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Abstract

We explore the possible values of the µ → eγ branching ratio, BR(µ → eγ), and the
electron dipole moment (eEDM), de, in no-scale SU(5) super-GUT models with the bound-
ary conditions that soft supersymmetry-breaking matter scalar masses vanish at some high
input scale, Min, above the GUT scale, MGUT. We take into account the constraints from
the cosmological cold dark matter density, ΩCDMh2, the Higgs mass, Mh, and the experi-
mental lower limit on the lifetime for p → K+ν̄, the dominant proton decay mode in these
super-GUT models. Reconciling this limit with ΩCDMh2 and Mh requires the Higgs field
responsible for the charge-2/3 quark masses to be twisted, and possibly also that responsible
for the charge-1/3 and charged-lepton masses, with model-dependent soft supersymmetry-
breaking masses. We consider six possible models for the super-GUT initial conditions, and
two possible choices for quark flavor mixing, contrasting their predictions for proton decay
with versions of the models in which mixing effects are neglected. We find that τ (p → K+ν̄)
may be accessible to the upcoming Hyper-Kamiokande experiment, whereas all the models
predict BR(µ → eγ) and de below the current and prospective future experimental sensitiv-
ities or both flavor choices, when the dark matter density, Higgs mass and current proton
decay constraints are taken into account. However, there are limited regions with one of
the flavor choices in two of the models where µ → e conversion on a heavy nucleus may be
observable in the future. Our results indicate that there is no supersymmetric flavor problem

in the class of no-scale models we consider.
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1 Introduction

Supersymmetry remains an attractive prospective extension of the Standard Model (SM),
despite its non-appearance during Runs 1 and 2 of the LHC [1, 2]. Indeed, the discovery
of a 125-GeV Higgs boson at the LHC [3] has supplemented the traditional arguments for
supersymmetry, which include the naturalness of the electroweak scale [4], the unification
of the fundamental interactions [5] and the existence of a cold dark matter candidate (if
R-parity is conserved) [6]. The minimal supersymmetric extension of the SM (MSSM)
predicted the existence of a Higgs boson with mass Mh . 130 GeV [7], and is a prime
example of new physics capable of stabilizing the electroweak vacuum for Mh ∼ 125 GeV
[8]. Furthermore, global fits in the framework of simple supersymmetric models suggest
that the couplings of the lightest supersymmetric Higgs boson should be very similar to
those of the Higgs boson in the SM, as is indicated by the ATLAS and CMS experiments
[9, 10]. When the supersymmetric particle masses are large, which is the case we consider,
the Higgs couplings resemble even more closely the couplings predicted by the SM.

However, the continuing absence of supersymmetry at the LHC [1, 2] reinforces the need
to seek complementary indications of supersymmetry outside colliders. It is in this context
that we address the questions of proton decay, contributions to the electron dipole moment
and µ flavor violation observables in the SU(5) models based on no-scale supergravity that
were introduced in [11]. There, Higgs fields were assigned to twisted chiral supermultiplets
with a suitable choices of modular weights in order to obtain the correct mass of the observed
Higgs boson and the cold dark matter density, while avoiding proton decay in violation of
the current limits.

Contrary to what happens in the Standard Model, where flavor and CP violation are
controlled by the Cabibbo-Kobayashi-Maskawa (CKM) matrix, there is no established mech-
anism for flavor and CP violation in supersymmetry, the so-called supersymmetric flavor

problem. Experiments show that many low-energy predictions of CKM mixing must be
reproduced in any extension of the SM, which is therefore an important constraint on any
supersymmetric model that is studied.

In a previous study of super-GUT no-scale models in [12] we adopted a pragmatic ap-
proach to this challenge, using particular Ansätze for Yukawa couplings to study flavor
violation constraints in a scenario with maximal sfermion flavor violation at the input scale
Min > MGUT. Here we revisit flavor violation and proton decay, considering alternative
options for the flavor mixing associated with different embeddings of the MSSM fields in
GUT multiplets. 1

In the SM, Yukawa couplings in the up- and down-quark sectors are described by a couple
of 3 × 3 complex matrices whose diagonalizations each require two unitary matrices, one
acting on left-handed quarks and the other on right-handed quarks. The two left-handed
matrices, one in the up-quark sector and the other in the down-quark sector, combine
to form the CKM matrix, whereas the right-handed matrices remain unobservable. In
supersymmetry, however, the right-handed matrices propagate into the soft-breaking terms
and hence become constrained by flavor observables. These observables clearly indicate
that off-diagonal elements of the right-handed sfermion mixing matrices should be tiny 2.
Any model of supersymmetric flavor must specify how to reproduce the CKM matrix via
the two down- and up-quark left-handed matrices that diagonalize the Yukawa couplings.

1For reviews of supersymmetry, GUTs and flavor mixing, see [13].
2See [14] for a comprehensive review and an analysis of the particular case of BR(Bs → µ+µ−).

2



One choice is to associate the CKM matrix with the up-quark Yukawa matrix, for which
electroweak (EW) precision observables play an important role in constraining how this is
propagated into the supersymmetric sector, as was studied for the CMSSM in [15]. Another
is to associate the CKM matrix with the down-quark sector, as we considered in [11]. In
this case the constraints from flavor observables are more stringent than those from EW
observables, particularly for the low tan β values that we use.

We study in this paper six different no-scale super-GUT SU(5) models, some with both
electroweak Higgs representations in twisted chiral supermultiplets, and some with only
one twisted Higgs supermultiplet. The soft supersymmetry-breaking masses of the MSSM
matter sfermions vanish at the input scale Min in all the models, but they have different
boundary conditions for other supersymmetry-breaking parameters. Four of the models
have Min = 1016.5 GeV, whereas the other two have Min = 1018 GeV, in which case there
are larger renormalization-group running effects above the GUT scale, MGUT. For each
model, we study predictions for proton decay, µ → eγ and the electron EDM, using two
possible choices for the flavor embeddings of the quarks and leptons into SU(5) multiplets
that illustrate the ambiguity discussed in the previous paragraph. We find that proton
decay rates are relatively insensitive to the treatment of flavor mixing, whereas µ → eγ and
the electron EDM are more sensitive. In general, the predictions for these flavor observables
are below the present experimental limits when the cosmological dark matter density and
the proton lifetime are taken into account, though there are limited regions with one of the
flavor choices in two of the models where µ → e conversion on a heavy nucleus may be
observable in the future. These no-scale super-GUT models have no supersymmetric flavor

problem, as also argued in [12].
This paper is organized as follows. In Section 2 we introduce the class of no-scale SU(5)

super-GUT models we study, including the specification of different choices for the embed-
ding of MSSM fields in GUT multiplets and the corresponding Ansätze for matter Yukawa
coupling matrices, the no-scale boundary conditions on soft supersymmetry breaking at
Min, and our treatment of the renormalization-group running down to the electroweak scale.
Then in Section 3 we discuss how proton decay, µ → e flavor-violating observables and the
electron EDM arise in these models, and review the available experimental information. In
Section 4 we introduce the specific no-scale models we study, and analyze their predictions
for these observables. We then present our conclusions in Section 5.

2 Model Framework

2.1 Embedding the MSSM in SU(5)

In the minimal supersymmetric SU(5) GUT model, the three generations of matter super-
fields are embedded into three pairs of 5 and 10 representations. There are also two chiral
electroweak Higgs superfields Hu and Hd, whose vacuum expectation values (vevs) break the
electroweak SU(2)×U(1) gauge group down spontaneously to U(1)EM. They are embedded
in 5 and 5 representations, H and H , which also contain 3 and 3 colored Higgs superfields
HC and HC , respectively. The SU(5) GUT gauge group is broken spontaneously down to
the Standard Model (SM) gauge group by the vev of a 24 chiral superfield, Σ ≡

√
2ΣA TA,

where TA (A = 1, . . . , 24) are the generators of SU(5) with Tr(TATB) = δAB/2. The vev
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of the adjoint is given by 〈Σ〉 = V · diag(2, 2, 2,−3,−3), with V = 4µΣ/λ
′. We follow the

notation of [16, 12, 17, 18] for the SU(5) superpotential parameters:

W5 = µΣTrΣ
2 +

1

6
λ′TrΣ3 + µHHH + λHΣH

+ (h10)ij 10i10jH + (h5)ij 10i5jH , (1)

where we have suppressed all SU(5) indices.
Once SU(5) is broken, the GUT gauge bosons acquire masses MX = 5g5V , where g5 is

the SU(5) gauge coupling. Doublet-triplet separation within the H and H representations
can be achieved by a fine-tuning condition: µH − 3λV ≪ V , in which case the color-triplet
Higgs states have masses MHC

= 5λV . We note also that the masses of the color and
weak adjoint components of Σ are equal to MΣ = 5λ′V/2, while the singlet component of
Σ acquires a mass MΣ24 = λ′V/2.

Our notation for the Yukawa couplings of MSSM fields is specified by the following
low-energy superpotential:

WY = hij
EǫαβH

α
d L

β
i E

c
j + hij

DǫαβH
α
dQ

β
i D

c
j − hij

U ǫαβH
α
uQ

β
i U

c
j . (2)

Note that we use a “Left-Right” (LR) notation for Yukawa couplings, which means that
the first index of the Yukawa couplings corresponds to the SU(2) doublets, and the second
index to the SU(2) singlets.

In order to match the GUT theory (1) to the MSSM (2), in particular for the proton
decay operators we discuss below, we decompose the second row of the SU(5) superpotential
(1) into MSSM component fields, yielding the Yukawa couplings of the MSSM fields in terms
of the SU(5) field couplings, as follows:

√
2 10i(h5

)ij5̄jH = −Ec
i (h5

)ijLjH −Qi(h5
)ijLjHC − U c

i (h5
)ijD

c
jH

C −Qi(h5
)ijD

c
jH ,

1

4
10i(h10)ij10jH = Qi(h10)ijU

c
jH +

1

2
Qi(h10)ijQjH

C − U c
i (h10)ijE

c
jH

C , (3)

where the superscripts C on Higgs multiplets indicate their color triplet components.
We recall that the embedding of the MSSM fields into the SU(5) model is ambiguous,

and various Ansätze are possible. In particular, the following SU(5) Yukawa couplings were
chosen in [18] 3

(h10)ij = ĥ10iδij e
iφi , (h5̄)ij =

(
V ∗
GCKMĥ5̄V

T
R

)
ij
, (4)

where VGCKM is the CKMmatrix at the GUT scale. Transforming the fields Ec
i → (VGCKM Ec)i

and U c
i → e−φiU c

i , we choose the embedding

10i =
{
Qi, e

−iφiU c
i , (VGCKME

c)i
}
, 5̄i = {Dc

i , Li} , (5)

where the phase factors φi satisfy the condition

3∑

i=1

φi = 0 , (6)

3Throughout this work, ĥ denotes a diagonalized Yukawa matrix.
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so that only two of them are independent 4.
It is well known that the masses of the leptons and down-type quarks of the first two

generations are not consistent with unification at the GUT scale, 5 whereas those of the
third generation are in reasonable agreement with Yukawa unification. We determine the
SU(5) Yukawa couplings by using the following matching conditions for the MSSM couplings
after renormalization group (RG) running them from the electroweak scale up to the GUT
scale:

h10,i =
1

4
hU,i(MGUT), i = 1, 2, 3,

h5,(i,j) =
√
2hD(i,j), i, j = 1, 2, 3 (except for (i, j) = (3, 3)),

h5,(3,3) =
1√
2

[
hD(3,3)

(MGUT) + hE(3,3)
(MGUT)

]
. (7)

Thus, the Yukawa couplings of the charge-2/3 quarks are matched directly to the GUT-scale
couplings of the 10 representations, up to a numerical factor, as are those of the first two
generations of quarks in the 5̄ representations. 6 Recalling that the third-generation Yukawa
couplings for b and τ are similar, we match an average of these Yukawa couplings to that
of the third generation of 5̄ fermions.

Using as input the values for the Yukawa couplings at the EW scale discussed further
below, we use Eq. (7) to determine the SU(5) Yukawa couplings at the GUT scale, which we
then run up to Min. Note that we also run the Yukawa couplings of the first two generations
of charged leptons up to the GUT scale. These are not used as a basis for further running
to Min, but are subsequently run back down to the EW scale.

There are ambiguities in the description of flavor mixing in the supersymmetric GUT
model. Various options were considered in [12], including the contrasting cases VR = 1 and
VR = VGCKM. If we choose VR = 1 in (4), we obtain from Eq. (7) and the embedding (5)
the following relations between the MSSM couplings and the diagonal GUT-scale couplings
(after running down from Min to MGUT):

hU = 4ĥ10 except (i, j) = (3, 3) ,

hD = V ∗
GCKMĥ5̄/

√
2 except (i, j) = (3, 3) , (8)

Because of the lack of Yukawa coupling unification, we do not relate hE and hD(3,3) to h5̄ at
the GUT scale. We also do not relate hU (3,3) to h10 at the GUT scale, in order to converge
more efficiently to the observed top quark mass. For hE , hD(3,3) and hU (3,3), the previous
values at MGUT are used for running back down to the EW scale, as will become clear when
we discuss the RGE boundary conditions below.

This is one of three choices for the treatment of flavor that we consider in this paper:
• We call choice A the embedding (5) combined with VR = 1 in (4). This is the Ansatz

A2 considered in [12].

4Note that these phases contribute only to the running of the off-diagonal elements of the soft mass
terms, which are very small, and we neglect this effect here.

5The differences could be accommodated by postulating dimension-5 terms in the SU(5) superpoten-
tial [19].

6This choice is conservative, in the sense that it leads to a longer proton lifetime than if mµ and me were
used instead of ms and md for matching the Yukawa couplings of the first two generations of 5̄ fermions.
See Section 4.8 of [18] for a more detailed discussion.
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We consider also the embedding (after shifting only U c
i → e−φiU c

i ),

10i =
{
Qi, e

−iφiU c
i , E

c
i

}
, 5̄i = {Dc

i , Li} . (9)

Choosing again VR = 1, we obtain once again Eq. (8) for matching when running down
from MGUT to the EW scale.

• We call this choice of embedding B, noting that it is equivalent to Ansatz A3 of [12]. 7

At this point A and B are identical. There would be no difference if we had Yukawa
unification, since hE in case (B) would be hE = hT

D = hT
5 /

√
2 as opposed to hE = ĥ5̄/

√
2,

i.e., equal to the diagonal SU(5) coupling as in case A. However, since we do not match hE

from the 5-plet, we can only“mimic” this condition at the EW scale and, as we see below,
the boundary conditions for A and B differ at the EW scale. We emphasize that in the
case of perfect unification the choices A and B would make identical predictions for all
observables. A and B would not be distinct cases but rather different ways of formulating
the same model for specifying the lepton sector in terms of the 5-plet of SU(5) and possibly
additional operators. The motivation to consider cases A and B here is to explore the sen-
sitivity to the precise way the couplings in the charged-lepton sector alter flavor observables.

• We also compare our results for τ (p → K+ν̄) with these flavor choices to models that
ignore the flavor structure by limiting the RG running to diagonal matrix elements. We
label this choice NF.

The Yukawa couplings of the MSSM fields entering the dimension-six operators mediat-
ing proton decay can be defined from the Yukawa couplings of the SU(5) theory, Eq. (3), as
follows:

hUc
k
Ec

l = (4ĥ10)kk (V10)kl , hUc
k
Dc

l = e−iφk(VCKM)
∗
ks

(
(ĥ5)ss√

2

)
(VR)

T
sl ,

hQkLl = (VCKM)
∗
ks

(
(ĥ5)ss√

2

)
(VR)

T
sl ,

1

2
hQkQl = eiφk(2ĥ10)kδkl , (10)

where (V10)kl=VGCKM for A and 1 for B, while VR = 1 for both of the choices A and B.

2.2 Soft Supersymmetry Breaking

We write the soft supersymmetry-breaking terms in the Lagrangian in the SU(5) GUT
symmetry limit as

Lsoft = −(m2
5̄)ij5

∗

i5j − (m2
10)ij10

†
i10j −m2

H |H|2 −m2
H̄

∣∣H
∣∣2 − 1

2
M5 λ̂Aλ̂A

−
[
m2

Σ Tr
(
Σ†Σ

)
+ bΣ TrΣ2 +

1

6
a′ TrΣ3 + bH HH + a HΣH

]

−
[
a10 10 10 H + a5̄ 10 5 H + h.c.

]
, (11)

7If we take VR = VGCKM with this embedding, we obtain Ansatz A4 of [12]. This choice turns out to
be problematic for the observables we discuss below, and is not considered further here.
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where the λ̂A are the SU(5) gaugino fields. For convenience, we make no distinction in
notation between chiral superfields and their scalar components.

In super-GUT models [20, 21, 16, 17, 11, 18], the soft supersymmetry-breaking mass
parameters are taken to be universal at some input scale, Min, that is greater than the
GUT scale, MGUT. The RG running of the couplings and masses then takes place in two
stages. We run the 2-loop MSSM beta functions for Yukawa couplings, trilinear terms,
soft masses-squared, mHd

, mHu
, B, and µ between the electroweak scale, MEW, and MGUT,

including three generations of fermions and sfermions, the SU(3)×SU(2)×U(1) gauge bosons
and gauginos, and the SU(2)-doublet Higgs bosons and Higgsinos. Then, between MGUT

and Min the SU(5) GUT parameters are run also with three generations of fermions and
sfermions, SU(5) gauge bosons and gauginos, Higgses and Higgsinos. For the sake of clarity
we now specify all the boundary conditions we impose at Min and MGUT.

Our boundary conditions at Min are derived from no-scale supergravity [22, 23, 24]. We
assume a Kähler potential of the form

K = −3 ln

(
T + T̄ − 1

3

∑

i

|φi|2
)

+
∑

a

|ϕa|2
(T + T̄ )na

, (12)

where T is a volume modulus, the φi are untwisted matter fields and include the SU(5)
matter multiplets. The ϕa are twisted fields, which include H and/or H̄ , and the na are
the modular weights of the twisted fields. We also allow for modular weights in the super-
potential, writing

W = (T + c)βW2(φi, ϕa) + (T + c)αW3(φi, ϕa) + µΛ , (13)

where c is an arbitrary constant, and W2,3 denote bilinear and trilinear terms with mod-
ular weights β, α that are in general non-zero and can differ for each superpotential term.
When 〈φ, ϕ〉 = 0, the effective potential for T is completely flat at the tree level, with an
undetermined vev, and the gravitino mass

m3/2 =
µΛ

(T + T̄ )3/2
(14)

is undetermined, varying with the value of this volume modulus 8. We assume here that
some Planck-scale dynamics fixes T = T̄ = c, and assume the representative value c = 1/2
in the following. 9 Finally, we assume a universal gauge kinetic function fab = δab, so that
at Min there is a universal gaugino mass, m1/2.

We work with the no-scale framework introduced in [17], where m0 = 0, but allow for
the possibility that the Higgs 5-plets are twisted, in which case either one or both of their
soft masses may be non-zero. It was shown in [11] that in models in which matter and both
Higgs supermultiplets are untwisted, the minimal SU(5) super-GUT model considered here
is unable to provide simultaneously a dark matter relic density and Higgs mass in agreement
with experimental values, and at the same time provide a sufficiently long proton lifetime. It
was concluded in [11] that either one or both of the Higgs multiplets must be twisted. The

8The parameter µΛ does not play any other role in our construction, and its precise value is unimportant
for our analysis.

9Our results are insensitive to this choice, as its only phenomenological impact is on the parameterization
of the bilinear and trilinear soft supersymmetry-breaking parameters AF and BS in (15).
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bilinear and trilinear soft supersymmetry-breaking terms bΣ, bH , a
′, a, a10, a5 may also be

non-zero. Each gets a contribution from the modular weight in Eq. (13) and an additional
contribution that depends on the specific superpotential term and whether the 5-plets are
twisted or not. Our boundary conditions at Min are therefore:

M5 = m1/2 ,

(m2
10
)ij = (m2

5
)ij = m2

Σ = 0 ,

m2
2 ≡ m2

H = p m2
3/2, m2

1 ≡ m2
H̄ = q m2

3/2 ,

(AF )ij = (rF − αF )m3/2δij (F = 10, 5) ,

AF = (rF − αF )m3/2 (F = λ, λ′) ,

BS = (pS − βS)m3/2 (S = H,Σ) ,

(a10)ij = (A10)ii(h10)ij ,

(a
5
)ij = (A

5
)ii(h5

)ij . (15)

The parameters p, q = (0, 1) depend whether (H, H̄) is untwisted (0) or twisted (1). The
parameters rF = p, q, p + q, 0, for F = 10, 5, λ, λ′, and pS = p + q, 0 for S = H,Σ. The
different modular weights, α, β, chosen for the different models are specified in Section
4.1. We take all the na = 0. Other quantities run up to Min, such as the SU(5) Yukawa
couplings, are not reset at Min.

2.3 Renormalization-Group Running of Parameters

Having specified the theoretical boundary conditions at Min, we now discuss the renormaliz-
ation-group (RG) running of the model parameters. This involves matching parameters at
MGUT, since the fundamental degrees of freedom and hence the RG equations differ above
and below this scale, and the phenomenological inputs for the gauge and Yukawa couplings
are measured at the electroweak scale. The RG equations are run up and down between
the electroweak scale and Min iteratively until a convergent solution is found. We use the
following matching and boundary conditions.

Matching boundary conditions at MGUT: There are two sets of boundary conditions
at MGUT, one corresponding to RG running from the EW scale to Min, and the other when
running back down.

We first specify the matching conditions for the gauge couplings when running up from
the EW scale. At one-loop level in the DR renormalization scheme [25], we have

1

g21(Q)
=

1

g25(Q)
+

1

8π2

[
2

5
ln

Q

MHC

− 10 ln
Q

MX

]
− 8c5V

MP
, (16)

1

g22(Q)
=

1

g25(Q)
+

1

8π2

[
2 ln

Q

MΣ
− 6 ln

Q

MX

]
− 24c5V

MP
, (17)

1

g23(Q)
=

1

g25(Q)
+

1

8π2

[
ln

Q

MHC

+ 3 ln
Q

MΣ
− 4 ln

Q

MX

]
+

16c5V

MP
, (18)

where g1, g2, and g3, are the U(1), SU(2), and SU(3) gauge couplings, respectively, and Q
is a renormalization scale taken in our analysis to be the unification scale: Q = MGUT.
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The last terms in Eqs. (16) - (18) represent a possible contribution from the dimension-
five operator

W∆g
eff =

c5
MP

Tr [ΣWW] , (19)

where W ≡ WATA denotes the superfields corresponding to the field strengths of the SU(5)
gauge vector bosons V ≡ VATA. Since V/MP ≃ 10−2, these terms can be comparable to
the one-loop threshold corrections, and their possible presence should be taken into account
when discussing gauge-coupling unification [26]. Including the c5 coupling is essential for
our purposes, as it allows us to choose independently the Higgs couplings λ and λ′, which
we specify at the GUT scale.

Eqs. (16 - 18) can be combined to give

1

g25
= − 1

g21
+

1

g22
+

1

g23
− 1

8π2

(
3

5
ln

Q

MHC

+ 5 ln
Q

MΣ

)
. (20)

The masses, MHC
and MΣ, have implicit dependences on the gauge couplings, including g5,

making it impossible to write an analytic expression for the matching of the three low-energy
gauge couplings, gi, to g5. Nevertheless, we can solve for g5 iteratively.

The matching conditions for the Yukawa couplings were given in Eq. (7). As noted
there, we take the average of hE3,3 and hD3,3 for the third-generation charged-lepton and
charge-1/3 quark Yukawa couplings, which are close to the unification expected in SU(5).
We adopt a similar approach for the trilinear terms and the soft squared masses. For the
embedding A, when matching from MGUT to Min we take for the trilinear couplings

a5̄ =
(
aD + V ∗

GCKMa
T
E

)
/
√
2 , (21)

a10 = aU/4 , (22)

and for the soft squared masses

m2
5̄
=
(
m2

L +m2
D

)
/2 , (23)

m2
10

=
(
m2

Q +m2
U + VGCKMm

2
EV

†
GCKM

)
/3 . (24)

For the embedding B, when matching from MGUT to Min we take the same matching con-
ditions for a10 and m2

5
as for the embedding A, see Eqs. (22,23), respectively, with

a
5
=
(
aD + aTE

)
/
√
2 (25)

and

m2
10

=
(
m2

Q +m2
U +m2

E

)
/3 . (26)

We note that by taking these averages we are effectively generating two inequivalent models
at the GUT scale, which in turn produce different values for observable quantities. If one
was not required to use the averages in Eq. (7) and Eqs. (21, 24, 25, 26), perfect unification
would allow us simply to formulate the SU(5) theory with the quark-sector couplings, and
all quark-sector differences between the two models would vanish.
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The remaining matching conditions for masses at MGUT when running up from the EW
scale are:

M5 = g25

(
−M1

g21
+

M2

g22
+

M3

g23

)
, m2

H̄ = m2
Hd

, m2
H = m2

Hu
, (27)

The matching of the gaugino masses to M5 when running up to MGUT is chosen to be
consistent with the matching of the gaugino masses to M5 when running down from MGUT

to the EW scale as discussed below. Finally, when running from MGUT to Min, m
2
Σ is set

equal to its value from the previous iterative run down from Min where it was initially set
to 0 as in Eq. (15).

At Min, the soft mass terms are reset according to Eq. (15) and the theory is run down to
MGUT, where the matching conditions for the soft squared-mass terms and Yukawa couplings
are

m2
D = m2

L = m2
5̄ ,

m2
Q = m2

U = m2
10 ,

m2
E = V †

GCKMm
2
10VGCKM (choice A) , m2

E = m2
10 (choice B) ,

m2
Hd

= m2
H̄
, m2

Hu
= m2

H .

(28)

For the trilinear terms, we use

aU = 4a10 ,

aD = a5
√
2 ,

aE = aT5 VGCKM/
√
2 (choice A) , aE = aT5 /

√
2 (choice B) , (29)

where aU , aD and aE correspond to the MSSM up-type quarks, down-type quarks and lepton
trilinear couplings, respectively, and we recall that we assume VR = 1 for both the choices
A and B, with the embeddings given in Eq. (5) and Eq. (9), respectively. The Yukawa
matching conditions were given in (8), and the soft terms in Eq. (11) must be embedded
in the same way, once the MSSM is embedded in SU(5). Hence the trilinear couplings in
Eq. (29) are rotated in the same ways as the Yukawa couplings in Eq. (7), while all the
soft squared-mass terms remain invariant with the exception of m2

E in choice A as seen in
Eq. (28).

From linear combinations of the matching conditions for the gauge couplings in Eqs. (16
- 18) we obtain [17, 27, 28, 29]:

3

g22(Q)
− 2

g23(Q)
− 1

g21(Q)
= − 3

10π2
ln

(
Q

MHC

)
− 96c5V

MP

, (30)

5

g21(Q)
− 3

g22(Q)
− 2

g23(Q)
= − 3

2π2
ln

(
Q3

M2
XMΣ

)
, (31)

5

g21(Q)
+

3

g22(Q)
− 2

g23(Q)
= − 15

2π2
ln

(
Q

MX

)
+

6

g25(Q)
− 144c5V

MP

. (32)

Eqs. (30–32) provide three conditions on the masses MHC
, MΣ and MX , which can related

to the GUT Higgs vev V through the couplings λ, λ′, and g5 respectively. As a result, if
c5 = 0 only one of the two GUT couplings λ or λ′ can be chosen as a free parameter. If,
however, c5 6= 0, λ and λ′ can be chosen independently with the following condition on the
dimension-five coupling:

c5 =
MP

8V

[
1

6g23(MGUT)
− 1

6g21(MGUT)
− 1

40π2
ln

(
MGUT

MHC

)]
, (33)
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which can be obtained from Eq. (30) by setting g1(MGUT) = g2(MGUT). It is important to
note that allowing c5 6= 0 enables us to increase the colored Higgs mass, thereby increasing
the proton lifetime [11, 18].

The matching conditions for the gaugino masses [26, 30, 31, 18] are

M1 =
g21
g25
M5 −

g21
16π2

[
10M5 − 10(Aλ′ −BΣ) +

2

5
BH

]
− 4c5g

2
1V (Aλ′ − BΣ)

MP

, (34)

M2 =
g22
g25
M5 −

g22
16π2

[6M5 − 6Aλ′ + 4BΣ]−
12c5g

2
2V (Aλ′ −BΣ)

MP

, (35)

M3 =
g23
g25
M5 −

g23
16π2

[4M5 − 4Aλ′ +BΣ − BH ] +
8c5g

2
3V (Aλ′ − BΣ)

MP
. (36)

Finally, we must match the MSSM µ and B-terms to their SU(5) counterparts [32]

µ = µH − 3λV

[
1 +

Aλ′ −BΣ

2µΣ

]
, (37)

B = BH +
3λV∆

µ
+

6λ

λ′µ

[
(Aλ′ −BΣ)(2BΣ − Aλ′ +∆)−m2

Σ

]
, (38)

with
∆ ≡ Aλ′ −BΣ −Aλ +BH . (39)

As noted earlier, in the minimal SU(5) GUT model studied here we must tune |µH − 3λV |
to be O(MSUSY). The parameters µ and B can be determined at the electroweak scale by
the minimization of the Higgs potential as in the CMSSM. These are then run up to the
scale where Eqs. (37) and (38) are applied. However, the GUT A- and B-terms are specified
at the input scale by Eq. (15) and, in general, the condition (38) will not be satisfied.

This mismatch can be rectified by adding a Giudice-Masiero (GM) term to the Kähler
potential [33]:

∆K = cH(T + c)γHHH̄ + cΣ(T + c)γΣΣ2 + h.c. , (40)

where we have allowed for the possibility of additional modular weights, γH and γΣ. This
term induces shifts in both the µ-terms and B-terms [34, 11, 18]:

∆µH = cHm3/2 , ∆µΣ = cΣm3/2 , (41)

∆BHµH = (p+ q − γH)cHm
2
3/2 , ∆BΣµΣ = −γΣcΣm

2
3/2 . (42)

As a result, there is a shift in ∆ given by

δ∆ =

(
γΣ

cΣ
µΣ

+ (p+ q − γH)
cH
µH

)
m2

3/2 . (43)

Then any mismatch in (38) can be corrected by

3λV δ∆

µ
=

(
(p+ q − γH)cH +

12λ

λ′
γΣcΣ

)
m2

3/2

µ
, (44)

where we have used µΣ = λ′V/4 and µH = 3λV . If λ ≫ λ′, we can ignore, cH , and use (44)
to determine cΣ (for a given value of γΣ).
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Boundary conditions at MEW: Although the soft supersymmetry-breaking parameters
are input at the high scale, Min, some of the phenomenological inputs are set by bound-
ary conditions at the electroweak scale, MEW, namely the ratio of electroweak Higgs vevs,
tan β,mf and VCKM. The Higgs vevs are in principle determined by the minimization of the
Higgs potential at the weak scale. However, it is common in constrained models to fix these
by using the experimental value of MZ and tanβ, and solve for µ and the pseudoscalar
Higgs mass, or equivalently the MSSM B-term. In very constrained models such as the
no-scale models considered here, B is fixed by the high-scale boundary conditions and as a
consequence, either tanβ is an output rather than an input [35], or a GM term is used to
fix the matching conditions for the B-terms. We adopt the latter approach here, and treat
tan β as a weak-scale input.

We also use the experimental values of the masses of the six quarks and the three
charged leptons, mf . The matching of Yukawa couplings is done in terms of the CKM
matrix elements, using experimental input for the CKM matrix at MEW. In general hD and
hE can be written as follows

hD = V ∗
CKMĥD(MEW)UTD

R , hE = UE∗
L ĥE(MEW)UTE

R , (45)

where VCKM (= UD
L ) 10 is the CKM matrix at the EW scale, ĥD(MEW) = diag(yd, ys, yb),

and ĥE(MEW) = diag(ye, yµ, yτ ) are the diagonalized mass matrices containing the mass
eigenvalues for the D-type quarks and charged leptons, respectively. The U matrices aid
with the diagonalization of these matrices. When running up to the MGUT scale they should
match Eqs. (8) at MGUT for the choices A and B, respectively. Hence, in both cases we
start with UD

R = 1 and UD
L = VCKM, while U

E
R = UE

L = 1 for A and UE
R = V ∗

CKM and UE
L = 1

for B.
At MGUT the RG evolution determines the evolution of VCKM into VGCKM, while UD

R ,
UE
L and UE

R are no longer diagonal. However, since we match the SU(5) fields to the MSSM
fields at MGUT with Eq. (7), once the RG program has converged, UR

D is in practice equal to
1. We match the Yukawa couplings for the first two generations of charged leptons at MGUT,
so that they converge rapidly to satisfy UE

R = UE
L = 1 for A and UE

R = V ∗
CKM and UE

L = 1
for B at the EW scale. Any remaining non-diagonality can be absorbed into the embedding
of the MSSM fields into SU(5), and does not alter the Yukawa couplings relevant for proton
decay. Finally, all the fermion masses are converted appropriately to the DR scheme and
then matched to the supersymmetric theory at MZ .

3 Experimental Constraints

3.1 Proton Decay

The most important constraint on the supersymmetric SU(5) GUT model from searches for
proton decay comes from the decay mode p → K+ν̄, for which the current experimental
limit is [36]

τ
(
p → K+ν̄

)
> 6.6× 1033 yrs . (46)

10In the way we define the Yukawa couplings, these enter the SM interaction Lagrangian as LD =
QLh

∗

DDR +DRh
T
DQL.
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In this paper we will refer to this limit as the proton life-time limit if not otherwise spec-
ified. In the future, the Hyper-Kamiokande (HK) experiment is expected to be sensitive
to τ (p → K+ν̄) ∼ 5 × 1034 yrs [37], an improvement by almost an order of magnitude.
Since generic amplitudes for dimension-5 proton decay are inversely proportional to sparticle
masses (see below), the HK reach for proton decay will provide sensitivity to supersymmetric
model parameters ∼ 3 times larger than the current constraints from τ (p → K+ν̄).

Dimension-5 Proton Decay Operators

In [38] a complete analysis of proton decay operators in supersymmetric SU(5) theories was
given, including in particular the explicit forms of the Wilson Coefficients (WCs) C5L and
C5R entering into the dimension-five Lagrangian generated by integrating out the colored
Higgs multiplets [39]:

Leff
5 = C ijkl

5L O5L(Qi, Qj , Qk, Ll) + C ijkl
5R O5R(ūi, ēj, ūk, d̄l) + h.c. , (47)

where i, j, k and ℓ are flavor indices, and

O5L(Qi, Qj , Qk, Lℓ) ≡
∫

d2θ
1

2
ǫabc(Q

a
i ·Qb

j)(Q
c
k · Lℓ) ,

O5R(ūi, ēj, ūk, d̄l) ≡
∫

d2θǫabc(ūiaēj ūkbd̄lc) , (48)

where a, b, c are color indices. Normalizing these operators at the GUT scale, MGUT, and
matching the Yukawa matrices using Eq. (7), we find

C ijkl
5L (MGUT) =

1

MHC

hQiQjhQkLl ,

C ijkl
5R (MGUT) =

1

MHC

hUiEjhUkDl . (49)

The Yukawa matrices appearing in Eq. (49) are different for the different embeddings, as
seen in Eq. (10). This is because each of the terms in the superpotential Eq. (3) that are
relevant for proton decay depend on VR and the choices of the h10 and h5 Yukawa matrices
in Eqs. (4).

The leading-order RG evolutions of the C ijkl
5L and C ijkl

5R between MGUT and the super-
symmetry breaking scale are given by [38]

β(C ijkl
5L ) ≡ (4π)2Λ

d

dΛ
C ijkl

5L =

(
−8g23 − 6g22 −

2

5
g21

)
C ijkl

5L + Cmjkl
5L

(
hDh

†
D + hUh

†
U

)i
m

+C imkl
5L

(
hDh

†
D + hUh

†
U

)j
m

+ C ijml
5L

(
hDh

†
D + hUh

†
U

)k
m

+C ijkm
5L

(
h†
EhE

) l

m
, (50)

β(C ijkl
5R ) ≡ (4π)2Λ

d

dΛ
C ijkl

5R =

(
−8g23 −

12

5
g21

)
C ijkl

5R + Cmjkl
5R

(
2 h†

UhU

) i

m

+C imkl
5R

(
2 hEh

†
E

)j
m
+ C ijml

5R

(
2 h†

UhU

) k

m

+C ijkm
5R

(
2 h†

DhD

) l

m
, (51)
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where Λ is the renormalization scale. Below the supersymmetry-breaking scale, we use the
RGEs given in Ref. [40].

We write the effective Lagrangian for p → K+ν̄i decay in the following form:

L(p → K+ν̄i) =CRL(usdνi)
[
ǫabc(u

a
Rs

b
R)(d

c
Lνi)

]
+ CRL(udsνi)

[
ǫabc(u

a
Rd

b
R)(s

c
Lνi)

]

+CLL(usdνi)
[
ǫabc(u

a
Ls

b
L)(d

c
Lνi)

]
+ CLL(udsνi)

[
ǫabc(u

a
Ld

b
L)(s

c
Lνi)

]
. (52)

The operators CLL (usdνk) andCLL (udsνk) are mediated byWino exchange, andCRL(usdντ)
and CRL(udsντ) are mediated by higgsino exchange (see Eqs. (23) and (27) of [40]). At the
EW scale, the operators entering into the proton decay amplitudes are C221i

5L and C331i
5L ,

i = 1, 2, 3, which contribute to CLL (usdνk) and CLL (udsνk), and C∗3311
5R and C∗3312

5R , which
contribute to CRL(usdντ) and CRL(udsντ).

However, due to the off-diagonal nature of the Yukawa matrices, the evolution from
MGUT down to MEW induces contributions from some other operators. Consider as an
example C3312

5L , whose leading-order RG terms are

β(C3312
5L ) ≃ C3312

5L

(
−8g23 − 6g22 −

2

3
g21 + 2(hDh

†
D)

3
3 + 2y2t

)

+ C331m
5L (h†

EhE)
2
m + C33m2

5L (hDh
†
D)

1
m . (53)

The terms in Eq. (53) involving hD and hE are not diagonal, and generate contributions to
the β functions of the operators mentioned above. In particular

C33m2
5L (hDh

†
D)

1
m ≃ C3332

5L (hDh
†
D)

1
3 = O

(
C3312

5L (hDh
†
D)

3
3

)
. (54)

We are therefore required to run C3332
5L between the weak and GUT scales, using the initial

condition set by Eq. (10), even though the corresponding operator does not contribute
directly to the effective Lagrangian (52) defined at the EW scale. We note, on the other
hand, that the combinations h†

UhU and hUh
†
U appearing in Eq. (50) for C5L and Eq. (51)

for C5R, respectively, remain diagonal as in the case considered in [40] (see Eq. (22) of that
reference). 11

The dimension-6 operator coefficients CLL (udpdqνk) and CRL(udpdqντ ), p, q = 1, 2, are
related to the dimension-five WCs C221i

5L , C331i
5L , C∗3311

5R , and C∗3312
5R (which were obtained by

integrating out the colored Higgs multiplets in Eq. (49)) via CKM mixing angle factors and
loop integrals:

CRL(usdντ ) = −VtdC
H̃
2 (mZ) , CRL(udsντ) = −VtsC

H̃
1 (mZ) ,

CLL(usdνk) =
∑

j=2,3

Vj1Vj2C
W̃
jk (mZ) , CLL(udsνk) =

∑

j=2,3

Vj1Vj2C
W̃
jk (mZ) . (55)

where

CH̃
i =

ytyτ
(4π)2

F (µ,m2
t̃R
, m2

τR
)C∗331i

5R ,

CW̃
jk =

α2

4π

[
F (M2, m

2
Q̃1
, m2

Q̃j
) + F (M2, m

2
Q̃j
, m2

L̃k
)
]
Cjj1k

5L . (56)

11We have omitted contributions that are proportional yu and yc, given their smallness in comparison to
yt, and we have omitted terms proportional to C1312

5L .
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Here mt̃R
, mτ̃R , mQ̃j

, and mL̃k
are the masses of the right-handed stop, the right-handed

stau, left-handed squarks, and left-handed sleptons, respectively, αi ≡ g2i /(4π), and

F (M,m2
1, m

2
2) ≡

M

m2
1 −m2

2

[
m2

1

m2
1 −M2

ln

(
m2

1

M2

)
− m2

2

m2
2 −M2

ln

(
m2

2

M2

)]
. (57)

The loop integrals (56) yield the dimension-6 operator coefficients at the supersymmetry-
breaking scale, and they must then be run down to the EW scale. The corresponding RGEs
are given in [40], where many other details of the calculation are provided.

Finally, as also given in [40], the partial decay width for p → K+ν̄i decay is

Γ(p → K+ν̄i) =
mp

32π

(
1− m2

K

m2
p

)2

|A(p → K+ν̄i)|2 , (58)

where

A(p → K+ν̄e) = CLL(usdνe)〈K+|(us)LdL|p〉+ CLL(udsνe)〈K+|(ud)LsL|p〉 ,
A(p → K+ν̄µ) = CLL(usdνµ)〈K+|(us)LdL|p〉+ CLL(udsνµ)〈K+|(ud)LsL|p〉 ,
A(p → K+ν̄τ ) = CRL(usdντ )〈K+|(us)RdL|p〉+ CRL(udsντ )〈K+|(ud)RsL|p〉

+ CLL(usdντ)〈K+|(us)LdL|p〉+ CLL(udsντ)〈K+|(ud)LsL|p〉 . (59)

The proton decay rates (58) depend on the Yukawa coupling matrices through the vari-
ous WCs, and hence on our choice of diagonalization scheme. As an illustration of this
sensitivity, in Fig. 1 we compare the values of C2213

5L (MGUT) for the three flavor structures
introduced in Section 2.1 as functions of m1/2 in Model M1 defined in Section 4.1, with the
model parameters m3/2 = 5 TeV, tanβ = 6, and Min = 1016.5 GeV. The solid line is for the
choice A, the dashed line for the choice B, and the dot-dashed line for the “no-flavor” choice
NF. Shown separately are the real and imaginary parts of the WC. We see that choices A
and B yield very similar results, whereas the value of C2213

5L (MGUT) is about 10% larger for
choice NF (i.e., when off-diagonal flavor-violating effects are ignored) mainly because of the
treatment of the Yukawa couplings. When off-diagonal terms are considered in the Yukawa
couplings, off-diagonal terms appear also in the soft masses-squared, trilinear terms, etc.,
which affect the running of the gauge couplings, with the largest effect being that on g23.
Note that the off-diagonal terms in hd affect not only yd and ys as shown in Fig. 2 (see
below) but also the CKM matrix elements at the GUT scale. At the electroweak scale,
the difference in the WCs is about the same, (roughly 10% between choices A/B and NF)
though the magnitudes of the coefficients are about 3–4 times larger.

The sensitivities to the Yukawa couplings of the charge-1/3 quarks d, s and b are also
significant. We can understand this by considering the one-loop β function of hd, which is
given by

β
(1)
hd

=
1

16π2
hd

[
Tr
[
3hdh

†
d + heh

†
e

]
+ 3h†

dhd + h†
uhu + f(g21, g

2
2, g

2
3)
]
, (60)

where f(g21, g
2
2, g

2
3) = −16

3
g23 − 3g22 − 7

9
g21. The Yukawa matrix is non-diagonal at MEW. In

particular, h23
d and h32

d are non-zero due to the structure of the Yukawa couplings and the
form of the Yukawa matrices in Eq. (8), where |h11

d |, |h12
d |, |h21

d |, |h13
d |, |h31

d | < |h22
d |, |h23

d |, |h32
d |

≪ |h33
d |. Due to the differences between the β functions of the elements of hd, each ele-

ment evolves differently. In order to determine the change in the evolution with respect
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Figure 1: Comparison of the values (in units of [GeV]−1) of the real (left panel) and imaginary (right panel)
parts of the Wilson coefficient C2213

5L (MGUT) as functions of m1/2 in Model M1 (defined in Section 4.1),
with parameters tanβ = 6, Min = 1016.5 GeV, and m3/2 = 5 TeV. The value for choice A is shown as a
solid line, that for choice B as a dashed line, and that for choice NF as a dot-dashed line.

to evolving only the diagonal elements, we see from the hierarchy of the elements of the
Yukawa couplings that the lightest eigenvalue, corresponding to yd, will be affected mainly
by |h11

d |, |h12
d |, |h21

d |, |h13
d |, |h31

d | and the second eigenvalue, corresponding to ys, by |h22
d |, |h23

d |
and |h32

d |.
We focus first on ys, for which the relevant β functions are β

(1)

h22
d

, β
(1)

h32
d

and β
(1)

h23
d

. In the

cases of both model choices A and B, |h32
d | ≪ |h23

d |, |h22
d |, whereas |h32

d | = |h23
d | = 0 for NF.

To a good approximation we have

β
(1)

h22
d

=
1

16π2

{
h22
d

[
f(g21, g

2
2, g

2
3) + 3y2b + y2τ

]
+
∑

i

h2i
d (h

†
uhu)

i2

}

≈ 1

16π2
h22
d

[
f(g21, g

2
2, g

2
3) + y2c + 3y2b + y2τ

]
,

β
(1)

h23
d

=
1

16π2

{
h23
d

[
f(g21, g

2
2, g

2
3) + 3y2b + y2τ

]
+
∑

i

h2i
d (h

†
uhu)

i3

}

≈ 1

16π2
h23
d

[
f(g21, g

2
2, g

2
3) + y2t + 3y2b + y2τ

]
,

β
(1)

h32
d

≈ 1

16π2
h32
d

[
f(g21, g

2
2, g

2
3) + y2c + 3y2b + y2τ

]
. (61)

We see that, due to the term proportional to y2t in β
(1)

h23
d

, h23
d will evolve differently from h22

d

and h32
d . In particular, when evolving the parameters of the MSSM from MEW to MGUT, h

23
d

decreases less than h22
d and h32

d , which in turn produces a higher value of y2s at MGUT than
when the running of off-diagonal Yukawa couplings is neglected, because no information on
the evolution of h23

d is considered in that case.
A comparison of the squared Yukawa couplings, y2d, y

2
s , and y2b as functions of m1/2 for

the set of inputs used in Fig. 1 is shown in Fig. 2. We see that while the differences between
A and B do not manifest themselves in any of the down-quark Yukawa couplings, they do
differ from the NF choice for the first two generations. The flavor-violating contributions
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are negligible for the bottom quark because mb ≫ md,s, and the three choices considered
give results that are nearly identical. The fact that the difference between y2d and y2s is larger
for choices A and B than for the NF choice is a reflection of the larger magnitudes of the
off-diagonal Yukawa couplings.
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Figure 2: Comparisons of the values of the Yukawa couplings at MGUT for choices A (blue solid line), B
(red dashed line) and NF (black dot-dashed line).

Hadronic Uncertainties

In addition to the WCs, the proton decay amplitudes in Eq. (59) depend on hadronic matrix
elements. As discussed in detail in [18], in order to apply the limit in Eq. (46), one needs
to know not only the central values of the matrix elements but also their uncertainties. The
relevant systematic uncertainties of the form factors were taken into account for the first
time in [41]. The total uncertainties found in K final states were 20%-40%, whereas they
were 30%-40% for π final states, which were reduced to 10% -15% in [42]. The uncertainties
in all of the matrix elements in Eq. (46) must be taken into account in order to determine
the region of parameter space for which τ (p → K+ν̄) > 6.6 × 1033 yrs. For the matrix
elements contributing to the relevant amplitude A(p → K+ν̄τ ) in Eq. (59), Ref. [42] found

〈K+|(us)LdL|p〉 = 0.041± 0.006 ,

〈K+|(ud)LsL|p〉 = 0.139± 0.016 ,

〈K+|(us)RdL|p〉 = −0.049± 0.006 ,

〈K+|(ud)RsL|p〉 = −0.134± 0.014 , (62)

where we have quoted the total error obtained by combining the statistical and systematic
errors in quadrature. We note that the matrix elements 〈K+|(us)LdL|p〉 and 〈K+|(ud)LsL|p〉
are the most relevant, since the CLL coefficients dominate over CRL.

3.2 Flavor Violation

3.2.1 µ → eγ

The embedding of the MSSM in SU(5), as in either Eq. (5) or (9), can make an important
difference. In particular, the different embeddings for the SU(5) Yukawa matrices h10 and
h5 lead to different effective mass matrices for hD, hE and hU , as we have seen in Section 2.
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Minimal SU(5) corresponds to the embedding (9) (without the phases), where hD and hE

are the transposes of each other. When hD involves the CKM matrix, hE inevitably leads
to large right-handed currents, enhancing the branching ratio BR(µ → eγ), which can be
written as

BR(µ → eγ) =
3π2e2

G2
Fm

4
µ

(
|aµeγL|2 + |aµeγR|2

)
≃ 2.15× 1015

(
|aµeγL|2 + |aµeγR|2

)
, (63)

where we use the notation in [12] for the amplitude of the decay µ → eγ. The experimental
upper limit BREXP(µ → eγ) ≤ 4.2× 10−13 [43] imposes the constraints

|aµeγL|, |aµeγR| . 10−14 . (64)

These limits on the coefficients aµeγL and aµeγR constrain the amount of flavor violation
mediated by charginos and neutralinos in the MSSM. We note that care must be taken in
an analysis in terms of mass-insertion operators in the presence of off-diagonal entries in all
the soft supersymmetry-breaking sectors, because there are correlations among the elements
of the matrices and some cancellations may occur.

In order to understand the order of magnitude of possible contributions to aµeγR and
aµeγL that are consistent with the limits in Eq. (64), we consider simplified formulae for
the neutralino contributions. There are significant contributions coming from chargino
exchange, but these are suppressed relative to the neutralino exchange contributions.

Fig. 3 displays the diagrams making the most important contributions to aµeγR. First the
neutralino exchange diagram is shown in the mass-eigenstate basis, and then we identify four
main contributions in the interaction basis. The contributions from a

(I)
µeγR, which requires a

mass insertion outside the loop, can be approximated as

a
(I)
µeγR ≈ −

m2
µ

96π2
g21

(m2
E)12

m2
ẽR
m2

µ̃R

. (65)

As we will see when we consider specific models in Section 4, (m2
E)12 is similar in both the

cases A and B. Similarly the contributions a
(IIa)
µeγR, a

(IIb)
µeγR may be approximated by

a
(IIa)
µeγR ≈ − mµ

48π2

(v(aE)22 +mµµ tanβ)

m2
µ̃L

g21M1
(m2

E)12
m2

ẽR
m2

µ̃R

,

a
(IIb)
µeγR ≈ mµ

16π2

g1yµ

3
√
2
Re [N∗

11N
∗
31]M1

(m2
E)12

m2
ẽR
m2

µ̃R

. (66)

Here N11 and N13 are mixing elements of the neutralinos, with N11 ≈ 1 when the lightest
neutralino is mainly bino, and N31 characterizes the mixing between the the Higgsino H̃0

d

and the bino. These diagram factors are also proportional to (m2
E)12, a common factor

between cases A and B. Although the diagram a(IIa) also depends on (aE)22, this quantity
is also similar in cases A and B for the models we consider below. In contrast, the diagram
corresponding to a

(IIc)
µeγR, which may be approximated by

a
(IIc)
µeγR ≈ mµ

16π2

g21 v (aE)21
3m2

µ̃L

M1Re[N
∗
11N

∗
31]

(
m2

ẽR
−m2

µ̃R

)

m2
ẽR

m2
µ̃R

, (67)

is proportional to (aE)21. This mixing term is very different in cases A and B and can lead
to differences in the total value of aµeγR by an order of magnitude or more, as we see below.
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Figure 3: Contributions to aµeγR. On the left hand side (of the equality), we depict the diagram in the mass
eigenstate basis, and on the right hand side, the diagrams are split in the interaction basis. The external
photon can couple to all charged-particle lines. The cross denotes the insertion of a flavor-mixing term that
does not change chirality, and the dot an insertion that changes chirality.

There are similar contributions to aµeγL, but they are mediated by (m2
L)12 instead of

(m2
E)12, and hence suppressed for these models, as we see below in Section 4. The reason why

the right-handed contribution to BR(µ → eγ), which is encoded in |aµeγR| and associated
with m2

E , is significantly larger than m2
L is that m2

E is matched to m2
10 at MGUT, and m2

L to
m2

5. Both m2
10 and m2

5̄ start at zero at Min (see Eq. (28)), but they evolve differently:

dm2
5̄

dt
⊃ − 1

16π2

96

5
g25M

2
5 ,

dm2
10

dt
⊃ − 1

16π2

144

5
g25M

2
5 . (68)

Consequently, (m2
10)ii is typically twice as large as (m2

5̄)ii at MGUT (see, e.g., Fig. 2 of [12]).
We conclude this discussion by noting that the future MEG II experiment is expected

to be sensitive to BR(µ → eγ) = 6× 10−14 [44].

3.2.2 µ → eee

There are other proposals for future experiments that are sensitive to muon flavor violation,
e.g., to the µ → eee mode. The current experimental limit on this mode is provided by the
SINDRUM experiment: BR(µ → eee) < 1.0× 10−12 [45], and the Mu3e experiment aims at
a sensitivity of ∼ 10−16 in the future [46].

The µ → eγ dipole processes shown in Fig. 3 give the dominant contributions to µ → eee
in many supersymmetric models [47]. 12 In this case BR(µ → eee) is related to BR(µ → eγ)

12See also the detailed discussion of the related τ → 3µ process in Ref. [48].
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by [48]
BR(µ → eee)

BR(µ → eγ)
=

α

3π

[
ln

(
m2

µ

m2
e

)
− 11

4

]
≃ 6× 10−3 . (69)

This relation indicates that currently µ → eee gives a much weaker limit on lepton flavor
violation than µ → eγ, but will offer a better sensitivity in the future.

3.2.3 µ → e conversion

Another promising process is µ → e conversion on a nucleus. The tightest current experi-
mental bound on the µ → e conversion rate is provided for gold nuclei by the SINDRUM II
collaboration: BR(µ+Au → e+ Au) < 7× 10−13 [49]. In the future, COMET Phase II at
J-PARC [50] (µ+Al → e+Al) and Mu2e at FNAL [51] (µ+Al,Ti → e+Al,Ti) may offer
sensitivity at the level of O(10−18) [52] and PRISM at J-PARC (µ+Pb,Au → e+Pb,Au) at
the level of O(10−19) [52]. Assuming again the dipole operator approximation for µ → e con-
version, there is a relation between BR(µ → eγ) and BR(µ+N → e+N) [53] that depends
on the target nucleus N , e.g., forN = Al we have BR(µ+Al → e+Al) ≃ 2.6×10−3×BR(µ →
eγ) and for N = Au we estimate BR(µ + Au → e + Au) ≃ 2.7 × 10−3 × BR(µ → eγ). A
sensitivity to µ → e conversion at the level of 10−18(10−19) would therefore correspond to
BR(µ → eγ) ∼ 4 × 10−16(4 × 10−17). We infer that µ → e conversion processes may be
more promising than µ → eγ and µ → eee in the future.

3.3 Electric dipole moments (EDMs)

The new limit on the electron EDM, |de| < 1.1×10−29 e.cm [54] could in principle constrain
parts of the parameter space that would otherwise be allowed if no flavor-violating terms in
the soft terms were considered.

At the one-loop level, there are supersymmetric contributions to the electron EDM
mediated by charginos and neutralinos. A general expression is given by [55]

de (mχ̃0) =
e αEM

4π sin2 θW

2∑

k=1

4∑

i=1

Im {ηEik}
mχ̃0

m2
ẽk

QẽB

(
m2

χ̃0

m2
ẽk

)
, (70)

where Qẽ = −1, B(x) ≡ 1/(2(1− x)2) [1 + x+ 2x log x/(1− x)], and

ηF ik =

[
−
√
2 tan θW (Qf − T3f ) N1i(KF )k,1L −

√
2T3fN2i(KF )k,1L +

mf√
2MW cos β

N3i(KF )k,1R

]
×

[√
2 tan θWQfN1i(K

∗
F )k,1R − mf√

2MW cos β
N3i(K

∗
F )k,1L

]
. (71)

In these expressions, the sfermion mass matrix, in the basis where Yukawa couplings are
diagonal, for each family is given by

(M2
F )ij =

[
(m2

FL
)ij + (m2

f )iδij +Df
L −(aF ijvf + µ∗ tans β (mf )iδij)

−(a∗F jivf + µ tans β (mf )iδij) (m2
FR
)ij + (m2

f)iδij +Df
R

]
,

where Df
L,R = cos 2βM2

Z(T
3
f −QfL,R

sin2 θW ), s =

{
1, f = d, e
−1, f = u

FL = Q,L, FR = D,E, (72)
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and mf , f = d, e, u, are the masses of the fermions corresponding to the sfermions F =
D,E, U . Note that the indices 1L and 1R of (KF )k,1L and (K∗

F )k,1R in Eq. (71) for F = E
correspond to eL and eR, respectively, which are the external lines in Fig. 4. The index k
corresponds to the mass eigenstates from k = 1, . . . , 6, where the sfermion mass eigenstates
are defined by

[
f̃1, f̃2, . . . , f̃6

]T
≡ K∗

F

[
f̃1L, f̃1R, . . . , f̃3L, f̃3R

]T
, (73)

such that M̂2
F = KFM2K†

F is a diagonal matrix.
In the models considered here, the lightest neutralino, χ̃0

1, typically gives the dominant
contribution to the electron EDM in Eq. (70). This term is proportional to N1iKEk1, so the
most important contribution to de comes from

ηE1k = −2 tan2 θW (Qe − T3e)QeN11N11(KE)k,1L(K
∗
E)k,1R

= − tan2 θWQeN11N11(KE)k,1L(K
∗
E)k,1R , (74)

and

de ≈ − e αEM

4π cos2 θW

k=6∑

k=1

Im {N11N11(KE)k,1L(K
∗
E)k,1R}

mχ̃0
1

m2
ek

B

(
m2

χ̃0
1

m2
ek

)
, (75)

where the m2
ek

are the slepton mass eigenstates. This contribution is depicted in the left
Feynman diagram of Fig. 4 in the flavor basis, and we see that, in the absence of off-diagonal
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Figure 4: Contributions to the electron EDM mediated by the bino, without flavor violation (left diagram)
and with flavor violation (right diagram), respectively. The states ℓ are flavor eigenstates ℓ1 = e, ℓ2 = µ,
ℓ3 = τ .

and imaginary terms in aE, the EDM is zero. However, once the CKM matrix is introduced
to seed flavor violation, as in the flavor choices A and B discussed earlier, imaginary parts
appear in the soft squared-mass matrices (m2

L)1j , (aE)ij and (m2
E)1j . We note that the

function B in Eq. (70) varies slowly over the range ∼ 0.2 to ∼ 0.3 for all of the spectra we
consider and for all the indices k. Therefore the individual contributions in the terms of
Eq. (70) depend mainly on the combination

Im {ηE1k}
1

m2
ek

∝ Im {(KE)k,1L(K
∗
E)k,1R}

1

m2
ek

. (76)

The imaginary part above can be easily understood in terms of the second diagram of Fig. 4,
since

Im
{
(KE)k,1L(KE)

∗
k,1R

}
∼ vd Im

∑

b,c=1,2,3

{
(m2

L)1b√
(m2

L)11(m
2
L)bb

(aE)bc√
(m2

L)bb(m
2
E)cc

(m2
E)c1√

(m2
E)cc(m

2
E)11

}
,(77)
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where b, c = 1, 2, 3. The imaginary parts of each of the contributions to the sum above can
be written as

Im
{
(KE)k,1L(KE)

∗
k,1R

}
bc

∼ vd√
(m2

L)11(m
2
L)bb
√

(m2
L)bb(m

2
E)cc

√
(m2

E)cc(m
2
E)11

×
[
Re
[
(m2

E)c1
] [

Im
[
(m2

L)1b
]
Re [(aE)bc] + Re

[
(m2

L)1b
]
Im [(aE)bc]

]

+ Im
[
(m2

E)c1
] [

Re
[
m2

L

]
1b
Re [(aE)bc]− Im

[
m2

L

]
1b
Im [(aE)bc]

]]
.(78)

We find that there are important contributions from the terms involving Re(aE)33 but,
depending on the model, contributions containing (aE)11 can dominate for models with the
flavor choice A, and contributions containing (aE)21 and (aE)31 can also be important.

In Eq. (78) with b = c = 3, we find that in the models considered in Section 4

Re
[
(m2

E)31
]
Im
[
(m2

L)13
]
> Re

[
(m2

L)13
]
Im
[
(m2

E)31
]
,

Im
[
(m2

L)13
]
∼ Re

[
(m2

L)13
]
,

Im [(aE)33] ≪ Re [(aE)33] . (79)

Then the dominant term in Eqs. (77) and (78) contains Re(aE)33 and reduces to

[
Im
{
(KE)k,1L(KE)

∗
k,1R

}]
33

∼ vd
Re [(m2

E)31] Re [(aE)33] Im [m2
L]13

(m2
E)33(m

2
L)33

√
(m2

E)33(m
2
L)33

. (80)

In the models considered below, this contribution is similar in both of the choices A and B.
However, for choice B, the contribution from (aE)31 can also be important, as we will see
in Section 4.

It is relatively easy to understand how the contribution from (aE)11 can dominate in
models with flavor choice A relative to choice B. As seen in Eqs. (77) and (78), when
b = c = 1 (and noting that the imaginary parts of (m2

E)11 and (m2
L)11 both vanish), the

term containing (aE)11 reduces to

[Im {KEk1K
∗
Ek2}]11 = vd

Im {(aE)11}√
(m2

E)11(m
2
L)11

. (81)

As we will see in Section 4 below, Im {(aE)11} is typically four orders of magnitude larger
in choice A than in choice B. This can be traced to the matching condition in Eq. (29). In
fact, the contribution containing (aE)11 can be even larger than that containing (aE)33 in
choice A.

When one of the slepton states dominates the contribution in Eq. (75), we can write

|de| = 1.1× 10−29

[ |Im {ηE1k} |
1× 10−8

] [
mχ̃0

1× 103 GeV

] [
[2× 103 GeV]2

m2
ek

]


B(

m2
χ̃0

m2
ek

)

0.29


 e.cm . (82)

When two or more contributions are important we can still use the formula above for each
slepton, taking the signs of the Im {ηE1k} into account. Overall, therefore, we find that
while the contributions from b = c = 3 for choices A and B are similar, the contribution
from b = c = 1 is much greater in choice A, and we expect the EDM to be larger in choice
A than in choice B.
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4 Analysis of Low-Energy Observables

4.1 Models

In the continued absence of supersymmetry at the LHC, the allowed parameter space in
constrained supersymmetric models has been pushed to ever higher mass scales [40, 17,
11, 56, 57, 18, 58, 59]. For this reason, also in order to obtain a Higgs boson with mass
consistent with the experimental value, Mh ≃ 125 GeV [3], and a sufficiently long proton
decay lifetime [60], supersymmetric mass scales in the range from 1 to 5 TeV are favored.
Then, the requirement that the relic dark matter density agree with Planck results, Ωχh

2 ≃
0.12 [61], imposes significant constraints on models and their parameters, as do the upper
limits on dark matter scattering on matter [62].

It was found in the context of no-scale supergravity models that one or both of the MSSM
Higgs fields must be twisted [11], i.e., they must acquire masses different from the univer-
sal masses for squarks and sleptons, which vanish at the input scale in no-scale models. 13

Models with universal input scalar masses suffer from tension between the Higgs mass mea-
surement, proton decay limits and the cosmological relic density. With all fields untwisted
it was possible to find parameters with a sufficiently large Higgs mass and acceptable relic
density or long proton lifetime, but not both [11].

As discussed earlier, the trilinear and bilinear soft terms depend on the nature of the
twisted Higgs fields, and on the assignments of the modular weights that appear in the
superpotential (see Eq. (15)). We outline here the sample model classes that we use for
our analysis, which are adapted from some studied previously in [11]. The models are
distinguished by the parameters p and q that take values 0 or 1 depending on whether the
H and H fields are twisted or not, as well as the choices of modular weights. Here, we take
p = 1, and allow q to take values 0 or 1. Once these are specified, the models have six free
continuous parameters and one sign:

m1/2, m3/2, Min, λ, λ′, tan β, sign(µ). (83)

We recall that in the absence of the dimension-five coupling, c5, we cannot choose inde-
pendently the two GUT couplings, λ and λ′. In this case, typically the colored Higgs mass
is low and proton decay is rapid. However, when c5 6= 0, the colored Higgs mass is suffi-
ciently large for small λ′. As in previous work [11, 17, 18], we fix λ′ = 10−5 in all of the
models considered here in order to ensure a sufficiently large colored Higgs mass, MHC

and
hence a sufficiently long nucleon lifetime. The lifetime for the dominant proton decay mode,
τ (p → K+ν̄), increases with λ, for which we adopt either λ = 0.6 or λ = 1.0. We take
tan β = 7 in all models except M1 where tan β = 6 14, and we choose sign(µ) > 0 in all
models. We consider two values of Min: Min = 1016.5 GeV, for which there is little RG
running above MGUT, and Min = 1018 GeV, for which the RG running is more important.

We illustrate the effects of the choice of flavor structure using a subset of the models
considered previously in [11]. As noted above, because of the restrictive nature of the
untwisted no-scale boundary conditions, we require that either one or both of the Higgs
five-plets are twisted in order to obtain simultaneously the correct relic density, Ωχh

2 = 0.12

13Other models with non-universal Higgs masses include the NUHM1 [63] and NUHM2 [64, 63], which
have been studied in [65, 66, 67].

14In model M1, with tanβ = 7, the proton decay limit imposes a more stringent limit on m1/2 such that
mh = 125 GeV is excluded along the relic density strip. Therefore we take tanβ = 6 for this case.
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[61], and Higgs mass, Mh = 125 GeV [3], as well as τ (p → K+ν̄) consistent with the lower
limit given in [36]. In Models M1 - M4 below, both Higgs multiplets are twisted, whereas for
models M5 and M6, only H is twisted. The dark matter, Mh and τ (p → K+ν̄) constraints
can all be reconciled in these models. Ref. [11] also considered models in which only H is
twisted. However, we find using FeynHiggs 2.16.0 [68] a drop in the calculated Higgs mass
of ∼ 2 GeV, relative to previous versions, making it difficult to reconcile an acceptable relic
density with Mh ≃ 125 GeV and the τ (p → K+ν̄) constraint, and do not consider further
such models. The models considered here are as follows:

(M1) In this model, we set Min = 1016.5 GeV, tan β = 6, λ = 0.6, with p = q = 1, and we
take all modular weights αF = βS = 0. In this case, A10 = A5 = m3/2, Aλ = 2m3/2,
Aλ′ = 0, BH = 2m3/2, BΣ = 0. This model is similar to that considered in the left
panel of Fig. 3 in [11].

(M2) In this model, we take Min = 1016.5 GeV, tanβ = 7, λ = 0.6, and p = q = 1. However,
in this case we fix α10 = α

5
= 1, αλ = 2, αλ′ = 0, βH=2, βΣ = 0, corresponding to

A10 = A5 = 0, Aλ = Aλ′ = 0, BH = BΣ = 0. This is similar to the model considered
in left panel of Fig. 4 of [11].

(M3) In this model, we consider Min = 1018 GeV, tan β = 7, λ = 0.6. We again take
p = q = 1, with the same modular weights as adopted in M2. This model is similar
to that considered in the right panel of Fig. 4 of [11].

(M4) In this model, we considerMin = 1018 GeV, tan β = 7, λ = 1. We again take p = q = 1,
with the same modular weights as adopted in M2. This model is the same as that
considered in the right panel of Fig. 4 of [11].

(M5) In this case only H is twisted, so that p = 1 and q = 0. Once again, we take Min = 1018

GeV, tan β = 7, and λ = 1. The modular weights are α10 = 1, α
5
= 0, αλ = 1, αλ′ = 0,

βH=1, βΣ = 0, which gives A10 = A
5
= 0, Aλ = Aλ′ = 0, BH = BΣ = 0. This model

was considered in the left panel of Fig. 7 of [11].

(M6) As in (M5), but in this case all modular weights are set to zero: α = β = 0 giving
A10 = m3/2, A5 = 0, Aλ = m3/2, so that Aλ′ = 0, BH = m3/2 and BΣ = 0. This model
was studied in the right panel of Fig. 7 in [11].

For each of the models M1 - M6, we compute the proton decay lifetime, BR(µ → eγ),
and the induced electron EDM, comparing the flavor choices A and B, and also comparing
the predictions of the NF scenario for the proton lifetime.

4.2 Both Higgs fields in twisted sectors

Since both Higgs five-plets are twisted in models M1 and M2, we must use p = q = 1 in Eq.
(15), yielding mH = mH̄ = m1 = m2 = m3/2 at Min, whereas all the other scalar masses
vanish there. Once the modular weights α and β appearing in Eq. (15) are specified, all
of the bi- and tri-linear terms are fixed relative to m3/2, so the models are fully specified.
In model M1, we take all modular weights to vanish, yielding the non-zero A-terms A10 =
A5̄ = m3/2 and Aλ = 2m3/2, as well as a non-zero B-term for BH = 2m3/2. In models
M2 - M4, we take all A- and B-terms to vanish. In what follows, we display our results in
(m1/2, m1) planes.
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Model M1 In this model we fix Min = 1016.5 GeV, so there is little super-GUT running
between Min and MGUT, tanβ = 6 and µ > 0. The chosen values of the couplings of the
adjoint Higgs supermultiplets are λ = 0.6 and λ′ = 0.00001. We show in the upper left
panel of Fig. 5 the (m1/2, m1) plane for this model, where we recall that m1 = m3/2 in this
model. There is no EW symmetry breaking (EWSB) in the triangular region shaded pink
in the upper left corner, i.e., the solution for the MSSM µ parameter has µ2 < 0. The dark
blue shaded strip just below the no-EWSB region corresponds to the focus point [69], with
the relic density taking values in the range 0.06 < Ωχh

2 < 0.2. This is wider than the range
determined by Planck [61], but we show an extended range in order to make it more visible
on the scale of this figure. The red dot-dashed curves show contours of the Higgs mass as
determined by FeynHiggs 2.16.0 [68].

Model M2 We show in the upper right panel of Fig 5 the (m1/2, m1) plane for this model
assuming Min = 1016.5 GeV and µ > 0, and the same values of λ and λ′ as in model M1,
but tan β = 7, using the same shading and line conventions as in the left panel. As one
might expect, since A0 = 0 in this model, the region where there is no EWSB reaches down
to lower values of m1.

15 As a result, the relic density takes acceptable values at somewhat
lower values of m1 as well.

Model M3 We exemplify the importance of RG running between Min and MGUT in the
lower left panel of Fig 5, where we choose Min = 1018 GeV and λ = 0.6. Raising the value
ofMin pushes the no-EWSB boundary and the dark matter strip back to higher values ofm1.

Model M4 We exemplify the role of λ in the lower right panel of Fig 5, where we choose
λ = 1. Raising the value of λ also pushes the no-EWSB boundary and the dark matter
strip to higher values of m1.

Proton lifetime: Also shown in Fig. 5 are predictions for the proton lifetime, τ (p → K+ν̄).
For each case considered, we show 3 sets of 3 contours each, corresponding to the current
lower limit on τ (p → K+ν̄). The central contour in each set uses the central values for the
hadronic matrix elements given in Eq. (62), and the outer contours to either side corre-
spond to the ±1σ variations in these matrix elements indicated there, keeping the masses
ms(2 GeV) and mc(2 GeV) fixed at their central values. The sets of solid and dashed blue
contours correspond to model choices A and B, respectively, and we see that the choice
between these flavor embeddings has very little effect the proton lifetime. Along the dark
matter strip, the lower limit on τ (p → K+ν̄) (assuming central values of the hadronic matrix
elements) corresponds to m1/2 & 5(7)(4.5) TeV in model M1 (M2 with Min = 1016.5 GeV)
(M3 with Min = 1018 GeV and λ = 0.6), whereas the lower limit on m1/2 from the proton
lifetime is below 3.5 TeV for model M4 with Min = 1018 GeV and λ = 1.

The predictions for τ (p → K+ν̄) with the A and B flavor choices differ from those with
the NF flavor choice, which yield the blue dotted contours. Specifically, in the case of
model M1 (upper left panel), along the blue dark matter strip and assuming the central
values of the hadronic matrix elements, the lower limit on m1 (m1/2) is stronger by about

15We recall that the focus-point dark matter region disappears for sufficiently large A0 in the CMSSM.
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Figure 5: Examples of (m1/2,m1) planes for Models M1 with Min = 1016.5 GeV, λ = 0.6, and tanβ = 6
(upper left), M2 with Min = 1016.5 GeV, λ = 0.6, and tanβ = 7 (upper right), M3 with Min = 1018 GeV,
λ = 0.6, and tanβ = 7 (lower left) and M4 with Min = 1018 GeV, λ = 1, and tanβ = 7 (lower right).
We assume µ > 0 in all panels, and the values of Min, tanβ, λ and λ′ are indicated in the legends. In the
regions shaded pink there is no EWSB, and in the blue strips below these regions the relic density is in the
range 0.06 < Ωχh

2 < 0.2. The red dot-dashed curves are Higgs mass contours, with the masses labelled in
GeV. For each flavor choice, there are three contours for the proton lifetime, τ (p → K+ν̄), corresponding
to the central values and 1σ variations in the hadronic matrix elements. The predictions of flavor choices
A and B are shown as the solid and dashed blue curves, respectively, and those of the NF choice are shown
as the blue dotted curves.

700 (500) GeV for model choices A and B than for the NF choice. On the other hand, in
model M2 with Min = 1016.5 GeV (upper right panel) and Min = 1018 GeV, λ = 0.6 (lower
left panel), the lower limits on m1 and m1/2 are weaker by about 1 TeV for model choices A
and B than for the NF choice. In model M3, the limits for choices A and B are about 900
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(700) GeV weaker than choice NF. Finally, in model M4 with Min = 1018 GeV and λ = 1
(lower right panel), τ (p → K+ν̄) exceeds the current lower limit everywhere in the regions
of the (m1/2, m1) planes displayed.

Flavor violation: We show in the upper panels of Fig. 6 (m1/2, m1) planes with values
of BR(µ → eγ) for model M1, which has Min = 1016.5 GeV and tanβ = 6, and the flavor
choices A (left) and B (right). As in Fig. 5, the region where there is no EWSB is shaded
pink and 0.06 < Ωχh

2 < 0.2 in the dark blue strip. The contours where the Higgs mass is
123, 124 and 125 GeV are shown here as black dot-dashed lines. The lower panels of Fig. 6
are the corresponding (m1/2, m1) planes for model M2 with Min = 1016.5 GeV, tan β = 7.
In all the panels λ = 0.6 and λ′ = 0.00001.
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Figure 6: As in Fig. 5, showing values of BR(µ → eγ) for the flavor choices A (left) and B (right) in
model M1 with Min = 1016.5 GeV and tanβ = 6 (upper panels) and in model M2 with Min = 1016.5 GeV,
tanβ = 7 and the indicated values of λ and λ′ (lower panels). The color-coding for BR(µ → eγ) is indicated
in the bars beside the panels.

For choice A BR(µ → eγ) is always below the current experimental upper limit of
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4.2 × 10−13 [43]. In the region of greatest interest along the blue relic density strip, the
branching ratio may exceed 10−17, but a small portion at low (m1/2, m1) where it reaches
10−16 is excluded by the proton decay limit. Moreover, BR(µ → eγ) decreases significantly
below the strip and at larger masses. The low values for the branching ratio arise primarily
from the choice of an embedding in which hE is diagonal at the EW scale (see Eq. (45)).

In contrast, for choice B the lepton Yukawa couplings are not diagonal at the EW
scale and we see in the right panel of Fig. 6 that BR(µ → eγ) is significantly larger,
with values above 10−16 becoming consistent with τ (p → K+ν̄), Mh and the relic dark
matter density. Indeed, BR(µ → eγ) is larger than 10−18 even at very large gaugino masses
> 10 TeV. We note that in this case that the dependence of BR(µ → eγ) on m1/2 is much
stronger than that on m1. Nevertheless, there is a stretch of the focus-point strip with
4.5TeV . m1/2 . 6TeV, compatible with the present limit on τ (p → K+ν̄) and the Higgs
mass, where µ → e conversion may be accessible to the PRISM experiment [52]. 16

In order to understand this behavior, we analyze a benchmark point in model M1 lying
on the relic density strip with m1/2 = 6000 GeV, which corresponds to m1 = 9070 GeV,
and a Higgs mass of Mh = 125.2 ± 0.9 GeV according to FeynHiggs 2.16.0. We show
in Table 1 the relevant mass parameter values in model M1 that are used to extract the
approximate values for τ (p → K+ν̄), BR(µ → eγ) and the electron EDM. As one can see,
there is essentially no difference in the selectron masses between cases A and B and only a
2% difference in the the smuon masses. As we discussed earlier, (m2

L)12 ≪ (m2
E)12 so that

aµeγL is suppressed. We also see that in all models (M1-M4), (m2
E)12 is within a factor of

two and (aE)22 is nearly identical between cases A and B. The difference seen in Fig. 6

between cases A and B is a result of a
(IIc)
µeγR (see Eq. (67)), which is proportional to (aE)21

and is more than a factor of 103 times larger in case B due to the choice of UE
R = V ∗

CKM

as opposed to UE
R =1 in case A. We note that the predictions for τ (p → K+ν̄) are similar

for flavor choices A and B, beyond the current limit but well within the projected reach of
Hyper-Kamiokande [37]. While the predictions for BR(µ → eγ) and the electron EDM differ
for flavor choices A and B, they lie significantly below the current limits and prospective
experimental sensitivities.

Similar behavior is found for model M2, shown in the lower two panels of Fig. 6. Along
the relic density strip (now at lower m1 relative to M1), the branching ratio ranges from
10−20 to a few ×10−19 for flavor choice A. As we saw for model M1, the branching ratio
is considerably larger for flavor choice B and may be as large O(10−16) while remaining
consistent with proton decay limits. A representative benchmark point along the relic
density strip at m1/2 = 6000 GeV for M2 is also given in Table 1, with m1 = 5950 GeV.
For this point Mh = 123.6± 0.7 GeV, which is consistent within the uncertainties with the
experimental value. In this case, we again see that the dominant difference in the branching
ratio between choices A and B is due to (aE)12. The predictions for τ (p → K+ν̄) are
again similar for flavor choices A and B, and are consistent with the current limit within
the current matrix element uncertainties. As in the case of model M1, the predictions for
BR(µ → eγ) and the electron EDM again differ for flavor choices A and B, while lying
significantly below the current limits.

Fig. 7 shows the values of BR(µ → eγ) found in models M3 (upper panels) and M4

16We note that our analysis ignores the possible effects of neutrino couplings, which are not constrained
in the SU(5) GUT. There is freedom in selecting how to incorporate them in the SU(5) theory, and they
could potentially increase BR(µ → eγ).
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M1: Min = 1016.5 GeV, λ = 0.6
Parameter A B

µ [GeV] 1022
M1 [GeV] 2010
M2 [GeV] 3983
mẽL [GeV] 3493 3493
mẽR [GeV] 2866 2866
mµ̃L

[GeV] 3494 3554
mµ̃R

[GeV] 2829 2873
(m2

E)12 [GeV]2 598 ei 0.36 832 e−i 0.40

(m2
E)31 [GeV]2 1.7× 104 e −i 2.8 2.3× 104 e −i 3.0

(m2
L)12 [GeV]2 1.7 e−i 0.87 1.7 e−i 0.87

(m2
L)13 [GeV]2 39 e i 1.9 39 e i 2.4

(aE)11 [GeV] 0.42 e −i 6.4×10−6
0.42 e −i 6.9×10−10

(aE)21 [GeV] 4.7× 10−5 e−i 0.21 0.04 e −i 0.002

(aE)22 [GeV] 16 e−i 1.3×10−5
16 e−i 1.4×10−6

(aE)33 [GeV] 640 e −i 3.1×10−10
640 e i 1.1×10−10

τ (p → K+ν̄) [yrs] 8.9× 1033 8.9× 1033

BR(µ → eγ) 1.4× 10−18 3.9× 10−17

de [e.cm] 4.0× 10−33 −5.9× 10−34

M2: Min = 1016.5 GeV, λ = 0.6
Parameter A B

µ [GeV] 1016
M1 [GeV] 1993
M2 [GeV] 3964
mẽL [GeV] 3504 3504
mẽR [GeV] 2831 2831
mµ̃L

[GeV] 3504 3571
mµ̃R

[GeV] 2829 2854
(m2

E)12 [GeV]2 140 e i 0.36 255 e −i 0.40

(m2
E)31 [GeV]2 3.9× 103 e −i 2.8 6.1× 103 e −i 3.1

(m2
L)12 [GeV]2 0.58 e i 2.28 0.58 e i 2.28

(m2
L)13 [GeV]2 13 e i 1.9 13 e i 2.3

(aE)11 [GeV] 0.094 e −i 3.7×10−6
0.094 e −i 4.8×10−10

(aE)21 [GeV] 4.2 ×10−6 e−i 0.16 0.048 e−i 4.0×10−4

(aE)22 [GeV] 11 e i 7.8×10−6
11 e −i 3.3×10−6

(aE)33 [GeV] 0.024 e −i 2.3×10−10
0.024 e −i 7.8×10−6

τ (p → K+ν̄) [yrs] 5.0× 1033 5.0× 1033

BR(µ → eγ) 7.9× 10−20 6.2× 10−17

de [e.cm] 4.8× 10−34 2.2× 10−35

Table 1: Benchmark points in models M1 and M2 with m1/2 = 6000 GeV. For M1, m1 = 9070 GeV, and
for M2, m1 = 5950 GeV. We list values of the parameters relevant for BR(µ → eγ) and the electron EDM
obtained with flavor choices A and B, as well as the corresponding predictions for τ (p → K+ν̄) ,BR(µ → eγ)
and the electron EDM.
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(lower panels), in flavor choice A (left panels) and B (right panels). In flavor choice A,
values of BR(µ → eγ) > 10−18 are compatible with the dark matter, Mh and τ (p → K+ν̄)
constraints in both models M3 (barely) and M4 (comfortably). In flavor choice B, BR(µ →
eγ) reaches higher values along the dark matter strip, with values > 10−16 being compatible
with both the Mh and τ (p → K+ν̄) constraints. In general, with flavor choice A the values
of BR(µ → eγ) decrease away from the dark matter strip, whereas with flavor choice B the
values of BR(µ → eγ) depend primarily on m1/2, with much less dependence on m1.

In Table 2, we show representative benchmark points for models M3 and M4 along the
relic density strip with m1/2 = 6000 GeV. For M3, m1 = 7850 GeV, giving Mh = 124.5±0.7
GeV and for M4, m1 = 9780 GeV, with Mh = 124.4± 0.7 GeV. We again see that the large
increase in (aE)12 in choice B relative toA accounts for the increase in BR(µ → eγ). In both
cases, τ (p → K+ν̄) should be within reach of the Hyper-Kamiokande experiment [37], but
the predictions for BR(µ → eγ) and the electron EDM are below the projected experimental
sensitivities for both flavor choices.

Electron EDM: In the upper panels of Fig. 8 we show the values of the electron EDM
(eEDM), de, calculated using SUSY FLAVOR [70] in model M1, presented in the corresponding
(m1/2, m1) plane used in Figs. 5 and 6. In the absence of flavor effects and in the absence
of complex phases in the supersymmetric parameters (which we do not consider here), the
EDM would be zero. Once the CKM matrix is introduced as a seed of flavor and CP
violation, the CKM phase propagates in all of the spectra, generating a non-zero eEDM.
The values of de displayed in Fig. 8 are for the flavor choices A (left) and B (right).

We see that the eEDM is generally larger for choice A reaching ∼ 10−32 e.cm in the
portion of the dark matter strip that is consistent with τ (p → K+ν̄) and Mh. We also see
that the eEDM is roughly a factor of 10 larger for case A than it is for case B. As one
can see from Table 1, the contribution from Eq. (80) in both cases A and B are similar.
However since Im(aE)11 is about four orders of magnitude larger for case A relative to case
B, the contribution from Eq. (81) boosts the eEDM in case A. For M1 and case A, indeed
the most important contributions come from (aE)11 and (aE)33, where

[
Im
{
(KE)k,1L(KE)

∗
k,1R

}]
11

∼ 0.5
[
Im
{
(KE)k,1L(KE)

∗
k,1R

}]
33

∼ −3× 10−13 . (84)

Due to the overall sign in Eq. (75), this is a positive contribution to the eEDM. How-
ever, for the choice B the contribution containing (aE)11 is negligible due to the smallness
of Im {(aE)11}, but the contribution containing (aE)31 becomes important, and we have
instead 17

−
[
Im
{
(KE)k,1L(KE)

∗
k,1R

}]
31

∼
[
Im
{
(KE)k,1L(KE)

∗
k,1R

}]
33

∼ −2 × 10−13 . (85)

Although all the other contributions in the cases A and B above are small, we keep them
in Eq. (77) and get with Eq. (82)

|de|A ∼ 2.3× 10−33 e.cm , |de|B ∼ 1.4× 10−33 e.cm . (86)

The reader should keep in mind that the approximation of Eq. (82) should give the right
order of magnitude, but the exact numerical factor is difficult to obtain with this approxi-
mation, due to the detailed structure of the complete 6× 6 diagonalization matrices KE.

17The ratio of the (31) component to the (33) component using the approximation in Eq. (77) is -0.3,
however, in the full numerical computatation it is slightly great than -1.
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M3: Min = 1018 GeV, λ = 0.6
Parameter A B

µ [GeV] 1076
M1 [GeV] 2181
M2 [GeV] 4332
mẽL [GeV] 4844 4844
mẽR [GeV] 4846 4846
mµ̃L

[GeV] 4844 4872
mµ̃R

[GeV] 4846 4936
(m2

E)12 [GeV]2 908 e i 0.36 1395 e −i−0.40

(m2
E)31 [GeV]2 2.6× 104 e −i 2.8 3.3× 104 e −i 3.1

(m2
L)12 [GeV]2 3.7 e i 2.3 3.7 e i 2.3

(m2
L)13 [GeV]2 82 e i 1.9 82 e i 2.2

(aE)11 [GeV] 0.21 e −i 6.2×10−6
0.21 e −i 5.7×10−10

(aE)21 [GeV] 0.00003 e −i 0.27 0.05 e −i 0.0006

(aE)22 [GeV] 14 e i 3×10−6
14 e −i 9.2×10−7

(aE)33 [GeV] 400 e i 1.0×10−11
400 e i 1.6×10−9

τ (p → K+ν̄) [yrs] 9.9× 1033 9.9× 1033

BR(µ → eγ) 5.5× 10−20 4.8× 10−18

de [e.cm] 7.1× 10−34 1.8× 10−34

M4: Min = 1018 GeV, λ = 1
Parameter A B

µ [GeV] 1071
M1 [GeV] 2184
M2 [GeV] 4337
mẽL [GeV] 4842 4842
mẽR [GeV] 4845 4845
mµ̃L

[GeV] 4845 4933
mµ̃R

[GeV] 4842 4867
(m2

E)12 [GeV]2 1123 e i 0.36 1691 e −i−0.40

(m2
E)31 [GeV]2 3.2× 104 e −i 2.8 4.6× 104 e −i 2.7

(m2
L)12 [GeV]2 4.6 e i 2.3 4.6 e i 2.3

(m2
L)13 [GeV]2 100 e i 1.9 100 e i 2.3

(aE)11 [GeV] 0.27 e −i 4.4×10−6
0.27 e −i 3.7×10−10

(aE)21 [GeV] 0.00003 e −i 0.28 0.051 e −i 0.0005

(aE)22 [GeV] 14 e i 2.7×10−6
14 e −i 8.3×10−7

(aE)33 [GeV] 380 e i 1.1×10−11
380 e i 1.6×10−9

τ (p → K+ν̄) [yrs] 2.7× 1034 2.7× 1034

BR(µ → eγ) 9.2× 10−20 4.4× 10−18

de [e.cm] 8.2× 10−34 3.4× 10−34

Table 2: Benchmark points in models M3 and M4 with m1/2 = 6000 GeV. For M3, m1 = 7850 GeV, and
for M4, m1 = 9780 GeV. We list values of the parameters relevant for BR(µ → eγ) and the electron EDM
obtained with flavor choices A and B, as well as the corresponding predictions for τ (p → K+ν̄) ,BR(µ → eγ)
and the electron EDM.
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Figure 7: As in Fig. 6, showing values of BR(µ → eγ) for the flavor choices A (left) and B (right) in model
M3 with Min = 1018 GeV, tanβ = 7, λ′ = 0.00001 and λ = 0.6 (upper panels), and model M4 with λ = 1
(lower panels). The color-coding for BR(µ → eγ) is indicated in the bars beside the panels.

This range of eEDM values is well below the experimental limit, and with flavor choice B
the eEDM remains below 10−33 e.cm along all the dark matter strip. Indeed, the eEDM falls
precipitously as the relic density strip is approached, changing sign as it passes through zero
in the thin cross-hatched region, where its magnitude is below 10−34 e.cm. We see in (85)
that

[
Im
{
(KE)k,1L(KE)

∗
k,1R

}]
31

> 0 in choice B, and so the opposite signs in (85) would
explain the change in sign in de with respect to choice A if in the exact diagonalization we
had ∣∣∣

[
Im
{
(KE)k,1L(KE)

∗
k,1R

}]
31

∣∣∣ >
∣∣∣
[
Im
{
(KE)k,1L(KE)

∗
k,1R

}]
33

∣∣∣ , (87)

as is the case in the full numerical calculation, causing de to become negative. The value
of de is reduced in choice B, with respect to A, due to a cancellation. We find that the
values of

[
Im
{
(KE)k,1L(KE)

∗
k,1R

}]
33

at the benchmark point are similar in the two flavor

choices, being equal to −6.1 × 10−13 and −6.2 × 10−13 for choices A and B, respectively.

32



1e−35

1e−34

1e−33

1e−32

1e−31

1e−30

1e−29

12
2

12
2

12
3

12
3

1
2
4

1
2
4

12
4

1
2
5

1
2
5

1
2
5

12
6

12
6

1
2
6

12
7

1
2
7

12
8 1

2
8

12
9

1
2
9
1
3
0

13
1

4 6 8 10

4

5

6

7

8

9

10

m1/2 (TeV)

m
1

(T
e
V

)

 λ = 0.6, λ' = 0.00001, tan β = 6, μ > 0

124

123

125

Min = 1016.5 GeV

4 6 8 10

4

5

6

7

8

9

10

m1/2 (TeV)

m
1

(T
e
V

)

 λ = 0.6, λ' = 0.00001, tan β = 6, μ > 0

124

123

125

Min = 1016.5 GeV

1e−35

1e−34

1e−33

1e−32

1e−31

1e−30

1e−29

4 6 8 10

4

5

6

7

8

9

10

m1/2 (TeV)

m
1

(T
e
V

)

124123

125

 λ = 0.6, λ' = 0.00001, tan β = 7, μ > 0

Min = 1016.5 GeVMin = 1016.5 GeV

1e−35

1e−34

1e−33

1e−32

1e−31

1e−30

1e−29

4 6 8 10

4

5

6

7

8

9

10

m1/2 (TeV)

m
1

(T
e
V

)

124123

125

 λ = 0.6, λ' = 0.00001, tan β = 7, μ > 0

Min = 1016.5 GeVMin = 1016.5 GeV

1e−35

1e−34

1e−33

1e−32

1e−31

1e−30

1e−29

Figure 8: As in Fig. 5, showing values of the electron EDM for the flavor choices A (left) and B (right) in
model M1 with Min = 1016.5 GeV and tanβ = 6 (upper panels) and in model M2 with Min = 1016.5 GeV,
tanβ = 7 and the indicated values of λ and λ′ (lower panels). The color-coding for the electron EDM is
indicated in the bars beside the panels.

This accounts for the cancellation in B, but not in A, and we find that the sign of the eEDM
at our benchmark point is indeed opposite in choices A and B.

The lower panels of Fig. 8 show the values of the eEDM in model M2 with the flavor
choices A (left) and B (right), presented in the corresponding (m1/2, m1) planes displayed
in Figs. 5 and 6. We see again that larger values of the eEDM are found with flavor choice
A than with choice B: < 10−33 e.cm compared with . 10−34 e.cm. For M2, the contribution
from (aE)11 dominates over the contribution from (aE)33:

|
[
Im
{
(KE)k,1L(KE)

∗
k,1R

}]
11

∼ 3.3|
[
Im
{
(KE)k,1L(KE)

∗
k,1R

}]
33

∼ 3.6× 10−14, (88)

whereas for choice B

|
[
Im
{
(KE)k,1L(KE)

∗
k,1R

}]
31

∼ 0.4|
[
Im
{
(KE)k,1L(KE)

∗
k,1R

}]
33

∼ 7× 10−15, (89)
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and we obtain from Eq. (82)

|de|A ∼ 9.8× 10−35 e.cm, |de|B ∼ 2.2× 10−35 e.cm. (90)

Thus this analytic approximation accounts for an enhancement by a factor of roughly 4.5,
the full numerical ratio between A and B being about 22.

In Fig. 9 we show the values of the electron EDM in models M3 (upper panels) and M4
(lower panels), on the corresponding (m1/2, m1) planes displayed in Figs. 5 and 7, for flavor
choices A (left panels) and B (right panels). We see that the eEDM is generally larger
in model M3 than in model M4, and larger with flavor choice A than with flavor choice
B. However, along the dark matter strips the τ (p → K+ν̄) constraint generally imposes
de < 10−33 e.cm, except in the case of model M4 with choice A, for which de may reach a
few ×10−33 e.cm. Note that M4, for both cases A and B, all the elements (aE)11, (aE)31
and (aE)33 are important.

4.3 Models in which only H̄ is twisted

As mentioned above, unless H̄ is twisted we find no solutions for which the relic density,
Higgs mass and proton lifetime are consistent with experiment. In this Section, we consider
models in which only H̄ twisted, i.e., we leave H untwisted so that m0 = m1 = 0, whereas
m2 = m3/2. As in the previous Section, we consider two choices for the modular weights,
one in which the modular weights take values such that all tri- and bi-linear terms vanish,
and another in which the weights all vanish, leaving some of the tri- and bi-linear terms
non-zero. These are labelled models M5 and M6, respectively.

Model M5 In this model we fix Min = 1018 GeV, tan β = 7, and µ > 0. The chosen
values of the couplings of the adjoint Higgs supermultiplets are λ = 1 and λ′ = 0.00001.
We show in the left panel of Fig. 10 the (m1/2, m2) plane for this model, where we recall
that m2 = m3/2 when only H̄ is twisted. There is no EW symmetry breaking (EWSB) in
the triangular region shaded pink in the upper left corner, i.e., the solution for the MSSM
µ parameter has µ2 < 0. As in Fig. 5, the red dot-dashed curves show contours of the
Higgs mass as calculated using FeynHiggs 2.16.0 [68], and there is a dark blue shaded
strip just below the no-EWSB region, corresponding to the focus point [69], where the relic
density taking values in the range 0.06 < Ωχh

2 < 0.2. In addition to this strip, there is a
band at lower m2, which corresponds to a funnel where rapid annihilation via direct-channel
H/A poles when mχ ≃ MH/A/2 brings the relic density into this range. This band actually
consists of two unresolved narrow strips with mχ > and mχ < MH/A/2, between which the
relic density takes lower values. We note that this funnel strip ends when Mh < 124 GeV.
Beyond this endpoint, the suppression in the annihilation cross-section due to the large
value of m1/2 is strong enough that the relic density always exceeds the observed value, i.e.,
Ωχh

2 > 0.12, even on the H/A poles.

Model M6 The corresponding results for model M6 are shown in the right panel of Fig. 10.
In this case, A10 = Aλ = BH = m2, and the other bi- and tri-linear terms vanish at Min.
The dependence of the A-terms on m2 induces a weak dependence of Mh on m2, as is readily
seen by comparing the Higgs mass contours in the two panels of Fig. 10. Importantly, in
this case we do not find the focus-point strip along the boundary of the no-EWSB region.
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Figure 9: As in Fig. 5, showing values of of the electron EDM for the choices A (left) and B (right) in
model M3 with Min = 1018 GeV, tanβ = 7, λ′ = 0.00001 and λ = 0.6 (upper panels) or model M4 with
λ = 1 (lower panels). The color-coding for the electron EDM is indicated in the bars beside the panels.

Indeed, in this case m2
A < 0, where mA is the pseudoscalar Higgs mass, everywhere in the

pink shaded region. There is, nevertheless, a funnel strip at lower m2, which extends only
as far as m1/2 ∼ 3 TeV, where Mh ∼ 123 GeV in this case.

Proton lifetime: The proton lifetime limits for M5 are weaker than those in M6. In
both cases, there is little flavor dependence and the proton lifetimes for cases A and B are
nearly identical and also similar to the NF case. In the case of M5, we only see two sets
of lines, as the −1σ variations in the hadronic matrix elements, which increase the proton
lifetime for fixed supersymmetric model parameters, push the contour for τp = 6.6 × 1033

yrs to low values of m1/2 < 2 TeV, below its displayed range and where Mh is too small.
There is considerable parameter space in model M5 where the relic density Ωχh

2 ≈ 0.12 and
the proton lifetime constraint is satisfied. In contrast, in model M6 only the portion of the
funnel strip between m1/2 = 2.5 and 3 TeV satisfies the proton decay constraint when the
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Figure 10: Examples of (m1/2,m2) planes for Models M5 and M6 with Min = 1018 GeV, λ = 1, and
tanβ = 7. We assume µ > 0 in both panels. As in Fig. 5, in the regions shaded pink there is no EWSB, and
in the blue strips below these regions the relic density is in the range 0.06 < Ωχh

2 < 0.2. The red dot-dashed
curves are Higgs mass contours, with the masses labelled in GeV. For each flavor choice, in the left panel
there are two contours for the proton lifetime, τ (p → K+ν̄), corresponding to the central values and −1σ
variations in the hadronic matrix elements, with the +1σ curves invisible at lower values of m1/2. In the
right panel there are three contours for the proton lifetime, corresponding to the central values and ±1σ
variations in the hadronic matrix elements. The predictions of flavor choices A and B are shown as the
solid and dashed blue curves, respectively, and those of the NF choice are shown as the blue dotted curves.

matrix elements are varied by ±1σ.
Flavor violation: Values of the branching ratio BR(µ → eγ) for models M5 and M6 are

shown in Fig. 11 (upper and lower panels, respectively) for flavor choices A and B (left and
right panels, respectively). As was the case in model M1, for flavor choice A, the branching
ratio in model M5 exceeds 10−17 only at very low m1/2, in this case for m1/2 < 1.4 TeV,
for which Mh < 121 GeV. For the portion of the focus-point strip with Mh > 123 GeV,
BR(µ → eγ) < 10−18. Furthermore, the branching ratio is over an order of magnitude
smaller in the funnel strip than it is in the focus-point strip. In contrast, for choice B, there
is little difference in BR(µ → eγ) between the two relic density strips. We again see that
overall the branching ratio for choice B is significantly larger than for choice A. We provide
in Table 3 the parameters of a benchmark point in model M5 lying on the relic density strip
with m1/2 = 6000 TeV, m2 = 8385 GeV and Mh = 124.4 ± 0.7 GeV. Once again, we see
that (aE)21 is significantly larger for choice B than for choice A, leading to the increased
branching ratio for µ → eγ.

In the case of model M6, BR(µ → eγ) is generally smaller than in M5 for flavor choice
A, though it does exceed 10−16 for m1/2 < 1.2 TeV. For flavor choice B, the branching
ratio exceeds 10−15 for m1/2 < 2 TeV, in the unshaded the region. At the tip of the funnel
strip, the branching ratio exceeds 10−16. In a portion of this strip that is compatible with
the present limit on τ (p → K+ν̄) and the Higgs mass, µ → e conversion may be accessible
to the PRISM experiment. [52] In this case, because of the lack of a focus-point strip,
we provide also in Table 3 the parameters of a benchmark point on the funnel strip with
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m1/2 = 3000 TeV and m2 = 4470 GeV, corresponding to Mh = 123.2 ± 0.8 GeV. The
differences between the branching ratios in choices A and B can again be attributed to the
increase in (aE)21 for choice B seen in the Table.
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Figure 11: As in Fig. 6, showing values of BR(µ → eγ) in the (m1/2,m2) planes for the flavor choices A

(left) and B (right) in model M5 (upper panels) and model M6 (lower panels) both with Min = 1018 GeV,
tanβ = 7, λ′ = 0.00001 and λ = 1. The color-coding for BR(µ → eγ) is indicated in the bars beside the
panels.

Electron EDM: Predictions for the electron EDM in models M5 (upper panels) and M6
(lower panels) are shown in Fig. 12, again with flavor choice A in the left panels and flavor
choice B in the right panels. Predictions are everywhere significantly below the present
experimental sensitivity. Overall, we see that the predicted values are somewhat smaller in
model M6 than in model M5, and somewhat larger with choice A than with choice B. In
the most favorable case, namely model M5 with flavor choice A, the electron EDM varies
between 10−32 e.cm and 10−34 e.cm along the focus-point strip, and between 10−32 e.cm and
10−33 e.cm along the rapid-annihilation strip. In the least favorable case, namely model M6
with flavor choice B, the electron EDM is below 10−35 e.cm along all the rapid-annihilation
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M5: Min = 1018 GeV, λ = 1
Parameter A B

µ [GeV] 1013
M1 [GeV] 2184
M2 [GeV] 4336
mẽL [GeV] 5024 5024
mẽR [GeV] 4485 4485
mµ̃L

[GeV] 5024 5125
mµ̃R

[GeV] 4485 4505
(m2

E)12 [GeV]2 1012 e i 0.36 1462 e −i 0.40

(m2
E)31 [GeV]2 2.9× 104 e −i 2.8 3.5× 104 e i 3.1

(m2
L)12 [GeV]2 0.71 e −i 2.3 0.71 e −i 2.3

(m2
L)13 [GeV]2 16 e i 1.9 12 e i 1.6

(aE)11 [GeV] 0.2 e −i 6×10−6
0.2 e −i 5.5×10−10

(aE)21 [GeV] 0.00003 e −i 0.28 0.052 e −i 0.0005

(aE)22 [GeV] 14 e i 2.7×10−6
14 e −i 8.6×10−7

(aE)33 [GeV] 380 e i 1.2×10−11
380 e i 1.6×10−9

τ (p → K+ν̄) 2.8× 1034 2.8× 1034

BR(µ → eγ) 1.5× 10−19 4.7× 10−18

de [e.cm] 4.8× 10−34 5.2× 10−35

M6: Min = 1018 GeV, λ = 1
Parameter A B

µ [GeV] 2679
M1 [GeV] 1073
M2 [GeV] 2130
mẽL [GeV] 2525 2525
mẽR [GeV] 2221 2221
mµ̃L

[GeV] 2525 2577
mµ̃R

[GeV] 2222 2226
(m2

E)12 [GeV]2 581 e i 0.36 800 e −i 0.40

(m2
E)31 [GeV]2 1.6× 104 e −i 2.8 1.9× 104 e i 3.1

(m2
L)12 [GeV]2 0.0019 e i 3.0 0.0019 e i 3.0

(m2
L)13 [GeV]2 9.4× 10−3 e i 0.79 7.9× 10−3 e i 0.59

(aE)21 [GeV] 0.00006 e −i 0.36 0.027 e −i 0.0007

(aE)11 [GeV] 5.9× 10−2 e −i 4.7×10−6
5.9× 10−2 e i 10−9

(aE)22 [GeV] 6.3 e i 4×10−7
6.3 e −i 3×10−7

(aE)33 [GeV] 130 e i 1.5×10−10
130 e i 7.7×10−10

τ (p → K+ν̄) 6.96× 1033 6.96× 1033

BR(µ → eγ) 5.1× 10−19 1.43× 10−16

de [e.cm] 7.6× 10−34 5.8× 10−35

Table 3: Benchmark points in model M5 with m1/2 = 6000 GeV and in model M6 with m1/2= 3000 GeV.
For M5, m2 = 8385 GeV, and for M6, m2 = 4470 GeV. We list values of the parameters relevant for
BR(µ → eγ) and the electron EDM obtained with flavor choices A and B, as well as the corresponding
predictions for τ (p → K+ν̄) ,BR(µ → eγ) and the electron EDM.
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strip. In the case of M6, the approximation for |de| we use in Eq. (77) gives the correct order
of magnitude for choice A, but falls short for choice B by an about an order of magnitude,
as the contributions of other elements in the matrix (aE)bc must be taken into account when
determining the total value of de.
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Figure 12: As in Fig. 9, showing values of of the electron EDM in the (m1/2,m2) planes for the choices
A (left) and B (right) in model M5 (upper panels) and in model M6 (lower panels) with Min = 1018 GeV,
tanβ = 7, λ′ = 0.00001 and λ = 1. The color-coding for the electron EDM is indicated in the bars beside
the panels.

As for the previous benchmarks, in both models M5 and M6 τ (p → K+ν̄) is within
reach of Hyper-Kamiokande [37], whereas BR(µ → eγ) and the electron EDM lie below the
prospective future experimental reaches.

5 Overview and Conclusions

We have studied in this paper the phenomenological scope for SU(5) super-GUTs, in which
variants of no-scale boundary conditions are imposed on the soft supersymmetry-breaking
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parameters at some input scale Min > MGUT. Specifically, the soft supersymmetry-breaking
scalar masses for the squarks and sleptons vanish at Min, whereas those for the 5 and 5
Higgs supermultiplets depend whether they have twisted boundary conditions at Min, as
seen in (15), where other details of the boundary conditions such as modular weights can
be found.

In addition to these input conditions, the low-energy phenomenology of such models
depends on the magnitude of the hierarchy betweenMGUT andMin, for which we consider the
illustrative values of 1016.5 and 1018 GeV. We consider the constraints on such no-scale SU(5)
models that are imposed by the cosmological density of cold dark matter, τ (p → K+ν̄) and
Mh. We find that the Higgs field responsible for the charge-2/3 quark masses must be
twisted, while twisting the Higgs responsible for the charge-1/3 and charged-lepton masses
is optional.

Within this general framework, we have considered six specific choices for the input
boundary conditions. In addition to Min, modular weights and GUT Higgs trilinear cou-
plings - see (1) - these include possible dimension-5 effects on GUT unification. We em-
phasize also that the super-GUT running between Min and MGUT is sensitive to the way
in which the MSSM matter fields are embedded into GUT supermultiplets, and specifically
the underlying origin of CKM flavor mixing. For each of these six no-scale models, we have
considered two choices for flavor mixing, which yield predictions for BR(µ → eγ) and the
electron EDM that are quite different, but less so for τ (p → K+ν̄). We also contrast their
predictions for τ (p → K+ν̄) with those made when neglecting off-diagonal entries in the
Yukawa coupling matrices. Though the differences in τ (p → K+ν̄) between the two flavor
choices are small, the differences from when the mixing is neglected may be larger than
the uncertainties associated with hadronic matrix elements in some cases. We note that
the ranges of sparticle mass parameters favored by the dark matter density and Mh (as
calculated using FeynHiggs 2.16.0) are generally beyond the current τ (p → K+ν̄) limit
as well as the reach of the LHC.

As can be seen in the various panels of Figs. 6, 7 and 11, the predictions for BR(µ → eγ)
are strongly dependent on the flavor choice as well as the choice of no-scale model. However,
in all cases except portions of the dark matter strips in models M1 and M6 with flavor choice
B, the value of BR(µ → eγ) lies significantly below the current and projected experimen-
tal sensitivities. The electron EDM is also below the current and projected experimental
sensitivities, as can be seen in Figs. 8, 9 and 12. On the other hand, there are significant
regions of parameter space for all models where τ (p → K+ν̄) is within reach of the Hyper-
Kamiokande experiment. As seen in the Tables, this is in particular the case for all the
benchmark points highlighted there.

These examples demonstrate explicitly that there is no supersymmetric flavor prob-

lem in no-scale models, the reasons being that the no-scale boundary condition that every
soft supersymmetry-breaking matter scalar mass vanishes at the input scale Min is flavor-
universal, and that the leading-order renormalization by gauge interactions is also flavor-
universal. Nevertheless, τ (p → K+ν̄) may well be within reach.
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