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Abstract
The JYFLTRAP double Penning trap mass spectrometer at the Ion Guide Isotope Separator
On-Line (IGISOL) facility offers excellent possibilities for high-precision mass measure-
ments of radioactive ions. Around 400 atomic masses, including around 50 isomeric states,
have been measured since JYFLTRAP became operational. JYFLTRAP has also been used
as a high-resolution mass separator for decay spectroscopy experiments as well as an ion
counter for fission yield studies. In this contribution, an overview of recent activities at the
JYFLTRAP Penning trap is given, with a focus on nuclei discussed in the PLATAN2019
meeting.

Keywords Penning trap · Atomic mass · Nuclear binding energy · Isomers

1 Introduction

Atomic masses can be measured with the highest achievable precision using Penning trap
mass spectrometers. Very high precision (≤ 1 keV/c2) mass measurements are important for
fundamental physics [1, 2], such as for weak-interaction studies, testing the isospin symme-
try or the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix. Mass
measurements with a good precision of ≤ 10 keV/c2 are also needed to study subtle changes
in nuclear structure [2, 3] or to provide accurate inputs for astrophysical reaction network
calculations [4]. In this contribution, we review the recent activities at the JYFLTRAP
double Penning trap mass spectrometer [5–7] located at the Ion Guide Isotope Separator
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Fig. 1 JYFLTRAP measurements presented in PLATAN 2019 (in red) together with previous studies (in
blue) for Z = 26 − 67. Nuclei with experimental values in AME16 are also shown

On-Line (IGISOL) facility [8, 9] in the JYFL Accelerator Laboratory of the University of
Jyväskylä, Finland.

The JYFLTRAP double Penning trap has been operational more than 15 years. During
these years, around 400 atomic masses, including around 50 isomeric states, have been
measured with JYFLTRAP. Most of the studied nuclei have been neutron-rich (around 2/3),
produced by proton- or deuteron-induced fission on natU or Th targets. Around third of
the measurements have been performed on the neutron-deficient side, where the ions of
interest are produced via fusion-evaporation reactions. Figure 1 highlights in red the recent
JYFLTRAP mass measurements presented in the PLATAN 2019 conference. What is not
shown in Fig. 1, is that many of the measured nuclides have long-living isomeric states
which have also been measured with JYFLTRAP. These provide important information on
level structure far from stability. The recent ground and isomeric- state mass measurements
at JYFLTRAP will be discussed in Section 3 and its subsections. JYFLTRAP has also been
widely used for selecting isotopes or even isomers of interest for decay spectroscopy, or as
an ion counter for fission yield studies. Recent post-trap and fission-yield publications will
be shortly reviewed in Section. 4.

2 JYFLTRAP double Penning trap at IGISOL

JYFLTRAP [5–7] is a cylindrical double Penning trap mass spectrometer located inside a
7 T superconducting solenoid at the IGISOL facility [9]. The continuous radioactive ion
beam from IGISOL is first mass-separated using a dipole magnet, which is usually suffi-
cient to select the mass number of interest A. In addition to IGISOL, ion beams can be
delivered from an offline ion source station [10], housing an electric discharge ion source
and a surface ion source. There is also a space reservation for a laser ablation ion source.

The continuous ion beam is cooled and bunched in a radiofrequency quadrupole (RFQ)
[11], and the ion bunches are further injected into the first trap of JYFLTRAP, also known
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as the preparation trap. In the first trap, the ions of interest are selected using the buffer-gas
cooling technique [12], and sent further to the second trap for precision mass measurements,
or to post-trap decay spectroscopy station after the traps. Usually the Time-of-Flight Ion
Cyclotron Resonance (TOF-ICR) technique [13, 14] has been employed in the second trap,
also known as the measurement trap, to determine the ion’s cyclotron resonance frequency
νc = 1

2π
q
m

B, where B is the magnetic field strength, and q and m are the charge and the
mass of the ion, respectively. The magnetic field strength is calibrated by using reference
ions with well-known mass values. A new technique to determine the ion’s cyclotron reso-
nance frequency, the Phase-Imaging Ion Cyclotron Resonance (PI-ICR) technique [15], was
commissioned at JYFLTRAP in 2017, see Ref. [7]. A position-sensitive MCP ion detec-
tor with a delay-line anode (DLD40) from RoentDek GmbH [16] was installed behind the
traps, and the extraction optics was modified accordingly. Since then, the new technique
has been increasingly utilized for high-precision mass measurements at JYFLTRAP. The
method gives consistent results with the conventional TOF-ICR technique, as demonstrated
with the Q-value measurement for the neutrinoless double electron-capture on 102Pd [17],
but a higher precision can be achieved with the PI-ICR technique. Further examples of
TOF-ICR and PI-ICR measurements are given in Section. 3.

3 Recent mass measurements with JYFLTRAP

Since the last LASER meeting held in Poznan in May 2016, several publications have come
out from JYFLTRAP experiments. The QEC value of the superallowed β+ emitter 42Sc has
been measured to be 6426.350(53) keV [18], the isobaric multiplet mass equation studied
for the quintet at A = 52 [19] and a general review on ion traps given in [3]. These were
already discussed in Poznan. Here we present recent activities at JYFLTRAP with a focus
on the PLATAN2019 contributions.

3.1 Nuclei in the vicinity of 78Ni

Masses of nuclei close to 78Ni are important for several reasons. Firstly, the evolution of
the Z = 28 and N = 50 shell closures and the magicity of 78Ni can be probed via
mass measurements. Secondly, the masses of neutron-rich nuclei close to N = 50, i.e. the
strength of the N = 50 shell closure, are relevant to understand in detail the core col-
lapse phase of supernovae where electron captures on nuclei play a key role [20, 21]. In a
recent JYFLTRAP experiment, several neutron-rich Ni, Cu and Zn isotopes were measured
to study these phenomena [22].

We also investigated nuclides below 68Ni (Z = 28, N = 40), namely 69,70Co and 67Fe.
68Ni has some doubly magic features, such as high excitation energy of the first 2+ state
and low transition strength B(E2; 0g.s. → 2+

1 ) [23, 24]. Previous mass measurements,
however, have not shown a strong subshell closure at N = 40 in the region [25–29]. The
new JYFLTRAP measurements support the conclusion that the N = 40 subshell closure
is rather weak, and gets weaker below nickel [30, 31]. The identification of the isomeric
states in the cobalt isotopes is crucial for accurate empirical shell-gap energies and also for
the investigation of a possible island of inversion below 68Ni [32, 33]. At JYFLTRAP, only
one state was observed for 70Co, whereas for 69Co the data indicate that there are two states
present.

The mass measurements of 69Co and 67Fe are also important for accurate neutron sep-
aration energies needed to calculate neutron-capture and their inverse photodisintegration
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rates in the astrophysical rapid neutron capture process (r process) [34, 35]. Sensitivity
studies [36] have shown that 67Fe(n, γ )68Fe and 68Co(n, γ )69Co have a strong impact on
the calculated r-process abundances. With the new JYFLTRAP measurements, we could
reduce the mass-related uncertainties in these impactful neutron-capture rates. Moreover,
the photodisintegration rates are much higher than previously considered.

3.2 Neutron-rich silver isotopes

Nuclei close to the doubly magic 132Sn are important both for nuclear structure and for
the r-process. Mass measurements in this region provide information on the evolution of
the Z=50 and N=82 shell closures, one- and two-neutron separation energies and pairing
effects in the region. Recent studies have shown that the masses of the nuclei close to 132Sn
have the highest impact on the calculated r-process abundances for different astrophysical
scenarios [37].

Recently neutron-rich silver isotopes 113−124Ag were investigated at JYFLTRAP. Pre-
viously, 112,114−124Ag have been studied at the ISOLTRAP Penning trap at CERN [38]
and 125,126Ag at the ESR storage ring at GSI [39]. Of these, the ESR measurements have
uncertainties of 200-300 keV which are not adequate for the r-process modeling or detailed
studies of nuclear structure. In addition, the 126Ag mass obtained at ESR is 730(370) keV
lower than the extrapolated value in the Atomic Mass Evaluation 2016 [40]. The ISOLTRAP
measurements using the TOF-ICR technique were hampered by the existence of low-lying
isomeric states and difficulties to identify the measured state. In these measurements the
state for 115Ag and 119Ag could not be assigned as the ground state or isomer, and 121−124Ag
were assumed to be an admixture of the states which increased the uncertainty of the mea-
surements. 120Ag was assigned as the ground state in [38], however, a decay spectroscopy
study performed at Holifield Radioactive Ion Beam Facility (HRIBF) showed that 120Ag
actually has three long-living (>10 ms) states [41]. Therefore, it is unclear which state was
measured at ISOLTRAP, the ground state or the first isomeric state.

The mass measurements of silver isotopes at JYFLTRAP were performed with the PI-
ICR technique [7, 15]. Phase accumulation times in the measurement trap had to be selected
for each case individually depending on the excitation energies of the isomers to fully sep-
arate them. Stable 133Cs+ ions were used for the calibration of the magnetic field. The
measured states in the studied silver isotopes are shown in Table 1.

The excitation energies of the 119m,120m,122n,123m,124mAg isomeric states were measured
for the first time. The precision for several ground-state mass values was improved, since the
isomeric states were separated in most of the cases. In 121Ag only one state was observed,
while the low-lying isomeric state is additionally known in literature [42]. In 122Ag two
states with different half-lives were observed, while three long-living states are known in
literature [42]. The ground state and the first isomeric state with an unknown excitation
energy in 122Ag have similar half-lives and could not be distinguished. The excitation ener-
gies of the isomeric states in 113−118Ag are known with a good accuracy (sub-keV) from
spectroscopic measurements [42] and can be used to cross-check our mass measurements.
Figure 2 shows the projection of ion cyclotron motion in the measurement trap onto the
position-sensitive MCP detector for one of the PI-ICR measurements of 120Ag.

3.3 Neutron-rich rare-earth isotopes

Neutron-rich rare-earth isotopes have been studied in two recent mass measurement cam-
paigns at JYFLTRAP [43, 44]. Altogether 22 nuclides have been measured, of which 14
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Table 1 States in silver isotopes studied at JYFLTRAP and their properties

State Jπ T1/2 E∗, keV

113gAg 1/2− 5.37(5) h
113mAg 7/2+ 68.7(16) s 43.5(1)
114gAg 1+ 4.6(1) s
115gAg 1/2− 20.0(5) m
115mAg 7/2+ 18.0(7) s 41.16(10)
116gAg (0−) 3.83(8) m
116mAg (3+) 20(1) s 47.90(10)
116nAg (6−) 9.3(3) s 129.8(22)
117gAg 1/2−# 73.6(14) s
117mAg 7/2+# 5.34(5) s 28.6(2)
118gAg 1− 3.76(15) s
118nAg 4(+) 2.0(2) s 127.63(10)
119gAg 1/2−# 6.0(5) s
119nAg 7/2+# 2.1(1) s 20#(20#)
120gAg 4(+) 1.52(7) s
120mAg (0−, 1−) 940(100) ms 0#(50#)
120nAg 7(−) 384(22) ms 203.0(2)
121xAg g: 7/2+#; m: 1/2−# g: 780(20) ms; m: 200# ms m: 20#(20#)
122xAg g: (3+); m: (1−) g: 529(13) ms; m: 550(50) ms m: 80#(50#)
122nAg 9(−) 200(50) ms 80#(50#)
123gAg 7/2+# 300(5) ms
123mAg 1/2−# 100# ms 20#(20#)
124gAg (2−) 177.9(26) ms
124mAg (8−) 144(20) ms 0#(100#)

Jπ , T1/2 and E∗ are the spin with the parity, the half-life and the excitation energy of the isomeric state,
correspondingly, taken from NUBASE2016 [42]. The values estimated from systematic trends in neighboring
nuclides are marked by #. The ground states are indicated with g , the first isomeric state and the second
isomeric state are indicated with m and n, correspondingly. The states, where the ground state and the isomeric
state could not be distinguished, are referred with x

for the first time. These include the first measurements of 158Nd, 160,161Pm, 162,163Sm,
164,165Eu, 164−167Gd, and 165,167,168Tb. The new mass values agree with the extrapolations
of AME16 [40] in most of the cases. Typically, the JYFLTRAP values were somewhat
higher than predicted by the extrapolations [44]. The largest deviations between the new
JYFLTRAP mass values and AME16 were found for 154Nd, 220(60) keV, and 156Nd,
260(200) keV. Both mass values have been previously based on beta-decay end-point ener-
gies [45, 46] which tend to underestimate the Q values, and thus the masses. Indeed, the
JYFLTRAP mass value for 154Nd agrees with the recent mass value from the Canadian
Penning Trap (CPT) [47].

In the latter experimental campaign, the masses of 162Eu and 163Gd were remeasured
using the TOF-ICR technique with a 1600 ms quadrupolar excitation time in the second trap
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Fig. 2 Projection of the cyclotron motion of 120Ag+ ions onto the position-sensitive detector in PI-ICR
method. The three detected ion spots on the detector correspond to the three long-living states in 120Ag

to resolve the ground and isomeric states from each other. In addition, the PI-ICR technique
was applied for a detailed study of the ground and isomeric states in 162Eu, see Ref. [44].

The rare-earth masses are important for understanding the formation of the rare-earth
abundance peak at A = 165 in the r process. It has been proposed to form via fission
cycling [48] or during the freezeout when matter is decaying toward the stability. In the latter
scenario, a kink in the neutron separation energies could funnel the flow toward the midshell
[49, 50]. Spectroscopic data indicate that there is an onset of deformation at N = 88−90: the
2+ energies drop dramatically and the E(4+)/E(2+) ratios increase suddenly. Moreover,
it has been suggested that there would be a subshell closure at N = 100 based on the
observed small kink in the 2+ energies at N = 100. In the JYFLTRAP campaign we wanted
to investigate whether there is a kink in one- or two-neutron separation energies that could
funnel the r-process flow or would support a subshell closure at N = 100.

The new JYFLTRAP data do not introduce significant changes in the trends of two-
neutron separation energies (see Fig. 3). No significant kinks supporting the proposed
subshell closure or a change in the nuclear structure, are observed for the studied isotopic
chains. Interestingly, neutron pairing energies were found to be lower than predicted by the
commonly used theoretical models when approaching the midshell at N = 104 [43, 44].

The impact of the JYFLTRAP mass values on the calculated r-process abundances was
studied for a representative dynamical ejecta trajectory for a 1.35 solar-mass neutron-star
merger from Ref. [51], with a very low initial electron fraction Ye = 0.016 and low entropy
per baryon s/kB = 8. A simple asymmetric split [52] was assumed for fission fragment
distributions to ensure that the rare-earth peak forms entirely via the dynamical formation
mechanism of Refs. [49, 50]. Compared to a baseline study employing experimental mass
values from AME16 [40] and theoretical mass values from the Finite-Range Droplet Model
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2012 (FRDM2012) [53], the new JYFLTRAP values produce a smoother abundance pattern
and a better agreement with the observed r-process abundances is achieved [43, 44].

3.4 Q-valuemeasurements of rare weak decays

Decays through weak interaction offer a possibility to determine the mass of a neutrino. In
ordinary β decays, the mass of a neutrino manifests itself as a distorted shape of the emitted
beta spectrum close to the endpoint energy (i.e., Q-value). Such an experiment is KATRIN
that uses tritium, whose β endpoint energy is 18.6 keV [54]. To detect a distortion in the beta
spectrum near the end-point energy, a Q-value as small as possible is desirable. This has
prompted a survey to map rare weak decays [55, 56] that are β+, β− or EC decays of parent
ground states to excited states in the daughter nucleus with a small Q-value (i.e., < 1 keV).
The shape of the beta spectrum near the endpoint is expected to be relatively simple. These
decays are also suitable for theoretical modeling of atomic effects in nuclear decay.

Several candidates for rare weak decays have been identified, all with well-known
excitation energies in the daughter nucleus. However, the uncertainties in the ground-state-
to-ground-state Q-values remain too high to extract a precise Q-value for a decay to an
excited state. A direct parent-daughter mass ratio measurement with a relative precision of
around 10−9 would allow extraction of Q-values at the uncertainty level of a few hundred
eV. It is imperative to know whether the Q-value is positive to find out the decays that could
be feasible for determining the mass of a neutrino.

At JYFLTRAP, Q-values of four potential rare weak β-decay candidates were measured
recently, summarized in Table 2. As the nuclei of interest are close to stability, they were pro-
duced relatively easily. Out of the studied nuclei, 135Cs was produced using proton-induced
fission of natural uranium while the others were produced using proton- or deuteron-induced
fusion reactions. The analysis of the collected data is ongoing.
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Table 2 Cases, whose ground-state-to-ground-state Q-values were measured at JYFLTRAP

Parent (Jπ ) Daughter (Jπ ) E∗, keV Q, keV

111In (9/2+) 111Cd (7/2+) 853.94 ± 0.07 6.36 ± 3.0
111Cd (3/2+) 855.6 ± 1.0 4.6 ± 3.2
111Cd (3/2+) 864.8 ± 0.3 −4.5 ± 3.0

131I (7/2+) 131Xe (9/2+) 971.22 ± 0.13 −0.4 ± 0.6
155Eu (5/2+) 155Gd (9/2−) 251.7056 ± 0.0010 0.1 ± 0.9
135Cs (7/2+) 135Ba (11/2−) 268.218 ± 0.020 0.7 ± 1.0

The first column shows the decaying parent state, the second column the excited state in the daughter nucleus,
third column the excitation energy of the excited state in the daughter and the fourth column the Q-value to
the excited state in the daughter. The tabulated spins and parities (Jπ ) of the states, as well as the excitation
energies and Q-values are based on Refs. [42, 57]

3.5 Nuclei close to the N = Z line in the A = 80 − 90mass region

Heavier neutron-deficient nuclei close to the N = Z line have been recently studied using
an upgraded version of the heavy-ion ion-guide, HIGISOL [58], at IGISOL. The first on-
line experiment with the upgraded system employed 222-MeV 36Ar8+ ions impinging into
a natNi target [59]. High-precision mass measurements were performed with JYFLTRAP
for 82Zr, 84Nb, 86Mo, 88Tc, 88Tcm and 89Ru [59, 60]. Two of the masses, 88Tcm and 89Ru,
were measured for the first time and the precisions of 82Zr, 84Nb and 88Tc were improved
significantly. Additionally, the mass of 86Mo given in AME16 [40] was verified. The effect
of the new data on the mass surface was studied, and similar behaviour as reported in the
literature [40] was observed.

88Tc was studied at JYFLTRAP already in 2008 [61] but at the time the isomeric state
88Tcm could not be resolved from the more abundant ground state. With the PI-ICR tech-
nique, the mass of the isomer could be determined for the first time. The isomer was
measured against the ground state using the PI-ICR technique, yielding an excitation energy
of Ex = 70.4(31)keV [59]. The mass of the dominantly produced ground state was mea-
sured using the TOF-ICR technique, which together with the excitation energy yielded also
a mass value for the isomer.

The order of the three lowest states in 88Tc was studied based on the obtained excitation
energy for the isomeric state, Weisskopf estimates for the three states, and available spec-
troscopic data from literature. The most likely energies and spin-parities of the first three
states in 88Tc are (Ex, J

π ) = (0 keV, 2+), (70.4 keV, 6+) and (95 keV, 4+). Shell-model
calculations were also performed for comparison but those were highly sensitive to the used
model space and interaction model (for details, see Ref. [59]).

In addition to the six atomic masses that were directly measured, the masses of 82Mo and
86Ru (Tz = −1) were determined using theoretical mirror displacement energies (MDEs)
and the directly measured masses of their respective mirror partners 82Zr and 86Mo (Tz =
+1) [59]. The resulting mass-excess values predict more tightly bound nuclei than literature
[40], by more than 500 keV, and reduce the uncertainties of the predicted masses.

The JYFLTRAP mass measurements of 82Zr and 84Nb showed that mass values mea-
sured at the CSRe storage ring [62] deviate from the corresponding Penning-trap measure-
ments, CSRe results being typically around 20 keV smaller. In order to investigate whether
this is a more general feature, published results from the CSRe storage ring were gathered
and compared to available Penning-trap results. A total of 17 nuclides were available for
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the comparison. The deviation turned out to be larger than what would be expected based
on statistical fluctuations alone [59].

4 Other activities at JYFLTRAP

In addition to precision mass measurements, JYFLTRAP has been employed in many post-
trap decay spectroscopy experiments. Either the mass-selective buffer gas cooling technique
[12] in the first trap, or dipolar Ramsey cleaning [63] in the second trap, has been used
to select the isotope, or even the isomer of interest for spectroscopic studies after the trap.
Monoisotopic or isomeric beams are beneficial for decay experiments as the background
coming from the decays of neighbouring isobars is removed. Only daughter activities will
be present but those can be reduced by implanting the ions into a tape which is regularly
moved using a tape station.

Since the last LASER meeting held in May 2016 in Poznan, several trap-assisted spec-
troscopy studies employing JYFLTRAP have been published. A beta detector and an array
of broad-energy range germanium detectors have been used to study the beta decays of 88Se
[64] and 117Rh [65]. The TASISpec silicon detector array together with a cluster and clover
detectors were employed to study beta decay of 127Cd [66]. Total absorption gamma-ray
spectroscopy has been performed on the beta decays of 87Br, 88Br, and 94Rb [67], 100Tc
[68] and 100gs,100mNb and 102gs,102mNb [69]. The study of the first multiple-beta-delayed
neutron emitter above A = 100, 136Sb [70], also involved JYFLTRAP to select only the
136Sb ions for the studies.

JYFLTRAP has also turned out to be a great instrument to determine independent fis-
sion yields [71]. Neutron-rich isotopes at IGISOL are typically produced by proton-induced
fission on natU or 232Th target. The yields can be determined based on the quadrupole
excitation scans performed in the first trap [12]. If the isomeric excitation energy is high
enough, even independent isomeric yield ratios can be obtained from these studies. The
results for isomeric yield ratios for 81Ge, 96,97Y, 128,130Sn, and 129Sb in proton-induced fis-
sion on natU and 232Th at 25 MeV were reported in [72]. The new PI-ICR technique was
recently employed for isomeric fission yield studies of 119−127Cd and 119−127In for 25-MeV
proton-induced fission on natU [73]. The benefit in the PI-ICR technique is that it has a
superior resolving power as compared to the buffer-gas cooling technique in the first-trap as
demonstrated in Fig. 1 of Ref. [73]. Hence, even low-lying isomeric states (Ex ≤ 100 keV)
and their fission yields can be studied. Moreover, there is no need to scan over a range of
excitation frequencies. Every ion directly contributes to the yield measurement.

5 Summary and outlook

The scientific programme at JYFLTRAP is versatile, ranging from nuclear structure and
astrophysics to experiments for neutrino physics or testing fundamental physics, such as
isospin symmetry or the unitarity of the CKM quark mixing matrix. It is also used as an ion
counter for fission yield studies and high-resolution mass separator for decay spectroscopy
experiments. The recently commissioned PI-ICR technique has opened new possibilities
to resolve and measure very low-lying isomeric states, as well as to count ions for iso-
meric fission yield studies. A multi-reflection time-of-flight mass spectrometer (MR-TOF)
is under commission at JYFLTRAP. The MR-TOF will provide a faster method for mass
measurements and help in reducing the isobaric background for the Penning-trap mass
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measurements. Combined with the broad range of radioactive nuclides produced at IGISOL,
the prospects for high-precision mass measurements at JYFLTRAP look very promising in
the future.
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3. Eronen, T., Kankainen, A., Äystö, J.: Ion traps in nuclear physics-Recent results and achievements. Progr.
Part. Nucl. Phys. 91, 259 (2016). https://doi.org/10.1016/j.ppnp.2016.08.001. http://www.sciencedirect.
com/science/article/pii/S0146641016300436

4. Schatz, H.: Nuclear masses in astrophysics. Int. J. Mass Spectrom. 349-350, 181 (2013).
https://doi.org/10.1016/j.ijms.2013.03.016. http://www.sciencedirect.com/science/article/pii/S13873806
13001073. 100 years of Mass Spectrometry

5. Kolhinen, V., Kopecky, S., Eronen, T., Hager, U., Hakala, J., Huikari, J., Jokinen, A., Niem-
inen, A., Rinta-Antila, S., Szerypo, J., Äystö, J.: JYFLTRAP: a cylindrical Penning trap for
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A., Karvonen, P., Kopecky, S., Moore, I.D., Penttilä, H., Rahaman, S., Rinta-Antila, S., Rissanen, J.,
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Impact of individual nuclear masses on r-process abundances. Phys. Rev. C 92, 035807 (2015).
https://doi.org/10.1103/PhysRevC.92.035807

38. Breitenfeldt, M., Borgmann, C., et al.: Approaching the N = 82 shell closure with mass measurements
of Ag and Cd isotopes. Phys. Rev. C 81, 034313 (2010). https://doi.org/10.1103/PhysRevC.81.034313
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