
 

No-go limitations on UV completions of the neutrino option

Ilaria Brivio ,1 Jim Talbert ,2 and Michael Trott2,3
1Institut für Theoretische Physik, Universität Heidelberg,
Philosophenweg 16, DE-69120 Heidelberg, Germany

2Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
3CERN Theory Division, CH-1211 Geneva 23, Switzerland

(Received 4 November 2020; accepted 14 December 2020; published 12 January 2021)

We discuss the possible origin of the Majorana mass scale(s) required for the “neutrino option”where the
electroweak scale is generated simultaneously with light neutrino masses in a type-I seesaw model by
common dimension four interactions. We establish no-go constraints on the perturbative generation of the
Majorana masses required due to global symmetries of the seesaw Lagrangian.
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I. INTRODUCTION AND MOTIVATION

Amongst the outstanding theoretical issues of the
Standard Model (SM), the origin(s) of neutrino masses
and the electroweak (EW) scale rank amongst the most
pressing. Experiment has established that at least two
neutrinos are massive, and that the Higgs mass mh ≃
125 GeV ≫ δmν ¼ mν1 −mν2 . These experimental facts,
combined with the sensitivity of the Higgs mass to high
mass scale threshold corrections, are challenges to any
ultraviolet (UV) completion of the SM that seeks to explain
the observed mass scales. Although they are most often
addressed independently, attempts at unified explanations
of these observed masses are of great interest.
An interesting and minimal possibility is that both the

mass scales, mh and mν1 ∼mν2 , are generated simultane-
ously in a minimal extension of the SM from an underlying
Majorana scale. Reference [1] showed that this scenario,
dubbed the “neutrino option,” can be realized within the
simplest type-I seesawmodel [2–6]. This approach has been
shown to be compatiblewith the observed neutrinomass and
mixing patterns [7] and resonant leptogenesis [8,9]. It admits
UV completions where approximate scale invariance plays
an important role [8,10,11] and also nonperturbative ones,
e.g., with strongly interacting hidden sectors that add viable
dark matter candidates to the spectrum [12] and in certain
string compactifications [13]. In this setup, the traditional
Higgs mass hierarchy problem translates into a quest for a
UVorigin of the underlying Majorana mass scale, with the
required pattern of threshold corrections.

In this paper, we study possible UV completions of the
neutrino option. We use the minimal scenario that the
Majorana scale required by the neutrino option is generated
perturbatively from a deep-UV scale associated with a very
heavy Majorana state. We show how symmetries of the
seesawLagrangian, and the specific parameter space required
in the neutrino option,makeminimalmodel scenarios relying
on one-loop corrections run up against seesaw model
symmetry constraints. We discuss minimal extensions that
might evade our conclusions. The primary results we present
are some no-go constraints for UV completing the neutrino
option in the minimal setups we consider.

II. THE NEUTRINO OPTION

Consider the type-I seesaw model, where the SM is
extended with three right-handed spinors NR;p, with
p ¼ f1; 2; 3g. The field Np defined by [14,15]

Np ¼ eiθp=2NR;p þ e−iθp=2ðNR;pÞc; ð1Þ
with θp an arbitrary phase, satisfies the Majorana condition
Np ¼ Nc

p [16]. Here the superscript c denotes charge
conjugation: ψc ¼ Cψ̄T , with C ¼ −iγ2γ0 in the chiral
basis for the γi. The seesaw Lagrangian is1

LN¼
1

2
ðN̄pi∂Np−N̄pMprNrÞ− ½N̄pωpβH̃†lβþH:c:�;

¼1

2
½N̄R;pi∂NR;pþNc

R;pi∂Nc
R;p�

−
�
1

2
e−iθpN̄R;pMprNc

R;rþe−iθp=2N̄R;pωpβH̃†lβþH:c:

�
;

ð2Þ
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1Chiral projection and charge conjugation do not commute. In
this paper ψc

L=R denotes a field chirally projected and sub-
sequently charge conjugated.
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where l is the left-handed SM lepton doublet and β ¼
f1; 2; 3g its associated flavor index. The resulting mass
matrix is symmetric: ðe−iθMÞ ¼ ðMTe−iθÞ.
The phenomenology of LSM þ LN at p2 ≪ M2

p has the
Np fields integrated out in sequence and matched to the
standard model effective field theory. The tree-level
matching is known up to dimension seven [15,17–22],
and at dimension five one finds

Lð5Þ ¼ cð5Þαβ

2
ðlTαH̃�ÞCðH̃†lβÞ þ H:c:; ð3Þ

cð5Þαβ ¼ ðωTM−1ωÞαβ; ð4Þ

One-loop matching introduces subleading corrections to
cð5Þ and necessarily induces threshold matching contribu-
tions (c.f. the diagrams in Fig. 1) to the SM Higgs mass
from the same interactions [1,7,8]:

VðHÞ ¼ −
m2

h0 þ Δm2
h

2
H†H þ ðλ0 þ ΔλÞðH†HÞ2: ð5Þ

Here mh0, λ0 are the “bare” parameters defining the
classical scalar potential at μ ≃M, and Δm2

h, Δλ are the
loop-induced threshold corrections. Assuming a nearly
conformal classical Lagrangian implies mh0 ≃ 0, while λ0
is free and generally of perturbative size. As Δλ ∝ ω4, this
contribution is typically negligible for perturbative Yukawa
couplings jωpβj < 1. On the other hand,2

Δm2
h ¼

1

8π2
Trðω†M2ωÞ ð6Þ

is generally large and directly sensitive to the Majorana
mass scale. This contribution has been long known and is a
direct representation of the hierarchy problem in the seesaw
model, see, e.g., Refs. [23–25]. The key idea of the neutrino
option is that, taking mh0 ≃ 0, Δm2

h can be interpreted as a
radiatively generated Higgs mass. It is interesting that
Fermi statistics in this minimal setup fixes the sign of this
threshold correction to be negative, as required to induce a
low scale Higgs phase of electroweak symmetry breaking
in the SM with massive neutrinos. Requiring that both the
observed EW scale and neutrino mass-squared differences
are accommodated identifies the parameter space [1,7]3

M ≲ 104 TeV ≃ 10 PeV; jωj ≃ TeV
M

: ð7Þ

Requiring successful resonant leptogenesis introduces an
additional lower limit on the Majorana scale [8]

M ≳ 1 PeV: ð8Þ

Finer structure of the allowed parameter space can be
identified specifying the neutrino mixing parameters and
CP violating phases. These exact results are sensitive to the
top quark mass, the order of the renormalization group
(RG) equations used, and the details of the seesaw model,
such as the number of right-handed neutrinos introduced
and the structure of the M matrix. On the other hand, the
orders of magnitude in Eqs. (7), (8) have a negligible
dependence on these choices.

A. Symmetries of the seesaw Lagrangian

The Lagrangian has the following global symmetries:
(i) The kinetic term of the N fields respects a global

Uð3ÞN flavor symmetry, that can be decomposed
into Uð1ÞN;3 × SUð3ÞN, where the Uð1ÞN;k term
represents an N-lepton number under which k
flavors transform. The kinetic term of the l doublet
has a Uð3Þ1 ¼ Uð1Þ1;3 × SUð3Þ1 symmetry.

(ii) Discrete and continuous symmetries are associated
to massive and massless Np states. With n nonzero
eigenvalues, the Majorana mass term breaks the
Uð3ÞN down to

Uð1ÞN;2 × SUð2ÞN × Z2 ðn ¼ 1Þ; ð9Þ

Uð1ÞN × Z2 × Z2 ðn ¼ 2Þ; ð10Þ

Z2 × Z2 ðn ¼ 3Þ: ð11Þ

The Klein four group Z2 × Z2 is the maximal
discrete symmetry of Mpr [26,27].

(iii) The neutrino Yukawa term preserves only the diago-
nal lepton number Uð1Þ1þN⊃Uð1Þ1;3×Uð1ÞN;3 and
breaks explicitly all the remaining flavor symmetries.

The Z2 symmetries, if preserved, protect the Higgs mass
against corrections proportional to the associated Majorana
mass. Consider for instance a case where M is diagonal
with only M33 ≠ 0. The associated preserved mass-
eigenstate Z2 transformation can be represented in flavor
space by

Np → TprNr; with Tpr ¼ diagð1; 1;−1Þ: ð12Þ

Invariance of the Yukawa terms then implies

N̄ωH̃†l¼! N̄T†ωH̃†l

⇒ T†ω ¼ ω ⇒ ω3β ≡ 0: ð13Þ

When compared to Eq. (6), this indicates that an exactZ2

symmetry forbids contributions to Δm2
h from M33. This

also occurs if there are two heavy mass states, both of
which respect an associated Z2.

2This expression is derived in the basis where M is diagonal.
3The requirement jωj∼TeV=M stems fromΔm2

h≃ð100GeVÞ2.
Inserting it in the expression for light neutrinomasses and requiring
mν ≳ 0.01 eV ∼ Δm⊙ identifies the upper limit on M.
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III. PERTURBATIVE GENERATION
OF THE MAJORANA MASS

The origin of the scale M ∼ 10 PeV is the main theo-
retical question left open in the formulation of the neutrino
option. Even though the model only contains interactions
up to dimension four, a generation mechanism for M is
required to ensure the validity of the key assumption in this
construction, namely that the Majorana mass term is
generated without other large threshold corrections, and
also in a manner that dominantly breaks the approximate
classical scale invariance in the rest of the Lagrangian.
On very general grounds, a successful generation mecha-

nism should have the following properties:
(i) It is required to generate at least 2 M eigenvalues at

the PeV scale. n ≥ 2 is required for consistency with
the two nonzero mass splittings observed in the light
neutrino spectrum.

(ii) The Higgs mass term does not receive additional
large threshold contributions besides those in Eq. (6).
This condition can be associated with approximate
classical scale invariance.

(iii) From an effective field theory perspective, any
UV completion of the seesaw Lagrangian generally
extends it with higher dimensional operators.
Although most of these can be safely neglected in
the phenomenology of the neutrino option, certain
structures, such as ðN̄NÞðH†HÞ, can potentially
destabilize the Higgs mass, and will not necessarily
be protected by discrete symmetries. The absence of
these operators was an implicit assumption in the
original formulation of the neutrino option, and they
should not be generated with unsuppressed Wilson
coefficients.

(iv) The renormalization group evolution (RGE) running
of the Higgs and neutrino parameters is not spoiled
by new light beyond the standard model (BSM)
states.

(v) The parameter space does not rely on strong tunings.
This latter condition can be associated with technical
naturalness, or be purely aesthetic. Avoiding param-
eter tuning directly leads to the idea that heavy UV
mass scales should be associated with Fermionic
states avoiding massive Bosonic states, that can
couple to H†H.

Here we consider the possibility that the PeV scale
originates perturbatively through threshold corrections
or RG evolution from some deeper UV Majorana scale,
which is arguably the minimal scenario, and a very simple
possibility, because then such perturbations arise due to
loop effects in the seesaw model itself. Potential one-loop
corrections, and low scale mass terms scale as

δð1ÞM ¼ jωj2
16π2

MUV; → ϵ ¼ jωj2
16π2

; ð14Þ

which, interestingly, is in the desired ballpark for
values of the Yukawa coupling that lie within the phe-
nomenologically allowed range for the neutrino option for
some interesting UV scales

δð1ÞM ≃ PeV for

� jωj ≃ 10−4; ðMUV ≃MGUTÞ
jωj ≃ 10−5.5: ðMUV ≃MPlÞ

ð15Þ

Following this numerical coincidence, a minimal hypoth-
esis is that the a UV mechanism that is flavor-blind leads to
the democratic texture

M ¼ MUV

3

0
B@

1 1 1

1 1 1

1 1 1

1
CA; ð16Þ

that, once diagonalized, leaves two massless eigenstates,
and one massive state

M ¼

0
B@

0

0

MUV

1
CA: ð17Þ

In such a UV scenario, a super-heavy Majorana mass scale
MUV is assumed to emerge from high scale dynamics. The
democratic flavor blind mass generation mechanism is the
minimal possibility as the Majorana fields carry no (SM)
quantum numbers. It has been argued that such a mass
matrix is a straightforward expectation when the mass
generation is associated with gravity [28].
In the presence of perturbations of order ϵ ≪ 1 to the

texture in Eq. (16), the zero eigenvalues are generally lifted
and replaced byOðϵMUVÞ quantities. For ϵ ∼ 10−13ð10−10Þ
and MUV ¼ MPlðMGUTÞ, this would successfully identify
the PeV scale.
Unfortunately, this scenario is not realized at the one-

loop level in the most minimal setup we consider. In order
for a Majorana mass eigenvalue to be nonzero, its
associated lepton number must be violated by two units.
Given LN with the mass matrix in Eq. (17), no tree or one-
loop diagram topology exists with this property, see
Refs. [7,29,30]. The same is true for mass matrices with
n ¼ 2. This implies that the texture-zero(es) are preserved
by both threshold corrections and RGE running at one-loop
in type-I seesaw models.
Assuming a heavy scaleMUV, and pursuing this minimal

scenario further, one is then left with two perturbative
alternatives:

(i) n ≥ 2 eigenvalues of orderMUV are present, and the
one-loop RGE running induces a large suppression
that reduces them to the PeV scale.

(ii) Starting from n ¼ 1 nonzero eigenvalue, the PeV
scale is generated radiatively at two or more loops.
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Due to the simultaneous requirement of L-violating
and Z2-preserving interactions (from neutrino and Higgs
mass considerations, respectively), neither of these two
possibilities turns out to be consistent with the minimal
extension of the neutrino option scenario we consider, as
we discuss in the next subsections.

A. One-loop RGE flow

Consider the one-loop case, where the RG equation for
the Majorana mass term is [29–32]

16π2μ
dM
dμ

¼ ðωω†ÞM þMðωω†ÞT ≡R; ð18Þ

and R ¼ RT . Diagonalizing, the mass eigenvalues evolve
multiplicatively [29,30]:

MpðμÞ ¼ γpðμ; μ0ÞMpðμ0Þ; ð19Þ

γpðμ; μ0Þ ∼ 1þ ω2

16π2
ln

�
μ

μ0

�
: ð20Þ

When all the Z2 symmetries associated to the massive N
states are preserved, R≡ 0, and equivalently γp ≡ 1. This
can easily be seen by using Eqs. (17) and (13) in Eq. (18).
Hence, for the running to occur, the Z2 needs to be at least
softly broken. In this case, for the PeV scale to emerge from
RG running one requires

γpðPeV;MUVÞ ¼ ϵ ≃
PeV
MUV

∼ 10−10–10−13; ð21Þ

which immediately implies that the radiative contribution
ω2=16π2 ln ½μ=μ0� must be tuned.

B. Higher perturbative orders

The generation of ΔL ¼ 2 amplitudes is possible at two-
loops in the type-I seesaw via diagrams such as the one
in Fig. 2, see Refs. [33–36]. These diagrams generally
contribute to all entries of the Majorana mass matrix M,
including the off-diagonals.
Two-loop radiative corrections in the seesaw scale

as [35]

δð2ÞM;pr ∼
ðωω†Þp3ðωω†Þr3

256π4
MUV: ð22Þ

As in the one-loop RGE case, δð2ÞM ≠ 0 only if ω3β ≠ 0, i.e.,
when the Z2 symmetry associated to the massive state (N3)
is broken, which leaves the Higgs mass term unprotected.
Indeed, it can be checked that both threshold corrections
and RG equations at two-loops only contain the flavor
structures [35–37]:

ωω†M; ωω†Mðωω†ÞT; ðωω†Þðωω†ÞM; ð23Þ

and their transposes, that vanish identically in the Z2

symmetric limit. This statement is independent of n.
This leads to a tension between the requirements (i) and

(ii) above: in order to have δð2ÞM ∼ PeV with MUV ¼
MPlðMGUTÞ, the Yukawa couplings should be ðωω†Þp3 ≲
1ð5Þ × 10−4. Inserting this value in Eq. (6), the contribution
to

ffiffiffiffiffiffiffiffiffiffi
Δm2

h

p
from M33 ¼ MUV is MUV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωω†Þ33=8π2

p
≃

1016 GeV.
On the other hand, assuming that theZ2 is only very softy

broken in order to protect Δm2
h, leads to δ

ð2Þ
M of sub-eV size.

While such masses may be interesting for low-energy
phenomenology (e.g., for sterile neutrino dark matter stud-
ies), they do not account for the preferred coupling ranges of
the neutrino option. These symmetry and scaling arguments
hold both for two-loop threshold and RG contributions, and
this tension persists at higher perturbative orders.

IV. COMMENTS ON EXTENDED
MODEL FIELD CONTENT

The conclusions in previous sections are drawn under
the assumption of no additional BSM field content
beyond that of LSM þ LN . A perturbative generation
mechanism from the deep UV involving more fields must
still avoid the generic global symmetry arguments; a mass
generation mechanism must provide radiative generation of
a ΔL ¼ 2 Feynman diagram to either lift zero Majorana
eigenvalues or radiatively generate lower scales from
existing MUV eigenvalues. One must simultaneously pre-
serve a symmetry protection to control threshold correc-
tions from heavy Fermionic or Bosonic states to prevent
large Higgs threshold corrections.

FIG. 1. One-loop threshold corrections generating the EW scale
in the neutrino option. The one loop diagram is linked to neutrino
mass generation by connecting the lepton line.

FIG. 2. ΔL ¼ 2 two-loop diagram that allows a perturbative
generation of a Majorana mass term Mpr.
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Consider adding a generic Boson field to the minimal
setup in LSM þ LN . Since N is a Majorana field, the
allowed N̄Nχ couplings up to dimension four are

1

2
N̄½ρSχS þ iρPγ5χP�N:

Here χS, χp are real scalar and pseudoscalar couplings,
respectively. For gauge invariance of the N̄Nχ coupling, χ
must be a SUð3ÞC × SUð2ÞL × Uð1ÞY singlet. In general
such couplings are off diagonal in Np flavor space. In the
limit of vanishing external momenta, the graph in Fig. 3
scales as

ðρ2Sþ ρ2PÞM33

64π2

�
1þ 1

M2
33−m2

χ

�
M2

33 log
μ2

M2
33

−m2
χ log

μ2

m2
χ

��
;

ð24Þ
inducing lower scale mass eigenvalues in the Mpr matrix
from the UV scale mass M33. In addition, an anapole/
Zeldovich [38] coupling is allowed for a vector field
coupling to a Majorana bilinear

1

2Λ2
N̄½ρVγμγ5�N∂νχ

νμ
V :

In the case of the SM, χνμV ¼ Bμν is generated at one loop if
the SM states are massive with a closed Higgs and charged
lepton in the loop. In this case, the couplings ω associated
with the numerical coincidence in Eq. (15) are present.
However, in the minimal extension of the neutrino option
we consider, these states are effectively massless, and the
one loop diagram vanishes in dimensional regularization as
the integrals are scaleless. The anapole moment can be
induced by UV field content leading to induced masses

3ρ2VM
5
33

64π2Λ4

"
1þ rþ r2 þ

log μ2

M2
33

− r3 log μ2

m2
χ

1 − r

#
; ð25Þ

with r ¼ m2
χ=M2

33. In general, there is no association of
ρ2V with the numerical coincidence in Eq. (15) and the
combination ρ2VM

4
33=Λ4 can be chosen to induce a mass

hierarchy. Further, in the case of a gauged U(1) field χνμV
the Higgs portal coupling is through λ0χνμV χνμV H†H=Λ2.

The usual hierarchy problem is present in the case of the
BSM induced anapole moment, and in the case of a
scalar field χS=P. mχ itself is not protected against
contributions of OðM33Þ as a result of the Z2 symmetry
constraints.
Seeking to associate the Bosonic coupling with

ω and also cancel the threshold contribution to the Higgs
mass leads to a minimally supersymmetric SM extended
with singlets N in the UV. The Higgs mass threshold
correction is then canceled, but the one-loop analog to
Eq. (18) is given in Ref. [37]. No new ΔL ¼ 2 contribution
is added and the seesawRGE equation is merely rescaled by
an overall factor compared to the SM. The conclusions of
the previous section hold.
One can also consider models where L violation resides

in BSM couplings, rather than relying on the initial M33

term. However, achieving the desired symmetry-breaking
and conserving patterns is not any easier in these scenarios.
Consider for example leptoquarks, which can have either
(Bþ L) conserving and (B − L) violating couplings or
vice-versa. Because they necessarily carry other quantum
numbers (most importantly color charge), the leptoquark
lines always need to be closed with conjugate vertices.
This means that, in a one-loop diagram, B and L violating
terms always compensate each other. In fact, independently
of their quantum numbers, leptoquarks can only generate a
Majorana mass at two loops [39,40]. Any two-loop dia-
gram is highly suppressed and not directly associated
with the numerical coincidence in Eq. (15) to achieve
Mp ∼ PeV.

V. SUMMARY AND OUTLOOK

We have examined minimal extensions of the neutrino
option setup to induce Mp ∼ PeV Majorana masses from a
deep UV mass scale. Such an approach is primarily moti-
vated due to the numerical coincidence identified in Eq. (15).
Such perturbative mass generation mechanisms must over-
come the combined symmetry constraints of required L
violation while suppressing threshold contributions to the
Higgs mass. A natural symmetry protection mechanism
relies on the Z2 symmetries present in the LSM þ LN
Lagrangian itself. Such Z2-based symmetry protection, in
the minimal setups we considered, blocks the generation
Mp ∼ PeV Majorana masses from the deep UV scales and
forbids a natural realization of the numerical coincidence
identified in Eq. (15). It is possible that more extendedmodel
building could overcome this challenge.
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FIG. 3. A sample one-loop diagram that can radiatively gen-
erate a new nonzero Majorana neutrino mass, starting from a
unique nonvanishing eigenvalue M33. The state χ is an unspeci-
fied boson whose properties can be partially derived, see the
main text.
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