of the
Q̄-equation [29], which governs the violation of dual superconformal symmetry at loop level, due
to infrared divergences. In particular, this equation constrains the pairs of final symbol entries times
R-invariants that can appear in the amplitude, to just a set of 147 instead of the total 42×15 = 630
naively allowed. For E

(L)
7,1 these pairs have been presented in [13], however in a form involving

several rather complicated combinations of such pairs.
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Instead, by making use of the identities (8.11), these can be recast in the most elementary,
manifestly cluster adjacent form of a single (final entry)⊗(R-invariant) pair [35]:

hnsQ̄[(12)] = {a15,a21,a26,a32,a34,a53,a57}
hnsQ̄[(13)] = {a21,a23,a31,a33,a41,a43,a62}
hnsQ̄[(14)] = {a11,a14,a21,a24,a31,a34,a46} & cyclic , (8.18)

where the right-hand side of the first equation lists all final entries that can appear next to (12) and
so on. The notation on the left-hand side signifies that these lists are contained in the homogeneous
neighbor sets of the R-invariants, in the sense that they are letters that can appear in a cluster
also containing all the A -coordinates in the denominator of (8.10). The subscript denotes that the
Q̄-equation is stronger, namely it only selects a subset of all independent cluster adjacent pairs.

The second manner with which cluster adjacency significantly facilitates the computation, is
by automatically solving all the simplest equations for the double coproducts of all the functions
F ∈Hn,m, eq. (5.3), in particular those that have the form

Fφ β ,φβ = 0 , (8.19)

where φ β does not belong to the neighbor set of φβ . This is achieved by forming an ansatz

F = ∑
β

∑
i

ci,β F(i)
hns(φβ )

⊗φβ , (8.20)

where F(i)
hns(φβ )

are elements of a basis of functions labeled by i at one weight less, whose final
entries are in the homogeneous neighbor set of the letter φβ ,

dF(i)
hns(φβ )

= ∑
φα∈hns(φβ )

F(i),φα d logφα . (8.21)

This is the very useful notion of a neighbor set function, which reduces the size of the linear system
we have to solve in order to construct Hn,m at each weight.

All in all, our ansatz for the transcendental part of E
(L)

7,1 with L = 4 will have the form

e(L)i j = ∑
φα ∈hnsQ̄[(i j)]

∑
k

c(i j)
k,α f (k)hns[φα ]

⊗φα , (8.22)

where f (k)hns[φα ]
are weight-(2L−1) neighbor set functions, and the final entries φα are chosen from

the set hnsQ̄[(i j)] defined in equation (8.18). Note that we have started with the non-unique objects
appearing in (8.15), simply because the latter equation has a simple factorized form only with re-
spect to the 21 distinct R-invariants, instead of the 15 independent ones. Once we have constructed
the ansatz, however, one may switch to the well-defined components (8.17) at any stage.

Our initial ansatz, also incorporating certain reflection symmetries, contains 16,212 undeter-
mined coefficients. Consecutively imposing integrability on E14 and E12 reduces this number to
8,444 and 56, respectively. Then, eliminating certain spurious poles of the R-invariants [132, 13]
brings this number down to 5. Finally, constraints from the strict collinear limit uniquely fix the
amplitude. As a consistency check, we have compared the multi-Regge limit of our answer to
existing predictions in the literature [121] up to next-to-leading logarithm. In addition, we have
obtained new predictions up to (next-to)3-leading-logarithmic accuracy.
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9. Conclusion

The amplitude bootstrap has provided a new paradigm for tremendously improving perturba-
tive quantum field-theoretic computations, by exploiting the analytic structure of the considered
physical quantity. Developed first for the six- and then for the seven-particle amplitude in planar
N = 4 SYM theory, it succeeded not only in determining these amplitudes to an unprecedented
loop order, but perhaps more importantly, to reveal new physical and mathematical properties,
such as the extended Steinmann relations/cluster adjacency, or the coaction principle, with poten-
tial wider applicability. It will be very exciting to explore these properties, and expand the realm of
the paradigm, in the setting of more realistic gauge theories. Indeed, some highly encouraging first
applications of the bootstrap philosophy to QCD include the computation of the soft anomalous di-
mension at 3 loops [133], as well in the construction of the space of functions/integrals describing
massless five-particle scattering [134]. And perhaps even more remarkably, as the final lines of this
contribution were being written, the extended Steinmann relations were confirmed for the (planar)
generalization of the aforementioned space, when one of the external legs is massive [135].

It is also natural to ask if the power of the bootstrap continues as the multiplicity increases,
even in N = 4 SYM. For some time, a conceptual obstacle was that for higher multiplicity the
associated cluster algebra becomes infinite. Very recently, this obstacle has been overcome, at
least for the case of n = 8 particles, thanks to the intriguing interplay between cluster algebras and
tropical Graßmannians [136, 137, 138].
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A. Momentum twistors & parametrizations

Momentum (super) twistors may be expressed in terms of momenta and their supersymmetric
partners, the supermomenta,13

pαα̇
i = λ

α
i λ̃

α̇
i = xαα̇

i+1− xαα̇
i , qαA

i = λ
α
i η

A
i = θ

αA
i+1−θ

αA
i , (A.1)

13Where α, α̇ = 1,2 are the usual SL(2) spinor indices, and A is an R-symmetry index.
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by
Zi = (Zi |χi) , Zα,α̇

i = (λ α
i ,xβα̇

i λiβ ) , χ
A
i = θ

αA
i λiα . (A.2)

We close by providing explicit momentum twistor parametrizations for the amplitudes consid-
ered in this contribution. These may be encoded in matrices where the matrix element (i j) denotes
the i-th component of the cyclically ordered momentum twistor Z j.

n = 6 :


−1 0 0 0 1 1+ x1

0 1 0 0 1+ x2 1+ x2 + x1x2

0 0 −1 0 1+ x3 + x2x3 1+ x3 + x2x3 + x1x2x3

0 0 0 1 1 1

 (A.3)

For n = 7, the first four momentum twistors are identical to the corresponding n = 6 ones,
whereas the rest are

Z5 =


1

1+ x4 + x3x4

1+ x6 + x4x6 + x5x6 + x4x5x6 + x3x4x5x6

1

 , (A.4)

Z6 =


1+ x2

1+ x4 + x2x4 + x3x4 + x2x3x4

1+ x6 + x4x6 + x2x4x6 + x5x6 + x4x5x6 + x2x4x5x6 + x3x4x5x6 + x2x3x4x5x6

1

 , (A.5)

and

Z7 =


1+ x2 + x1x2

1+ x4 + x2x4 + x3x4 + x2x3x4 + x1x2x3x4

1+ x6 + x4x6 + x2x4x6 + x5x6 + x4x5x6 + x2x4x5x6 + x3x4x5x6 + x2x3x4x5x6 + x1x2x3x4x5x6

1


(A.6)
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