Measurements of Higgs Vector Boson Fusion (VBF) production

Zhijun Liang (IHEP, Chinese Academy of Sciences) on behalf of the ATLAS and CMS collaborations

Higgs 2020 Conference Oct 26-30, 2020

Higgs production mode at LHC Overview of Measurements of Higgs VBF production \triangleright VBF H \rightarrow bb $\triangleright VBF H \rightarrow \tau \tau$ \triangleright VBF H \rightarrow WW* \triangleright VBF H \rightarrow ZZ* \triangleright VBF H \rightarrow Y Y \triangleright VBF H \rightarrow invisible Summary

Outline

Higgs production at LHC > At the LHC, the Higgs boson production is $\sigma_{H,total} = 56$ pb at $\sqrt{s} = 13$ TeV Dominantly by gluon fusion process VBF process is the second-largest Higgs production mode

Higgs-strahlung (σ_{W/Z+H} ~ 1.4/0.9 pb):

> All hadronic channels (VBF H(\rightarrow bb)) High statistics

- > Photon channel (VBF H(\rightarrow bb)+ γ)
- Low statistics, suppresses the gluon-rich dominant non-resonant bbjj bkg.

All hadronic analysis VBF H(→bb) **ATLAS Full run II data CERN-EP-2020-195**

Photon tagged analysis VBF H(→bb)+γ **ATLAS Full run II data CERN-EP-2020-179**

VBF H(\rightarrow bb)

□ Signal is characterised by 2 b-jets + 2 light-quark jets with large rapidity gap (VBF jets)

D probes WWH VBF production specifically, with little contribution from ZZH production **ATLAS Event display of** VBF H(→bb)+γ

VBF H(→bb)

Two channels, dedicated signal trigger for each Forward channel : 2 central bjets + 1 forward jet Central channel: 4 central jets with 2 bjets **C** Events are categorized by ANN score and channels \Box Simultaneous fit to m_{bb} in multiple event categories;

ATLAS Full run II paper CERN-EP-2020-195

Forward channel (1fj+2b

ANN score

Combined m_{bb} in all regions

Run 2 132 fb⁻¹ result $\mu_{VBF} = 1.3 \pm 1.0.$

CERN-EP-2020-179

m_{bb} fit in high BDT region

		VBF H
VBF H→bb	Dataset	obs. (Signifi
ATLAS	Full Run 2	2.9σ(2
CMS	Run 1	2.2σ(
 Analysis sta Jet energy s Non-resona 	at. limited, domin scale and flavou nt bkg paramete	hant exp. sys r tagging un rs

VBF H(\rightarrow bb)+ γ

VBF H(→bb)

Combined

D	

_		

Source of uncertainty	Impact $\Delta \sigma_{\ell}$	$\sigma_{H \rightarrow H}$
	Observed	Ε
Theoretical uncert. in signal	+13.4 / -8.7	+12
Background statistics	+10.8 / -9.9	+10
Jets and $E_{\rm T}^{\rm miss}$	+11.2 / -9.1	+10
Background normalization	+6.3/-4.4	+6
Misidentified τ	+4.5/-4.2	+3
Theoretical uncert. in background	+4.6/ -3.6	+5
Hadronic τ decays	+4.4/ -2.9	+5
Flavor tagging	+3.4/ -3.4	+3
Luminosity	+3.3/-2.4	+3
Electrons and muons	+1.2 / -0.9	+1
Total systematic uncert.	+23 / -20	+22
Data statistics	± 16	
Total	+28 / -25	+27

ATLAS:Phys. Rev. D 99, 072001

137 fb⁻¹ (13 TeV)

$\pm 1\sigma$ stat.

th.	stat.	syst.	bbb		
+0.08 0.07	+0.06 0.06	+0.07 0.06	+0.04 0.03		
+0.12 0.09	+0.09 0.09	+0.12 0.12	+0.06 0.06		
+0.06 0.05	+0.19 0.18	+0.09 0.08	+0.08 -0.08		
1		1	1 1		
Parameter value					

ATLAS VBF H \rightarrow WW* \rightarrow evµv > ATLAS new result with full run II data(139 fb⁻¹): ATLAS-CONF-2020-045

- Higher sensitivity compared to 36fb⁻¹ paper > Highlight of event pre-selection :
- Lepton selection: 2 different-flavour leptons with opposite charge
- > VBF jets cut: 2jet with p_T >30GeV, M_{ii} > 120GeV > Optimisation of central jet veto: $p_T > 20$ GeV $\rightarrow p_T > 30$ GeV Outside-lepton veto : veto Lepton outside the jet rapidity gap
- \triangleright Top suppression : Veto b jets \rightarrow reverse to build Top control region > Z+jet suppression: $m_{TT} < m_Z - 25 \text{GeV}$ $\rightarrow Im_{TT} - m_z < 25 GeV$ to build Z+jet control region

jet] **Outside lepton veto**

VBF signature

Background rejection

ATLAS VBF H \rightarrow WW* \rightarrow evµv > Highlight: Deep Neural Networks (DNN) is used to replace BDT in previous analysis > Feedforward network, 8 dense layers. Discrimination based on 15 variables: **ATLAS Full run II analysis** $\succ \textbf{VBF topology:} \Delta y_{jj}, m_{jj}, \eta_{\ell}^{\text{centrality}}, m_{\ell 1 j 1}, m_{\ell 1 j 2}, m_{\ell 2 j 1}, m_{\ell 2 j 2} p_{\mathrm{T}}^{\text{jet}_{1}}, p_{\mathrm{T}}^{\text{jet}_{2}}, p_{\mathrm{T}}^{\text{jet}_{3}}, p$ **ATLAS-CONF-2020-045** $\succ H \rightarrow WW$ decay: $\Delta \phi_{\ell\ell}, m_{\ell\ell}, m_T$ > Top suppression: $p_{\rm T}^{\rm tot}$, MET significance

Deep Neural Networks output in different regions Postfit Di-lepton mass distribution bin 2500 10⁶ ⊨ GeV - Data **Uncertainty ATLAS** Preliminary **ATLAS** Preliminary Uncertain 80 H_{VBF} H_{aaF} $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ Events $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ H_{qqE} 2000 $H \rightarrow WW^* \rightarrow ev\mu v$ tt/Wt Other H 10⁵ $H \rightarrow WW^* \rightarrow ev\mu v$ $t\overline{t}/Wt$ Z/γ^* WW **VBF SR** Z+jets Mis-Id Other VV Š Ш 60 1500 10^{4} Other VV 1000 10^{3} 40 500 10^{2} 20 10 (Data-Pred.)/Data -00 Top CR Z+jets CR [0,0.25] [0.25,0.59] [0.59,0.73] [0.73,0.83] [0.83,0.89][0.89,0.93] [0.93,1.00] 100 120 140 160 180 200 40 60 20 80 CRs DNN output in SR m_∥ [GeV]

 → WW* , 7.0σ(6.2σ) obs.(Exp.) Significance lered background (20% of total Bkg) ton shower uncertainty 			
a luminosity	obs. (exp.)Significance		
2 (139 fb ⁻¹)	7.0σ(6.2σ)		
2 (35.9 fb ⁻¹)	9.1σ(7.1σ)		

[%]
5
8
8
4.7
3.1
2.2
1.9
1.7
1.6
1.4
0.9
4
7
5.2
3.3
2.5
1.9
2

$\mathsf{VBF} \mathsf{H} \to \mathsf{ZZ}^*$ > ATLAS: Final fits use Neural Networks inside categories \triangleright CMS: Multi-dimensional fit with m_{41} and the discriminant (D_{2iet} is sensitive to VBF)

ightarrow H \rightarrow y y channel provides one of the most precise measurements on VBF Higgs production The signal strength of VBF Higgs production is consistent with SM prediction. ATLAS full run II H $\rightarrow \gamma \gamma$ analysis: CMS full run II H $\rightarrow \gamma \gamma$ analysis: **ATLAS-CONF-2019-029 CMS-PAS-HIG-19-015**

$VBFH \rightarrow \gamma \gamma$

$\mathsf{VBF} \mathsf{H} \rightarrow \mathsf{V} \mathsf{Y}$ > More Differential measurements are needed to understand MC modelling of VBF jets **□** Found small discrepancy between data and MC ✓ In high di-jet mass **ATLAS full run II analysis: ATLAS-CONF-2019-029** ✓ In large $|\Delta \phi_{ii}|$ region

Di-jet mass

VBF jets $\Delta \phi_{ii}$

- \triangleright Sensitive to new physics. Important to get upper limit of H \rightarrow invisible

- \succ VBF channel has the best sensitivity to H \rightarrow invisible decay

More info in Benedikt Maier's talk in plenary section tomorrow

VBF $H \rightarrow invisible$ \triangleright Small fraction of the Higgs boson decays invisibly (H \rightarrow invisible) in SM theory (~0.1%) > ATLAS 95% CL upper limit of 13%(13%) observed (expected), Run-1 and Run-2 (139/fb) CMS 95% CL upper limit of 19% (15%) observed (expected), Run-1 and Run-2 (36/fb)

Summary

VBF process is the second-largest Higgs production mode > ATLAS/CMS measurements show no visible deviation from SM prediction \triangleright VBF process is one of the most powerful channel in H \rightarrow $\tau\tau$, and H \rightarrow invisible search > Theory uncertainty on parton shower modelling became an important systematics > More differential measurements to improve MC modelling of VBF observations

CMS-PAS-HIG-19-005

ATLAS-CONF-2020-027

ninary Total 139 fb ⁻¹ / _H < 2.5	Stat.	. <mark></mark> 5	Syst.	I SM
		Total	Stat.	Syst.
te de la companya de	1.03	± 0.11 ($\pm \; 0.08$,	+0.08 -0.07)
eļ 🚽	0.94	+0.11 -0.10 (±0.10 ,	±0.04)
÷	1.08	+0.19 -0.18 (±0.11,	±0.15)
	1.02	+0.60 -0.55 ($^{+0.39}_{-0.38}$,	+0.47 -0.39)
	1.00	±0.07 ($\pm \ 0.05$,	±0.05)
H	1.31	+0.26 -0.23 (+0.19 -0.18,	+0.18 -0.15)
	1.25	+0.50 -0.41 (+0.48 -0.40,	+0.12 -0.08)
-	0.60	+0.36 -0.34 (+0.29 -0.27,	±0.21)
	1.15	+0.57 -0.53 (+0.42 -0.40 ,	$^{+0.40}_{-0.35}$)
	3.03	+ 1.67 - 1.62 (+1.63 -1.60,	+0.38 -0.24)
	1.15	+0.18 -0.17 (±0.13,	+0.12 -0.10)

 $\sigma \times B$ normalized to SM