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We present a novel strategy to renormalize lattice operators in QCD+QED, including first order
QED corrections to the non-perturbative evaluation of QCD renormalization constants. Our pro-
cedure takes systematically into account the mixed non-factorizable QCD+QED effects which
were neglected in previous calculations, thus significantly reducing the systematic uncertainty on
renormalization corrections. The procedure is presented here in the RI'-MOM scheme, but it can
be applied to other schemes (e.g. RI-SMOM) with appropriate changes. We discuss the applica-
tion of this strategy to the calculation of the leading isospin breaking corrections to the leptonic
decay rates Γ(πµ2) and Γ(Kµ2), evaluated for the first time on the lattice. The precision in the
matching to the W-regularization scheme is improved to O(αemαs(MW )) with respect to previous
calculations. Finally, we show the updated precise result obtained for the Cabibbo-Kobayashi-
Maskawa matrix element |Vus|.
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1. Introduction

Current lattice calculations are generally performed in the isospin symmetric limit of QCD, in
which the up and down quark masses are taken to be equal (mu = md) and electromagnetic (e.m.)
interactions are switched off. These have reached a precision below the percent level for many
hadronic quantities [1]. This implies that further improvements in the determination of physical
observables useful to extract the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and test
the limits of the Standard Model are only possible if strong and e.m. isospin breaking (IB) effects,
which are expected to be of O(1%), are included in lattice calculations. A possible way to include
such effects in lattice simulations is to use a perturbative approach (the RM123 method proposed
in Refs. [2, 3]) in which the lattice path-integral is expanded in terms of the two small parameters
αem and (md −mu)/ΛQCD and IB corrections to observables computed in the iso-symmetric limit
are evaluated at first order in these parameters. Such a perturbative approach also allows one to
control the subtraction of infrared (IR) divergences arising when evaluating QED corrections to
hadron decay rates. While IR divergences are cancelled by including both virtual corrections and
the real emission of photons, ultraviolet (UV) divergences have to be treated by including QED
corrections in the renormalization procedure. When e.m. corrections at O(αem) are added to QCD,
renormalization constants (RCs) of composite operators can be written as

Z =

(
1 +

αem

4π
∆Z

)
ZQCD , (1.1)

where ZQCD is the RC computed in pure QCD and ∆Z represents the correction introduced by e.m.
interactions. In general ∆Z and ZQCD are matrices which mix different operators, and hence the
order in which they are multiplied defines the correction ∆Z. The calculation of ∆Z has been so far
performed in the so-called factorization approximation, in which the correction to the RC is simply
evaluated as ∆Z ≡ ∆ZQED, namely the pure e.m. correction at O(αem) computed in perturbation
theory through the evaluation of one-loop diagrams. In this approximation mixed non-factorizable
QCD+QED contributions to the RCs are neglected and hence a systematic uncertainty is introduced
in the calculation. In this talk we present a novel framework to compute non-perturbatively such
mixed contributions, thus overcoming the factorization approximation and improving the precision
of RCs. In the following, we will focus on the renormalization of the operator O1 entering the
effective Hamiltonian which describes the leptonic decay of a pseudoscalar meson,

Heff =
GF
√

2
V∗q1q2

O1 ≡
GF
√

2
V∗q1q2

[q̄2γµ(1−γ5)q1][ν̄`γµ(1−γ5)`] , (1.2)

but the discussion can also be applied to other lattice operators (e.g. quark bilinear operators). A
method to compute the decay rate of such processes on the lattice has been proposed in Ref. [4]
and, as a first step, the leading IB corrections to the ratio Γ[K → µνµ(γ)]/Γ[π → µνµ(γ)] have
been computed [5]. In the ratio there is a large cancellation of renormalization corrections and
the factorization approximation only affects the quark mass RCs. However, to obtain a separate
determination of the first order corrections to the kaon and pion decay rates it is necessary to
overcome the factorization approximation and renormalize O1 non-perturbatively on the lattice. In
the following we discuss how to implement the non-perturbative renormalization in QCD+QED
and show its impact on the evaluation of leptonic decay rates of kaons and pions. All the details of
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the calculation of the decay rates are given in Ref. [6], while a specific paper on the QCD+QED
renormalization is in preparation [7].

2. Leading IB corrections to light meson leptonic decay rates

When studying QED corrections at order O(αem) to the leptonic decay of a pseudoscalar me-
son P, diagrams with both virtual and real photons, which are separately IR divergent, must be
considered in order to get a finite result for the decay rate [8],

Γ(P`2) ≡ Γ
(0)
P (1 +δRP) = Γ0(P→ `ν`) +Γ1(P→ `ν`γ) , (2.1)

where Γ
(0)
P is the decay rate in pure QCD, δRP its correction at first order in αem and (md−mu)/ΛQCD

and the subscript 0,1 denotes the number of photons in the final state. The initial proposal of Ref. [4]
was to consider sufficiently soft photons, emitted in the meson rest frame with a maximum energy
∆Eγ, such that they do not resolve the internal structure of the meson. The meson can then be
treated as a point-like particle and Γ1(P→ `ν`γ)' Γ1(∆Eγ) can be computed in perturbation theory.
The non-perturbative evaluation of Γ1 is now in progress as reported at this conference [9, 10]. In
this framework, we are interested in the calculation of the correction δRP for light-mesons. This
quantity gets two kinds of contributions: one coming from the strong IB and e.m. corrections to
the amplitude and one coming from QED corrections to the renormalization of O1, namely

δRP = δRampl
P +δRren . (2.2)

The first term has been already computed in Ref. [5] for kaons and pions in the evaluation of the
first order correction to the ratio Γ(Kµ2)/Γ(πµ2), while the calculation of the second one has been
addressed in Ref. [6] and is the aim of this talk1.

3. Non-perturbative renormalization in QCD+QED

The calculation of e.m. effects must be consistent at O(αem) with the value of GF extracted
from the lifetime of the muon. The most natural way of proceeding is to renormalize O1 in the
W-regularization scheme [11] (see Sec. II of Ref. [4] for details), in which the effective Hamilto-
nian of Eq. (1.2) gets a finite correction and the operator OW-reg

1 is renormalized using a properly
regularized photon propagator. Since we are not able to implement the W-regularization directly
in lattice calculations, the inverse lattice spacing being much smaller than the W-boson mass MW ,
the calculation takes place in two steps. We start by renormalizing the four-fermion operator O1 on
the lattice in a given scheme, e.g. in the RI'-MOM scheme [12], non-perturbatively in QCD and at
O(αem) in QED, taking into account possible mixing with other lattice operators. Then, the renor-
malized operator ORI'

1 (µ) is perturbatively matched to the corresponding operator renormalized in
the W-regularization,

OW-reg
1 (MW) = ZW-RI' (MW/µ,αs(µ),αem) ORI'

1 (µ). (3.1)

1Since the correction δRren only depends on the operator mediating the process, it follows that δRren
K = δRren

π and
therefore its contribution cancels out in the calculation of δRKπ = δRK −δRπ done in Ref. [5].
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The coefficient ZW-RI' can be computed in perturbation theory first by evolving the operator in the
RI' scheme from the scale µ to MW and then by matching it to the corresponding operator in the W-
scheme. By including the two-loop anomalous dimension of O(αemαs) in the evolution operator,
the residual truncation error of the matching is of O(αemαs(MW)), reduced from O(αemαs(1/a))
of Ref. [4]. We choose to renormalize the operator O1 in the RI'-MOM scheme, but the same
procedure can be applied to other schemes such as RI-SMOM with the appropriate modifications
of kinematics and projectors [13]. The use of twisted-mass fermions implies that the operator O1

mixes with four other lattice operators with different chiralities2, due to the explicit breaking of
chiral symmetry,

ORI'
1 (µ) =

5∑
k=1

[
ZO(µa)

]
1k Obare

k (a) . (3.2)

The matrix ZO can be obtained by applying the RI'-MOM condition on ΓO, the matrix obtained
projecting the amputated Green functions on the tree-level Dirac structures of the operators,

ZO(µa)
∏

f

(
Z f (µa)

)−1/2
ΓO(pa)

∣∣∣
p2=µ2 = 1̂ , (3.3)

where ZO and Z−1/2
f are respectively the RCs of the operator and of fermion fields, the latter being

defined in the RI'-MOM scheme as

Z f (µa) = −
i

12
Tr

 6p 〈S f (pa)〉−1

p2

 ∣∣∣∣∣∣
p2=µ2

. (3.4)

Expanding the RCs in terms of αem as in Eq. (1.1), we obtain the condition for the correction ∆ZO,

∆ZO(µa) = −
∏

f

(
ZQCD

f (µa)
)−1/2

ZQCD
O (µa)∆ΓO(µa) +

1
2

∑
f

∆Z f (µa) . (3.5)

To summarize, ∆ZO is a combination of the corrections to the fermion field RCs, the corrections to
the projected Green function ΓO and the pure QCD RCs. This applies also to ∆ZQED

O , where all the
ingredients must be evaluated in the absence of QCD, namely

∆ZQED
O (µa) = −∆Γ

QED
O (µa) +

1
2

∑
f

∆ZQED
f (µa) . (3.6)

The diagrams necessary for the computation of ∆ΓO and ∆Z f in the electro-quenched approxima-
tion are depicted in Fig. 1 and they have been evaluated on the lattice both in QCD+QED and in
pure QED. Photon propagators in Fig. 1 are realized using stochastic photon fields generated from a
Gaussian distribution as in Ref. [14], thus avoiding the usage of all-to-all quark propagators. More
details are given in Ref. [7].

3.1 QCD+QED renormalization beyond the factorization approximation

We find it convenient to introduce the ratio

R ≡ (ZQED)−1Z(ZQCD)−1 = 1 +
αem

4π
η , (3.7)

2Obare
1,2 = [q̄2γµ(1∓γ5)q1][ν̄`γµ(1−γ5)`], Obare

3,4 = [q̄2(1∓γ5)q1][ν̄`(1 +γ5)`], Obare
5 = [q̄2σµν(1 +γ5)q1][ν̄`σµν(1 +γ5)`].
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Figure 1: Diagrams considered to compute the corrections to the Green function of the operators O1−5 (first
line) and to the quark propagator (second line). The last two diagrams in the second line represent the mass
and critical Wilson parameter counter-terms.

and decompose any RC as

Z = ZQEDRZQCD =

[
1 +

αem

4π
(∆ZQED +η)

]
ZQCD , (3.8)

where
η = ∆Z−∆ZQED (3.9)

quantifies the violation to the factorization approximation and encodes all the mixed QCD+QED
contibutions not included in the product ∆ZQEDZQCD. The advantage of computing η is that in the
ratio (3.7) the pure QCD and pure QED discretization effects and anomalous dimensions cancel
out. Moreover, an attractive feature of η is that if ∆ZQED is computed on the lattice using the same
stochastic photon fields as for the calculation of ∆Z, the statistical uncertainty related to the photon
sampling is significantly reduced in the difference (3.9) for several entries of the matrix η.

3.2 Numerical analysis

In our analysis, we have performed two different calculations, one in QCD+QED and one in
pure QED at O(αem), with the same lattice parameters and stochastic photon fields but with the
QCD links set to 1. We have used gauge configurations with N f = 4 degenerate dynamical quarks
produced by the ETM Collaboration [15]. The first step in the determination of the RCs is the
computation of the Green functions in the two theories, at different values of the external momenta
(ap̃)2 =

∑
µ sin2(apµ), followed by the calculation of the corrections using Eqs. (3.5) and (3.6).

Since RI-MOM is a mass independent scheme, a chiral extrapolation is needed. Particular attention
has to be paid when extrapolating Green functions involving scalar or pseudoscalar currents, which
in pure QCD suffer from the contamination of Goldstone poles ∝ 1/M2

P. Indeed, when including
QED corrections, double poles of the form ∆M2

P/M
4
P are generated in the correction to the Green

function and have to be properly subtracted. Once the mass dependence is removed from the RCs
(both in the valence and in the sea), we compute the matrix ηO according to Eq. (3.9). In Fig. 2
we present the results for η11 and η22 obtained using the same or different stochastic photon fields
and we notice that the statistical uncertainty is reduced by approximately a factor of 5 in the former
case for both the matrix entries, as mentioned above. In order to remove the dependence on the
renormalization scale, η is evolved to the reference scale aµ = 1 using the two-loop anomalous
dimension matrix of O(αsαem) [7]. Once the matrix ηO is evaluated, the correction ∆ZO is obtained
as ∆ZO = ηO +[∆ZQED

O ]an, i.e. adding back the one-loop QED RC computed this time analytically in
perturbation theory. We have finally reconstructed the mixing of the lattice operators (see Eq. (3.2))
at O(αem) and we are now able to derive the operator OW-reg

1 renormalized in the W-regularization
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Figure 2: Results for η11 and η22 obtained using the same or different photon fields Aµ in the QCD+QED
and the pure QED analyses. The stochastic noise is about 5 times smaller when using the same fields.

scheme by means of a perturbative matching. From the term of O(αem) of OW-reg
1 (MW) it is possible

to extract the term δRren of Eq. (2.2) and the detailed calculation can be found in Ref. [6]. We
remind the reader that knowledge of δRampl

P alone allows one to extract only the ratio of K and π
decay rates. Now, instead, we are able to determine separately the two quantities δRπ and δRK .

4. Results

The results obtained for the leading IB corrections to light-meson leptonic decay rates [6] are

δRπ± = 0.0153 (19) , δRK± = 0.0024 (10) . (4.1)

Our results can be compared with those obtained in Chiral Perturbation Theory (χPT) and currently
adopted by the PDG [16], δRπ± = 0.0176(21) and δRK± = 0.0064(24) respectively. The difference
is within 1σ for δRπ, but is somewhat larger for δRK . Our determination of δRK has an uncertainty
a factor of about 2.4 smaller than the one obtained in χPT and such improvement depends crucially
on the non perturbative calculation of the mixing presented in this talk. Indeed, we can compare
the results in Eq. (4.1) with preliminary estimates [17] computed in the factorization approximation
(i.e. assuming η = 0), namely δRη=0

π±
= 0.0148(26) and δRη=0

K± = 0.0020(20), where a conservative
systematic uncertainty was added to account for the missing non-factorizable contributions in the
QCD+QED renormalization. The improvement of the uncertainties confirms the need for a non-
perturbative calculation of η. The introduction of η allows also to update the result of the ratio
of kaon and pion decay rates, δRKπ, previously obtained in Ref. [5], where the factorization ap-
proximation was applied to the RCs of quark masses. The updated result is δRKπ = −0.0126 (14).
Combining these results with the experimental measurements of the decay rates and the value
|Vud | = 0.97420(21) from superallowed nuclear β decays [18], we are able to extract the CKM
matrix element

|Vus| = 0.22538 (46) . (4.2)

Our result is in agreement with the latest estimate |Vus| = 0.2253(7) [16], but it improves the
uncertainty by a factor of approximately 1.5. Taking the values |Vub| = 0.00413(49) [16] and
|Vud | = 0.97420(21) [18], our result in Eq. (4.2) implies that the unitarity of the first row of the
CKM matrix is confirmed to better than the per-mille level, |Vud |

2 + |Vus|
2 + |Vub|

2 = 0.99988 (46).
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5. Conclusions

We have presented a new strategy to renormalize operators non-perturbatively on the lattice
with the inclusion of e.m. corrections of O(αem) and the non-factorizable QCD+QED contribu-
tions, which had been neglected in previous calculations, have now been systematically included.
By introducing the two-loop anomalous dimension at O(αemαs) in the matching we have reduced
the residual uncertainty to O(αemαs(MW)). The renormalization procedure has been presented here
in the RI'-MOM scheme, but it can be extended to other schemes with appropriate modifications.
The method has been applied to the calculation of the leading IB corrections to Γ(πµ2) and Γ(Kµ2),
where the introduction of the non-factorizable terms in the mixing yielded a significant improve-
ment of the precision of final results. The details of the calculation are discussed in Refs. [6, 7].
We have presented the first result of |Vus| obtained from a first-principle calculation, with a better
precision than that currently quoted in the PDG Review [16], and we have tested the unitarity of
the first row of the CKM matrix with a relative uncertainty smaller than one per-mille.
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