
Chapter 2
Beam Dynamics

E. Wilson and B. J. Holzer

2.1 Linear Transverse Beam Dynamics

Now let us look in detail at the motion of particles in the transverse coordinates of
the coordinate system defined in Fig. 2.1.

2.1.1 Co-ordinate System

The guide field of a synchrotron is usually vertically directed, causing the particle to
follow a curved path in the horizontal plane (Fig. 2.1). The force guiding the particle
in a circle is horizontal and is given by:

F = e· v × B, (2.1)

where:

v is the velocity of the charged particle in the direction tangential to its path,
B is the magnetic guide field.

The guide field inside a dipole magnet is uniform and the ideal motion of the
particle is simply a circle of (local) radius of curvature, ρ(s). The trajectory of an
ideal particle (ideal in energy and without any amplitude) that is defined by the
arrangement of the dipole magnets is called design orbit. The machine is usually
designed with this orbit at the centre of its vacuum chamber. Now there is no such
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Fig. 2.1 Charged particle orbit in magnetic field

thing as an ideal particle. Still, we shall suppose that it is possible to find an orbit or
curved path for the non-ideal particle which closes on itself around the synchrotron,
which we call the closed or equilibrium orbit and it should be close enough to the
ideal design orbit.

2.1.2 Displacement and Divergence

A beam of particles enters the machine as a bundle of trajectories spread about the
ideal orbit. At any instant a particle may be displaced horizontally by x and vertically
by z from the ideal position and may also have divergence angles horizontally and
vertically:

x ′ = dx/ds, and z′ = dz/ds. (2.2)

The divergence would cause particles to leave the vacuum pipe except for the
carefully shaped field which restores them back towards the beam centre so that
they oscillate about the ideal orbit. The design of the restoring fields determines the
transverse excursions of the beam and the size of the cross section of the magnets
and is therefore of crucial importance to the cost of a project.

2.1.3 Bending Magnets and Magnetic Rigidity

The design of a synchrotron; the diameter of the ring and its sheer size and cost for
a given energy is driven by the fact that bending particle trajectories depends on a
magnetic rigidity. The rigidity increases with momentum and is a function of the
bending field which, for room temperature magnets, saturates at about 2 T.
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Fig. 2.2 Vector diagram showing differential changes in momentum for a particle trajectory

We will now briefly derive an expression for the magnetic rigidity of a relativistic.
A particle has a relativistic momentum vector p and travels perpendicular to a field
B which is into the plane of the diagram (Fig. 2.2).

We write the Lorentz force on the particle on its circular path as

FLorentz = e ∗ (v × B)

Assuming an idealized homogeneous dipole magnet along the particle orbit,
having pure vertical field lines, the condition for a perfect circular orbit is defined
as equality between this Lorentz force and the centrifugal force.

F centrif ugal = γmv2

ρ

This yields the following condition for the idealized ring:

Bρ = p

e

where we are referring to protons and have accordingly set q = e. We conclude
that the beam rigidity Bρ, given by the magnetic field and the size of the machine,
defines the momentum of a particle that can be carried in the storage ring, or in
other words, it ultimately defines, for a given particle energy, the magnetic field of
the dipole magnets and the size of the storage ring.

We really should use the units Newton-second for p and express e in Coulombs
to give (Bρ) in Tesla·metres. However, in charged particle dynamics we often talk
in a careless way about the ‘momentum’ pc. This actually has the dimensions of an
energy and is expressed in units of GeV.
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Fig. 2.3 Geometry of a particle trajectory in a bending magnet of length � and deflecting angle θ

A useful rule of thumb formula based on these units is:

Bρ [T · m ] = 3.3356 pc [GeV ] . (2.3)

2.1.4 Particle Trajectory in a Dipole Bending Magnet

The trajectory of a particle in a bending magnet or dipole of length � is shown in
Fig. 2.3. Usually the magnet is placed symmetrically about the arc of the particle’s
path. One may see from the geometry that:

sin (θ/2) = �

2�
= �B

2 (B�)
, (2.4)

and, if θ << π/2

θ ≈ �B

(B�)
. (2.5)

So the bending angle provided by a dipole magnet is given by the ration of its
integrated field strength and the beam rigidity.
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Fig. 2.4 Two views of a sphere rolling down a gutter as it is focused by the walls

2.1.5 Weak Focusing

We have mentioned that cyclotrons and early synchrotrons relied on weak focusing
to constrain circulating particles within the vacuum chamber. In order to provide
this, the vertical guide field has a slight negative gradient in the radial direction
around the rim of the accelerator. The field lines belly out from the outer gap of
the magnet. It can be shown, by applying ∇ × B = 0, that there will be horizontal
field components in this region. These produce vertically directed forces on errant
particles causing them to oscillate about the median plane in a potential well (Fig.
2.4).

The motion is analogous to a small sphere rolling down a slightly inclined gutter
with constant speed. Figure 2.4 shows two views of this motion and from the bottom
view we recognise the motion as a sine wave. Note too that the sphere makes four
complete oscillations along the gutter. In the language of accelerators, its motion
has a wave number or “tune”, Q = 4.

To complete the analogy of a weak focusing synchrotron we imagine that we
bend the gutter into a circle rather like the brim of a hat. We provide the necessary
instrumentation to measure the displacement of the sphere from the centre of the
gutter each time it passes a given mark on the brim and we also have a means
to measure its transverse velocity. With the aid of a computer, we might convert
this information into the divergence angle, which is used as vertical axis in Fig.
2.5:

x ′ = dx

ds
= v⊥

v‖
. (2.6)

We can make a ring shaped gutter out of a slightly different length of gutter
than is shown so that Q is not an integer. We can plot a point for each arrival of
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Fig. 2.5 The elliptical locus of a particle’s history in phase space as it circulates in a synchrotron

the sphere in a diagram of x′ against x which we call a ‘phase space diagram’ of
transverse motion. The sphere has a large transverse velocity as it crosses the axis
of the gutter and has almost zero transverse velocity as it reaches its maximum
displacement.

If we plot these ‘observations’ they will be an ellipse (Fig. 2.5) and the phase
of the oscillator will advance by Q evolutions each time the particle returns.
Of course, only the fractional part of Q may be deduced from our observations
since our measurements do not reveal what happens round the rest of the hat’s
brim.

Now let us use the analogy to define some of the transverse dynamical quantities
of a particle beam. The area of the ellipse is a measure of how much the particle
departs from the ideal trajectory, represented in the diagram by the origin.

Area = πε [mm · rad] . (2.7)

In accelerator notation we use ε, the product of the semi-axes of the ellipse as a
measure of the area called the emittance. The emittance is usually quoted in units
of π mm·mradians. Thus if the semi-axes are 1 mm and 1 mrad the emittance will
be 1 mm·mradian but the area will be π mm·mradian. The maximum excursion in
displacement, the major axis, of the ellipse is defined as:

x̂ = √
εβ, (2.8)

At locations where the beta function reaches an extremum, i.e. α = 0, we obtain
hence

x̂ ′ = √
ε/β. (2.9)
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We shall see that β (later to be called the envelope or betatron function) is a
property of the gutter, not the beam. In the synchrotron it varies around the ring
and is the envelope function we have plotted in Fig. 2.10 and again in Fig. 2.11.
By analogy, the “brim of the hat” which represents the alternating gradient focusing
system shown in this figure will vary its width and curvature around the crown and
β will follow this variation in some way.

2.1.6 Alternating Gradient Focusing

In Chap. 1 we described a major break-through in the design of synchrotrons: the
discovery of alternating gradient (AG) focusing (see [1] for an excellent summary
of the dynamics of AG focussing). This allowed designers to use much stronger
focusing systems with considerable savings in the space needed for the beam cross
section.

The principle is shown in Fig. 2.6 which depicts an optical system in which
each lens is concave in one plane while convex in the other and they alternate. It
is possible, even with lenses of equal strength, to find a ray which is always on
axis at the D lenses in the horizontal plane and therefore only sees the F lenses.
To appear like Fig. 2.6 the spacing of the lenses would have to be 2f. If the ray
is also central in the lenses which are vertically defocusing, the same condition
will apply simultaneously in the vertical plane. At least one particular particle
or trajectory corresponding to this ray will never be defocused and be contained
indefinitely.

The alternating gradient idea will work even when the rays in the D lenses do not
pass exactly at their centre and the lenses are not spaced by precisely 2f. In fact it is
sufficient for the lens strengths and spacing to be chosen to ensure that the particle
trajectories tend to be closer to the axis in D lenses than in F lenses as shown in Fig.
2.10.

Fig. 2.6 Optical analogy with an alternating pattern of lenses

http://dx.doi.org/10.1007/978-3-030-34245-6_1
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2.1.7 Quadrupole Magnets

The first alternating gradient synchrotorns used alternating magnetic lenses formed
by bending magnets having the same vertical guide field but a radial gradient of
alternating sign. In a modern synchrotron the functions of guiding and focussing
the beam are separated. The dipole magnets which do the guiding have no gradient.
The principal focusing elements are quite a different kind of magnet with four poles
which produce gradient but no bending. The poles of these quadrupole magnets are
truncated rectangular hyperbolae and alternate in polarity around the aperture circle
which just touches the poles.

Figure 2.7 shows a particle’s view of the fields and forces in the aperture of a
quadrupole as it passes through normal to the plane of the paper. The field shape
is such that it is zero on the axis of the device but its strength rises linearly with
distance from the axis. This can be seen from a superficial examination of Fig. 2.7 if
we remember that the product of field and length of any field line joining the poles
is a constant. Symmetry tells us that the field is vertical in the median plane (and
purely horizontal in the vertical plane of asymmetry). The field must be downwards
on the left of the axis if it is upwards on the right.

The horizontal focusing force, −evBz, has an inward direction on both sides
and, like the restoring force on a weight suspended from a spring, rises linearly
with displacement, x. The strength of the quadrupole is characterised by its gradient
dBz/dx normalised with respect to magnetic rigidity:

k = 1

(B�)

dBz

dx
. (2.10)

Fig. 2.7 Components of field and force in a magnetic quadrupole. Positive ions approach the
reader on paths parallel to the s axis (orthogonal to x and z) [2]
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The angular deflection given to a particle passing through a short quadrupole of
length, � and strength k, at a displacement x is therefore:

Δx ′ = θ = �B/ (Bρ) = �B′x/ (Bρ) = �kx. (2.11)

The use of x′ to indicate the divergence angle of a trajectory is defined in Fig.
2.5. Compare this with a converging lens in optics:

Δx ′ = −x/f (2.12)

and we see that the focal length of a horizontally focusing quadrupole is

f = −1/ (k�) (2.13)

The particular quadrupole shown in Fig. 2.7 would focus positive particles
coming out of the paper or negative particles going into the paper in the horizontal
plane. A closer examination reveals that such a quadrupole deflects particles with
a vertical displacement away from the axis—vertical displacements are defocused.
This can be seen if Fig. 2.7 is rotated through 90◦.

2.1.8 The Equation of Motion

Earlier we derived an expression for the change in divergence of a particle passing
through the quadrupole. A horizontally focusing quadrupole (which is at the same
time vertically defocusing) has a negative k.

We first look at the vertical plane. The angular deflection given to a particle
passing through a short quadrupole of length ds and strength k at a displacement
z is therefore:

dz′ = −kzds. (2.14)

From this we can deduce a differential equation for the motion

z′′ + k(s)z = 0. (2.15)

Here we would like to make a clear statement: While inside a lattice element,
say a quadrupole lens, the normalised gradient k is constant and we get a equation
that we know from Hook’s law in classical mechanics, (see Eq. 2.12), the situation
now is more general. We allow k(s) to change, while our particles are running
through the accelerator. The corresponding equation (2.15) is called Hill’s Equation,
a second order linear equation with a periodic coefficient, k(s) which describes the
distribution of focusing strength around the ring. The above form of Hill’s equation
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applies to the motion in the vertical plane while in the horizontal plane the effect of
the dipole magnets has to be included:

x ′′ +
[

1

ρ2(s)
− k(s)

]
x = 0. (2.16)

Here the sign in front of k(s) is reversed so that the quadrupole focuses. The extra
focusing term 1/ρ2 due to the curvature of the orbit can be significant in small rings.
In the old constant gradient synchrotrons, this weak focusing term was the only form
of horizontal focusing.

We see in Fig. 2.10, the pattern of one cell of a simple synchrotron lattice—a
pattern which is repeated many times around the circumference as may be seen in
Fig. 2.11 which shows—in addition to the focusing and defocusing lenses also the
bending magnets—bending magnets. Within this pattern of dipole and quadrupole
focusing and defocusing (F and D), particles make betatron oscillations within the
envelopes described by βx and βz, or more precisely, the square roots of these
quantities (here we use the variable y to represent either the horizontal or the vertical
coordinate, x or z)

y = √
εβ(s) sin (φ(s) + φ0) . (2.17)

If one tries to verify that this is the solution of Hills Equation an important and
necessary condition emerges:

φ′ = 1/β (2.18)

From which we see that 2πβ is the local wavelength of the transverse oscilla-
tions.

2.1.9 Matrix Description

Usually in alternating gradient (AG) machines, the ring is a repetitive pattern of
focusing fields that we call the “lattice”. Each lattice element may be expressed
by a matrix and whole sections of the ring which transport the beam from place
to place may be represented as the product matrix of the single element matrices
involved, which makes the description of particle trajectories very simple and very
elegant at the same time. Any linear differential equation, like Hill’s Equation, has
solutions which can be traced from one point, s1, to another, s2, by a 2 × 2 matrix,
the transport matrix:

(
y (s2)

y ′ (s2)

)
=

(
a b

c d

) (
y (s1)

y ′ (s1)

)
= M21

(
y (s1)

y ′ (s1)

)
. (2.19)
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The transport matrix M21 has a rather simple form for each focusing quadrupole
that the particle encounters and for the drift length between quadrupoles and it
is easy to compute the four elements numerically once we define the length and
focusing strength. We can trace particles by simply forming the product of these
elementary matrices. But there is also a general relation between the elements a, b,
c, d and the amplitude and phase of transverse motion between any two points. Each
term in M21 can be expressed as a function of β(s) and φ(s). The functions of β(s)
and φ(s) may be calculated by comparing the numerical result of multiplying the
individual matrices for quadrupoles and drift lengths with what we know must be
the general form of each element.

As a first step, we derive the general form of a periodic transport matrix.
To simplify the notation we drop the explicit dependence of β and φ on s from the

expressions—we will just have to remember that they vary with s. We also introduce
a new quantity:

w = √
β. (2.20)

just to avoid too many terms in what follows.
In this new notation we can write the solution of the Hill Equation:

y = ε1/2w cos (ϕ + φ0) . (2.21)

Taking the derivative and substituting ϕ′ = 1/β = 1/w2 we have:

y ′ = ε1/2w′ cos (ϕ + φ0) − ε
1
2

w
sin (ϕ + φ0) . (2.22)

Next we substitute these explicit expressions for y and y′ in both sides of the
matrix equation. We do this first with the initial condition ϕ0 = 0, this is the so-called
‘cosine’ solution, and then we do it again for the ‘sine’ solution with ϕ0 = π /2. This
is exactly equivalent to tracing the paraxial and central rays through an optical lens.
We write φ2 − φ1 = φ for each case. Each of the two solutions give us two equations
for y and y′ and thus we obtain four simultaneous equations which can be solved for
a, b, c, d in terms of w, w′, and ϕ. The result is the most general form of the transport
matrix between the positions s1 and s2 :

M12 =
( w2

w1
cos ϕ − w2w

′
1 sin ϕ w1w2 sin ϕ

− 1+w1w
′
1w2w

′
2

w1w2
sin ϕ −

(
w′

1
w′

2
− w2

w1

)
cos ϕ w1

w2
cos ϕ + w1w

′
2 sin ϕ

)

.

(2.23)

This rather formidable looking expression simplifies a lot, if we refer to a full
circle, in other words, if we restrict M to apply between two identical points
in successive turns or cells of a periodic structure. Then w2 = w1, w′

2 = w′
1,
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and ϕ to become μ, the phase advance per cell. The matrix for one period is
now:

M =
(

cos μ − ww′ sin μ w2 sin μ

− 1+w2w′2
w2 sin μ cos μ + ww′ sin μ

)

. (2.24)

Next we invent some new functions of β:

β = w2,

α = −ww′ = −β ′
2 ,

γ = 1+(ww′)2

w2 = 1+α2

β
.

(2.25)

These functions (which are not the same as the parameters used in special
relativity!) are a complete and compact description of the dynamics. The matrix
now becomes even simpler:

M =
(

cos μ + α sin μ β sin μ

− γ sin μ cos μ − α sin μ

)
=

(
a b

c d

)
. (2.26)

This is the Twiss matrix. It is the basic matrix for periodic lattices and should be
memorized.

We can imagine that if we can only find an independent way of computing the
numerical values of the four elements we can solve and find:

cos μ = (Tr M) /2 = (a + d) /2,

β = b/ sin μ > 0,

α = (a − b) / (2 sin μ) ,

γ = −c/ sin μ.

(2.27)

These Twiss parameters, μ, β, α, and γ , are therefore rigorously determined
by the overall effect of the focusing properties of the lattice elements. Still, they
vary around the ring and apply to the point chosen in the period as a starting and
finishing point. We shall see that each individual component, quadrupole, dipole, or
drift space in the ring has its own matrix and this provides the independent method of
calculation. We must first choose the starting point, the location, s, where we wish
to know β and the other Twiss parameters. By starting there and multiplying the
element matrices together for one turn we are able to find a, b, c, d numerically for
that location. We can then apply the above four equations to find the Twiss matrix.
If the machine has a natural symmetry in which there are a number of identical
periods, it is sufficient to do the multiplication up to the corresponding point in the
next period. The values of α, β, and γ would be the same if we went on for the
whole ring. By choosing different starting points we can trace β(s) and α(s). We
now give the matrices for the three basic lattice elements.
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2.1.10 Transport Matrices for Lattice Components

An empty space or drift length is the simplest of the lattice component matrices.
Figure 2.8(a) shows the analogy between a particle trajectory and a diverging ray in
optics. The angle of the ray and the divergence of the trajectory are related:

θ = tan−1 (
x ′) . (2.28)

The effect of a drift length in phase space is a simple horizontal translation from
(x, x′) to (x+�x′, x′) and can therefore be written as a matrix:

(
x2

x ′
2

)
=

(
1 �

0 1

) (
x1

x ′
1

)
. (2.29)

The next case is that of a thin quadrupole magnet of infinitely small length but
finite integrated gradient:

�k = 1

(Bρ)

∂Bz

∂x
. (2.30)

The optical analogy of a thin quadrupole with a converging lens is illustrated in
Fig. 2.8(b). A ray, diverging from the focal point arrives at the lens at a displacement,
x, and is turned parallel by a deflection:

θ ≈ 1

f
x. (2.31)

This deflection will be the same for any ray at displacement x irrespective of
its divergence. This behaviour can be expressed by a simple matrix, the thin lens
matrix:

(
x2

x ′
2

)
=

(
1 0

− 1/f 1

) (
x1

x ′
1

)
. (2.32)

a b

Fig. 2.8 The effect of a drift—(a), left side—and a focusing quadrupole lens—(b) right side—on
a particle trajectory. The mathematical expressions are given in Eqs. (2.29) and (2.32)
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A particle arriving at a quadrupole lens at a displacement x obeys Hill’s equation

x ′′ + kx = 0. (2.33)

Hence the small deflection θ is just:

Δx ′ = −kx�. (2.34)

Comparing quadrupoles with optical lenses we remember that �k = 1/f and is
the power of the lens and that the matrix, for a thin lens, can be written:

(
1 0

− k� 1

)
. (2.35)

Under the influence of these focusing and defocusing fields, a particle trajectory
will finally look like a more or less zig-zag shaped curve; which for the example of
eight regular cells it is shown in Fig. 2.9.

Quadrupoles are sometimes not short compared to their focal length. One must
therefore use the matrices for a long quadrupole when one comes to compute the
final machine:

MF =
(

cos �
√

k 1√
k

sin �
√

k

− √
k sin �

√
k cos �

√
k

)

, and

MD =
(

cosh �
√

k 1√
k

sinh �
√

k

− √
k sinh �

√
k cosh �

√
k

)

.

(2.36)

x(mm)

s(m)

10

-10

0 10 20 30 40

Fig. 2.9 A single particle trajectory in a ring: At each part of the lattice the amplitude and angle,
(x, x′) of the particle are described by a matrix transformation, according to Eq. (2.32). The blue
line corresponds to an ideal particle, with x = x′ = 0 and so refers to the ideal orbit
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Fig. 2.10 The focusing effect of trajectory length in a pure sector dipole magnet

We can compare this with the solutions of Hill’s equations within F and D
quadrupoles:

z = cos
√

k� z0 + 1√
k

sin
√

k� z′
0,

x = cosh
√

k� x0 + 1√
k

sinh
√

k� x ′
0.

(2.37)

We have so far ignored the bending that takes place in dipole magnets and these
may be thought of as drift lengths in a first approximation. An exact calculation
should include the focusing effect of their ends. A pure sector magnet, whose
ends are normal to the beam will give more deflection to a ray which passes at
a displacement x away from the centre of curvature (Fig. 2.10). This particle will
have a longer trajectory in the magnet. The effect is exactly like a lens which focuses
horizontally but not vertically. The matrices for a sector magnet are:

MH =
(

cos θ ρ sin θ

− (1/ρ) sin θ cos θ

)
,

MV =
(

1 ρθ

0 1

)
.

(2.38)

Some bending magnets are not sector magnets as in Fig. 2.9, but have end
faces which are parallel. It is easier to stack laminations this way than on a curve.
The entry and exit angles are therefore, θ /2, and the horizontal focusing effect is
reduced but there is an additional focusing effect for a particle whose trajectory is
displaced vertically. In the computer model one may convert a pure sector magnet
into a parallel faced magnet by simply adding two thin lenses at each face. They are
horizontally defocusing and vertically focusing and their strength is:

k� = − tan (θ/2)

ρ
. (2.39)
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Unlike early lattice designers we have computers to help when we come to
multiply these elements together to form the matrix for a ring or a period of the
lattice [3–5]. A lattice program such as MAD [6] does all the matrix multiplication
to obtain (a, b, c, d) from each specified point, s, and back again. It prints out β

and ϕ and other lattice variables in each plane, and we can plot the result to find
the beam envelope around the machine. This is the way machines are designed.
Lengths, gradients, and numbers of FODO normal periods are varied to match the
desired beam sizes and Q values.

In Fig. 2.8 we saw the trajectory of a particle, oscillating in a pattern of alternating
focussing and defocusing quadrupoles (FODO). The trajectories in general all lie
within an envelope which has the general features of the optical model in Fig. 2.6. If
we were to repeat the observation of the displacement and divergence of a particle
on successive turns we would find the elliptical locus of its motion (Fig. 2.5). The
aspect ratio of this ellipse would depend upon where in the ring we choose to make
the observation. The ellipse would be squat near D lenses and elongated near F’s.
The figure would appear just the same if we were to plot it between what are F
quadrupoles in the vertical plane. Of course, the whole pattern of quadruples and
the envelope is shifted by the distance between adjacent quadrupoles because F-
quadrupoles in one plane are D in the other (et vice versa).

2.1.11 The Betatron Envelopes

To recapitulate, a modern synchrotron consists of pure bending magnets and
quadrupole magnets or lenses which provide focusing. These are interspersed
among the bending magnets of the ring in a pattern called the lattice. By suitable
choice of strength and spacing of the lenses the envelope function β(s) can be made
periodic in such a way that it is large at all F quadrupoles and small at all D’s.
Symmetry will ensure this is true also in the vertical plane. Particles oscillating
within this envelope will always tend to be further off axis in F quadrupoles than
in D quadrupoles and there will therefore be a net focusing action. We have already
seen that β is the aspect ratio of the phase space ellipse (see also [7, 8]).

In Fig. 2.11 we see an example of such a magnet pattern which is one cell, or
about 1% of the circumference, of the 400 GeV SPS at CERN. Although the SPS is
now considered a rather old fashioned machine its simplicity leads us to use it as an
example. The focusing structure is FODO and in this pattern half of the quadrupoles
(F) focus, while the other half, defocus (D) the beam. Bending magnets, which
in a first approximation do no focussing are represented together with other non-
focussing elements by the letter “O”. The envelope of these oscillations follows a
function β(s) which has waists near each defocusing magnet and has a maximum
at the centres of F quadrupoles. Since F quadrupoles in the horizontal plane are
D quadrupoles vertically, and vice versa, the two functions βh(s) and βv(s) are
one half-cell out of register in the two transverse planes. The function β has the
dimensions of length but the units bear no relation at this stage to physical beam
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Fig. 2.11 One cell of the
CERN SPS representing
1/108 of the circumference.
The pattern of dipole (B)
magnets and quadrupole (F
and D) lenses is shown above

size. The reader should be persuaded that particles do not follow the β(s) curves but
oscillate within them in a form of modified sinusoidal motion whose phase advance
is described by φ(s). The phase change per cell in the example shown is close to π/2
but the rate of phase advance is modulated throughout the cell.

2.2 Coupling

Until now we have considered the motion in the vertical and horizontal direction to
be orthogonal and independent. This is the ideal case. Now we look at what happens
when there is a skew quadrupole or solenoidal field in the machine which couples
horizontal motion into vertical and vice versa. This is rather a special case affecting
mainly electron synchrotrons and the reader may choose to skip to Sect. 2.3 and
leave coupling to a second reading.

In a fully coupled machine the betatron oscillations in the two transverse
directions are like two harmonic oscillators which transfer energy from one to the
other with a frequency which is just the difference between their Q’s. They act like
coupled pendula. In this way all the horizontal “emittance” can add to the vertical
emittance and the beam exceeds the available vertical aperture.

The phenomenon is particularly important in electron rings. The electron beam
would damp to zero emittance were it not for quantum emission in the horizontal
plane exciting betatron oscillations. There is no comparable excitation in the vertical
plane and only coupling of the horizontal oscillations into the vertical plane gives
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the beam any vertical dimensions. Vertical emittance, and the magnet gap needed to
accept it, is directly proportional to coupling.

2.2.1 Coupling Fields

There are two principal configurations of field which excite coupling. The first we
shall consider is a skew quadrupole, i.e. a quadrupole whose poles lie symmetrically
in the horizontal and vertical planes (Fig. 2.12).

A particle with horizontal position x, experiences not a Bz as would be the case
in a normal quadrupole and which would change its x′, but a Bx which together with
the paraxial velocity deflects vertically in the direction of v × B. Of course once the
particle has acquired a vertical displacement z after a number of turns it experiences
a vertical field, for in a skew quadrupole the field is:

Bx/ (Bρ) = kx,

Bz/ (Bρ) = −kz.
(2.40)

Thus a horizontal displacement couples into the vertical plane leading to a verti-
cal divergence and displacement. The vertical displacement goes on to couple back
into the horizontal plane modifying the horizontal displacement and divergence—
and so it proceeds transferring transverse momentum back and forth from one plane
to the other.

A solenoid is the other field configuration that can couple the two planes but this
kind of coupling is less important in synchrotrons and we leave it to the reader to
consult a more exhaustive treatment of coupling in [9].

Fig. 2.12 The magnetic field and force in a skew quadrupole
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2.2.2 Qualitative Treatment of Coupling

In our treatment the theory is deliberately simplified to reveal the physical mecha-
nisms at work. We assume that the coupling is driven by a single skew quadrupole at
the centre of one of the existing lattice machine quadrupoles where β is maximum
and its derivative zero. We ignore the changes in betatron phase of one plane with
respect to the other within a single turn.

The skew quadrupole gradient is normalized:

k = 1
(Bρ)

(
∂Bx

∂x

)

z=0
,

l = length of the quadrupole.
(2.41)

Figure 2.13 on the left shows the betatron motion in the horizontal plane. We
have normalized the elliptical phase space trajectory into a circle at the location
of the skew quadrupole by multiplying the divergence by βx. On the right we
have done the same for the vertical plane. The angular kick �p, on passing
the skew quadrupole is calculated from a similar diagram for the vertical plane
and

Δpx = βxk�w cos QVθ, (2.42)

where w = √
εVβz is the radius of the circle for vertical motion, and u = √

εHβx

is the radius horizontally.

Fig. 2.13 Phase space diagram
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The kick, projected as an amplitude increment becomes:

δu = wβxk� sin QHθ cos QVθ. (2.43)

When we use:

sin A cos B = 1

2
sin (A − B) + 1

2
sin (A + B)

and ignore the second, high frequency term; we obtain the coupled equations for a
single passage:

δw
w

= −
√

εH
εV

√
βxβz

2 k� sin (QH − QV) θ,

δu
u

=
√

εV
εH

√
βxβz

2 k� sin (QH − QV) θ.
(2.44)

These are incremental equations which we must sum over the n turns as the
coupling enhances u at the expense of w.

Figure 2.14 shows diagrammatically the coupled motion. The vertical betatron
amplitude decrease from w + �w to w in one quarter period of the slow oscillation
which takes 1/4|QH − Qv| turns. The mean value of the cosine is taken as 2/π. We
then arrive at the expressions for the maximum excursions in amplitude:

Δw
w

=
√

εH
εV

√
βxβz

4π |QH−Qv|k�,

Δu
u

=
√

εV
εH

√
βxβz

4π |QH−Qv|k�.
(2.45)

We now move from the phase plane into real space. Some machines were
designed to have a rectangular “vacuum chamber” which would accept particles
which simultaneously have large horizontal and vertical “emittances”. In this sense
emittance is defined for a single particle

εH = πu2/βx, εV = πw2/βy. (2.46)

In the presence of coupling, the particle motion is a series of Lissajous figures
filling the rectangular cross-section but always touching it somewhere on each turn
(Fig. 2.15). It is inevitable therefore that if coupling increases either amplitude by
�u/u or �w/w, some fraction of particles will be lost.

A rigorous treatment of coupling is too lengthy to include here but the reader may
consult [9–11] for a complete description. This lengthier treatment leads to a model
in which the modes of betatron oscillations are no longer about the vertical and
horizontal planes but about two orthogonal principal planes inclined with respect to
the vertical and horizontal frame.
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Fig. 2.14 Coupled betatron oscillations for 1/|QH − Qv| turns

2.3 Liouville’s Theorem

Now let us return to the ‘mainstream’ of transverse dynamics. Liouville’s theorem is
a conservation law that applies to the area occupied by a number of particles plotted
in phase space.

We should think of a beam of particles as a cloud of points within a closed
contour in a transverse phase space diagram (Fig. 2.16). Liouville’s theorem tells
us that this area within the contour is conserved. The contour is usually, but not
always, an ellipse. In Fig. 2.5 we came across such an elliptical contour—the locus
of a particle’s motion plotted in phase space (x,x′) and we call its area, the emittance.
We could also think of it as a limiting contour enclosing all the particles in the beam
which we would again call the emittance—not of the particle but of the beam as a
particle ensemble.

We express beam emittance in units of π mm·milliradians. According to
Liouville the emittance area will be conserved as the beam passes down a transport
line or circulates in a synchrotron whatever magnetic focusing or bending operation
we do on the beam—provided that only conservative forces are taken into account.
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Fig. 2.15 Particle lost due to
coupling

Fig. 2.16 Liouville’s
theorem applies to this
contour

Even though the ellipse may appear to have many shapes around the accelerator
its phase space area will not change (Fig. 2.17). The aspect ratio of the ellipse
will change however. At a narrow waist, near a D quadrupole (a) in Fig. 2.17, its
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Fig. 2.17 How the conserved phase space appears at different points in a FODO cell

Fig. 2.18 The parameters of a phase-space ellipse containing an emittance ε at a certain point in
the lattice. The shape and orientation of the ellipse are determined by the Twiss parameters at the
given location

divergence will be large, while in an F quadrupole (d) where the betatron function
is maximum, its divergence will be small. The beam is also seen at a broad waist or
maximum in the beta function and a place where the beam is diverging.

In Fig. 2.18 we see how the various features of the ellipse are related to the
Twiss parameters. The equation of the ellipse, often called the Courant and Snyder
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invariant, has the form

γ (s)y2 + 2α(s)yy ′ + β(s)y ′2 = ε. (2.47)

Here y is used to mean either of the transverse displacements, x or z. It is straight
forward determine the relation between the shape and orientation of the (x,x′) ellipse
and the Twiss parameters α, β, γ as indicated in Fig. 2.18.

The invariance of the (x,x′) space area, as we move to different points in the ring
is an alternative statement of Liouville’s theorem.

A word of caution—another, stricter, version of Liouville’s theorem states that:

In the vicinity of a particle, the particle density in phase space is constant if the particles
move in an external magnetic field or in a general field in which the forces do not depend
upon velocity.

This rules out the application of Liouville’s theorem to situations in which space
charge forces within the beam play a role or when there is a velocity dependent effect
such as when particles emit synchrotron light. However we may apply Liouville
to proton beams which do not normally emit synchrotron light and to electrons
travelling for a few turns in a synchrotron. This is usually too short a time for
electrons to emit enough synchrotron light energy to affect their transverse motion.

Liouville’s theorem does not apply as a proton beam is accelerated. Observations
tell us this is not the case. The beam appears to shrink. This is because the co-
ordinates we have used so far, y and y′, are not ‘canonical’ in the sense defined by
Hamiltonian in his mechanics, which is part and parcel of Liouville’s mathematical
theory of dynamics. We should therefore express emittance in Hamilton’s canonical
phase space and relate this carefully to the co-ordinates, displacement, y, and
divergence, y′, which we have been using so far. We can then define an emittance
which is conserved even as we accelerate.

We shall have to be particularly careful not to confuse Twiss parameters, and
the parameters of special relativity: In special relativity we use β as the ratio of the
particles velocity and the speed of light and the Lorentz factor γ describes the total
energy divided by the rest energy. The reader will have to examine the context to be
sure. For those who have not met Hamiltonian mechanics, it is sufficient to know
that the canonical co-ordinates of relativistic mechanics are:

p = m0ẏ√
1 − v2/c2

, q = y. (2.48)

Here q or y is a general transverse co-ordinate, p its conjugate momentum and
we define β and γ when used in the context of special relativity to be:

β = v/c,

γ = 1/
√

1 − β2,

m0 = rest mass,
c = velocity of light.

(2.49)
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We may find the relationship between canonical momentum and divergence from
the substitution:

py = m0
dy

dt
γ = m0

ds

dt

dy

ds
γ = mc (βγ ) y ′. (2.50)

Writing Liouville’s Theorem expressed in canonical coordinates we can use the
above expression to define a conserved quantity and relate it to the area in (y, y′)
space

∫
pydy = m0c (βγ )

∫
y ′dy = p0

∫
y ′dy (2.51)

where p0 is the momentum in the direction of motion of the particle.
This invariant is the emittance, ε, of our transverse phase space multiplied by

the relativistic βγ which is proportional to momentum. Accelerator physicists often
call this the invariant or ‘normalised’ emittance:

ε∗ = βγ ε [π mm · mrad] (2.52)

This normalised emittance, ε∗, is conserved as acceleration proceeds in a
synchrotron and the physical emittance within the right-hand side of the equation
must fall inversely with momentum if the whole term is to be conserved. Close to
the velocity of light this implies that it is inversely proportional to energy.

Emittance = πε =
∫

y ′dy = πε∗/ (βγ ) ∝ 1/p0. (2.53)

We therefore expect the beam dimensions to shrink as (Fig. 2.19) a phenomenon
called ‘adiabatic damping’.

2.3.1 Chains of Accelerators

As a consequence of the adiabatic shrinking, the beam emittance is largest at low
energy, and so is the beam dimension. Proton accelerators need their full aperture
at injection and it is then that their design is most critical. For this reason it is
economic to split a single large ring into a chain of accelerators—the smaller
radius rings having a large aperture while the higher energy rings with large radius
can have smaller apertures. In these chains of proton accelerators, such as the
CERN accelerator complex, Linac – Booster – PS – SPS, the invariant emittance,
determined by the parameters of the beam as it leaves the ion source at the beginning
of the linac, may be conserved to several hundred GeV. Of course one must
guard against mismatches between machines or non-linear fields which dilate the
emittance.
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Fig. 2.19 Adiabatic
shrinking of the beam as
function of the beam
momentum during
acceleration

2.3.2 Exceptions to Liouville’s Theorem

The invariance of normalised emittance of a proton beam and the shrinking of its
physical emittance with energy is quite the opposite of what happens in an electron
machine. Liouville’s theorem only applies to conservative systems, where particles
are guided by external fields and not to electron machines where particles emit
some of their own energy. Electrons, being lighter than protons and hence more
relativistic, emit quanta of radiation as they are accelerated. This quantised emission
causes particles to jump around in momentum, leading to changes in the trajectories
amplitude and angle. These changes couple into both planes of transverse phase
space. At the same time, there is a steady tendency for particles near the edge of the
emittance to lose transverse energy and fall back towards the centre. In an electron
machine the emittance is determined not by the Liouville but by the equilibrium
between these two effects. In fact, it grows with E2.

Consider a number of protons which have the maximum amplitude present in the
beam. They follow trajectories at the perimeter of the ellipse but at any instant have
a random distribution of initial phases φ0. If we were able to measure y and y′ for
each and plot them in phase space, they would lie around the ellipse of area πε and
their co-ordinates would lie in the range of

−√
βε ≤ y ≤ √

βε,

− √
εγ ≤ y ′ ≤ √

εγ .
(2.54)

Particles in a beam are usually distributed in a population which appears
Gaussian when projected on a vertical or horizontal plane. In a proton machine
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the emittance boundary used to be conventionally chosen to be that of a proton
with amplitude 2σ. This would include about 90% (strictly 87%) of a Gaussian
beam where σ is the standard distribution. In an electron machine a 2σ boundary
would be too close to the beam and an aperture stop placed at this distance would
rather rapidly absorb most of the beam as particles redistribute themselves, moving
temporarily into the tails due to quantum emission and damping. The safe physical
boundary for electrons depends on the lifetime required but is in the region of 6σ

to 10σ. The emittance which is normally quoted for an electron beam corresponds
to an electron with the amplitude of σ in the Gaussian projection. We are then free
to choose how many σ’s we must allow. There is consequently a factor 4 between
emittance defined by electron and proton experts.

2.4 Momentum Dependent Transverse Motion

In the previous chapters, we have studied the motion of a particle as it swings from
side to side about the ideal orbit around the synchrotron: the transverse motion.
Nothing is perfect, however, and so we cannot assume that each and every proton
in a large ensemble of up to 1011 particles will have exactly the ideal momentum.
Instead we expect a certain momentum spread in the beam and therefore we have
to study how transverse motion depends on small departures, �p/p0, from the
synchronous momentum p0.

2.4.1 Dispersion

The central closed orbit of a synchrotron is matched to an ideal (synchronous)
momentum p0. A particle of this momentum and of zero betatron amplitude will
pass down the centre of each quadrupole, be bent by exactly 2π by the bending
magnets in one turn of the ring and remain synchronous with the r.f. frequency. Its
path is called the central (or synchronous) momentum closed orbit. In Fig. 2.8 this
ideal orbit is the horizontal axis and we see particles executing betatron oscillations
about it but these oscillations do not replicate every turn. The synchronous orbit,
however, closes on itself so that x and x′ remain zero.

We now consider a closed orbit which is distorted in the horizontal plane by
non-ideal bends in the dipole. Figure 2.20 shows a particle with a lower momentum
�p/p < 0 and which is bent horizontally more in each dipole of a FODO lattice. We
could argue that the total deflection, being more than 2π would cause it to spiral
inwards and hit the vacuum chamber wall. On the other hand there is a closed orbit
for this lower momentum in which the extra bending forces are compensated by
extra focusing forces as the orbit is displaced inwards in the F quadrupoles and
less so in the defocusing in the D’s (Fig. 2.20). We may describe the shape of
this new closed orbit for a particle of unit �p/p by a dispersion function D(s). The



42 E. Wilson and B. J. Holzer

Fig. 2.20 The extra inward
force given to a low
momentum particle by the
dipoles is balanced by the
focusing the quadrupoles and
defines a dispersion function

Fig. 2.21 The beam cross
sections in real space for
beams of three different
momenta at a point where the
dispersion function is large

displacement of the closed orbit is:

x(s) = D(s)
Δp

p0
. (2.55)

In Fig. 2.21 we see how the effect of dispersion for off momentum orbits adds to
the betatron motion to widen the beam cross section. The betatron motion of each
of the three particles: �p/p < 0, �p/p = 0, and �p/p > 0, is within an ellipse in
physical (x, z) space. The ellipses for each momentum are separated by a distance
D(s)�p/p. The semi-aperture required will be:

aV = √
βVεV, aH = √

βHεH + D(s)
Δp

p
. (2.56)

2.4.2 Chromaticity

This effect is equivalent to the chromatic aberration in a lens. It is defined as a
quantity Q′:

ΔQ = Q′ Δp

p
. (2.57)
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The chromaticity [12] arises because the focusing strength of a quadrupole has
(Bρ) in the denominator and is therefore inversely proportional to momentum:

k = 1

(Bρ)

dBz

dx
. (2.58)

A small spread in momentum in the beam, ± �p/p, causes a spread in focusing
strength:

Δk

k
= ∓Δp

p
. (2.59)

Integrated over all focusing (and defocusing) elements in the ring, we obtain a
change in the tune of the machine

ΔQ = 1

4π

∫
β(s)δk(s)ds. (2.60)

This enables us to calculate Q′:

ΔQ = 1

4π

∫
β(s)δk(s)ds =

[ −1

4π

∫
β(s)k(s)ds

]
Δp

p
. (2.61)

The quantity in square brackets is the chromaticity Q′. To be clear, this is
called the natural chromaticity. For most alternating gradient machines, its value
is about −1.3Q. Of course there are two Q values relating to horizontal and vertical
oscillations and therefore two chromaticities. Chromaticity may be corrected with
sextupole magnets (see Chap. 3, and Sects. 6.1 and 8.1).

2.5 Longitudinal Motion

2.5.1 Stability of the Lagging Particle

Suppose two particles are well below the velocity of light. A particle A, that arrives
at the right moment to in the RF resonator and thus will obtain exactly the right
acceleration voltage. We call this particle “synchronous” (see Fig. 2.22). A second
particle, B, arrives late, and so receives an extra energy increment which will cause it
to speed up and overtake the synchronous particle, A. In so doing, its energy defect,
�E, grows and, provided the amplitude is not too large, its trajectory will follow an
ellipse in phase space. This describes this motion up and down the r.f. wave (Fig.
2.22) and may remind some readers of the representation of a simple harmonic
oscillator, or pendulum. When plotted in a phase space diagram of velocity versus
longitudinal displacement we indeed obtain a shape that is elliptical. The trajectory

http://dx.doi.org/10.1007/978-3-030-34245-6_3
http://dx.doi.org/10.1007/978-3-030-34245-6_6
http://dx.doi.org/10.1007/978-3-030-34245-6_8
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Fig. 2.22 The limiting trajectory for a particle in a ‘moving’ or accelerating bucket when the
stable phase is not zero

of this longitudinal movement in phase space is closed and over many turns the
average deviation from the synchronous energy is zero. This phase stability depends
upon the fact that δE is positive when φ − φs is small and positive [13, 14].

When a particle reaches the non-linear part of the r.f. wave and over the top of
the wave, it will still be restored and oscillate about the stable phase provided it
does not reach and pass the point where it receives less incremental energy than the
synchronous particle. On this non-linear part of the curve the motion is no longer
an ellipse but is distorted into a fish-shape but its trajectory is still closed and stable.
However, if a particle, C, oscillates with such large amplitude that it falls below
the synchronous voltage, an increase in φ will cause a negative �E which in turn
causes φ to move further away from the synchrotron particle. This particle is clearly
unstable and will be continuously decelerated. There is a particle which, starting at
φ = π − φs, would trace out a limiting fish-shaped trajectory which is the boundary
or separatrix between stable and unstable motion. The region within this separatrix
is called the r.f. bucket and is shown in the lower half of Fig. 2.22. Formulae for the
calculation of the parameters of moving buckets are to be found in [15].

Let us look more carefully at the argument that a particle, arriving late because
of its lower energy, would see a higher RF voltage from the rising waveform and,
accelerated to a higher velocity, would catch up with the synchronous particle.
Dispersion may make the situation more complicated. Giving the errant particle
more energy will speed it up but may also send it on an orbit of larger radius.

The path length that the particle, B, must travel around the machine, or more
correctly, the change in path length with momentum, must depend upon the
dispersion function. The closed orbit will have a mean radius:

R = R0 + D
Δp

p
. (2.62)

Close to the velocity of light where acceleration can increase momentum but not
velocity, the longer path length will more than cancel the small effect of velocity
and the particle, instead of catching up with its synchronous partner, will arrive
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even later than it did on the previous turn. This seems to defeat the whole idea of
phase stability. Depending on how the synchrotron is designed and which particles
it accelerates, there can be a certain energy where our initial ideas of phase stability
break down. This is called the transition energy. Fortunately there is also a way of
ensuring stability above transition.

2.5.2 Transition Energy

The rigorous argument to resolve the question of velocity versus path length is to
examine how the revolution time (or its reciprocal, the revolution frequency) varies
as the particle is given extra acceleration. The revolution frequency is:

f = βc

2πR
, (β = v/c) . (2.63)

This revolution frequency, f, depends on two momentum dependent variables,
the relativistic β=v/c and R, the mean radius. The penultimate equation gives the
change in the radius. The momentum dependence of β is determined by:

p = E0β√
1 − β2

. (2.64)

The rate of “catching up” depends upon a “slip factor”, η, which is defined as
logarithmic differential of frequency as a function of momentum. The procedure of
partial derivatives tells us there must be two terms. Hence:

ηrf = Δf/f

Δp/p
= p

β

dβ

dp
− p

R

dR

dp
= 1

γ 2 − D

R0
. (2.65)

The first term on the right-hand side describes the increase in speed with p and
the other (negative), how the path to be completed increases with p.

The second term is energy independent while the first term shrinks as acceleration
proceeds. At low energy this is largest and η is >0. But, since γ = E/E0, the first term
becomes smaller than the second at high energy so that η changes sign from positive
to negative. During the acceleration process there is a certain energy, the transition
energy, at which η is momentarily zero. At transition, the value of γ satisfies:

1

γ 2
tr

= D

R
. (2.66)

In proton synchrotron design this condition tends to be encountered mid–way
through the acceleration cycle and can only be avoided with some ingenuity in the
design of the lattice. This was a worry to the designers of the PS and AGS, the
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Fig. 2.23 Shows how
changing the phase of the RF
voltage waveform can give
the lagging particle, B, less
energy rather than more and
lead to stability above
transition

first proton synchrotrons of high enough energy to encounter this problem during
acceleration but it was then realised that one could, almost instantaneously, change
the phase of the voltage wave in the RF cavities to be falling rather than rising at the
moment of the synchronous particles arrival (see Fig. 2.23). With such a reversed
slope, particles arriving late are given less than their ration of energy and take a
inner circular path—a short cut—to arrive earlier next time.

Electron machines are fortunate in that due to the small rest mass their Lorentz
factor γ , being 2000 times higher, ensures that the first term may be neglected and
such machines operate always above transition.

2.5.3 Synchrotron Motion

If we consider the motion of a particle on the linear part of the voltage wave of
an r.f. cavity it is not difficult to imagine that it approximates rather closely to a
harmonic oscillator. Unlike to the situation in the transverse plane, however, the
motion becomes more complicated when the oscillation amplitude is larger, and the
particle feels the non-linear part of the sinusoidal RF wave, or even more, for part
of its motion it finds itself over the crest of the wave. But first let us focus on a small
amplitude solution.

It is not hard to deduce from special relativity that the momentum may be written

p = m0c (βγ ) . (2.67)

The quantity �(βγ ) serves as the momentum co-ordinate in longitudinal phase
space. The other co-ordinate is the particle’s arrival phase, φ, with respect to the
zero crossing of the r.f. voltage at the cavity. Let us consider the simplest case of
a small oscillation in a stationary bucket, φs = 0 (when the particle is not being
accelerated).
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A particle with a small phase error will describe an ellipse in phase space which
one may write parametrically as

Δ (βγ ) = Δ̂(βγ ) sin 2πfst,

φ = φ̂ cos 2πfst,
(2.68)

where fs is the frequency of execution of these oscillations in phase which we call
the synchrotron frequency.

To reveal the differential equation behind this motion we must first remember that
the angular frequency 2πf of an oscillator is nothing other than the rate of change of
phase, φ̇ or to be exact −φ̇. (The negative sign stems from the fact that φ is a phase
lag.) We may therefore relate the rate of change in arrival phase to the difference in
revolution frequency of the particle, compared to that of the synchronous particle.

φ̇ = −2πh [f (Δβγ ) − f (0)] = −2πhΔf. (2.69)

We have multiplied by, h, the harmonic number of the r.f. since φ is the phase
angle of the r.f. swing while f (�βγ ) is the revolution frequency. Here we can use
the definition of the slip factor η and then simply use some standard relativistic
relations to end up with �f as a function of �E, the energy defect with respect to
the synchronous particle:

Δf = ηf
Δp

p
= ηf

Δ (βγ )

(βγ )
= ηf

β2

Δγ

γ
= ηf

E0β2γ
ΔE. (2.70)

where E0 the total energy (including its rest mass) of the synchronous particle.
We differentiate once more to obtain a second order differential equation which

we hope to resemble a simple oscillator.

φ̈ = −2πhηf

E0β2γ

(
ΔĖ

)
. (2.71)

The extra energy given per turn to a particle whose arrival phase is φ will be

ΔE = eV0 (sin φ − sin φs) , (2.72)

and the rate of change of energy will be this times, f, the revolution frequency. So
we can write

φ̈ = −2πeV0hηf 2

E0β2γ
(sinφ − sinφs) . (2.73)

This is a fundamental and exact description of the motion provided the param-
eters should change slowly (the adiabatic assumption). We can simply integrate to
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find its solution numerically but to see an analytic solution for small amplitudes we
set φs = 0 and φ ≈ sinφ :

φ̈ + 2πeV0hηf 2

E0β2γ
φ = 0. (2.74)

The frequency of these synchrotron oscillations in longitudinal phase space is

fs =
√

|η| heV0

2πE0β2γ
f, (2.75)

or writing frf = hf we could equally express

fs =
√

|η| eV0

2πE0β2γ h
frf. (2.76)

In analogy to the transverse plane, we define a synchrotron tune, Qs, as the
number of such oscillations per revolution of the machine. This is analogous to
Q in transverse phase space.

Qs = fs

f
=

√
|η| ehV0 cos φs

2πE0β2γ
. (2.77)

Usually Qs is less than 10% of the revolution frequency. It drops down to zero at
γ transition where η is zero and then rises again. In large proton machines it can be
in the region 0 to 100 Hz and, but for the vacuum, one might hear it!

Close to γ tr we cannot strictly assume that β, γ , η, and f vary slowly in
comparison with the synchrotron oscillation which this equation describes. Hence
we should use a more exact form of the equation of motion and approximate only
when it seems that this is justified:

d

dt

[
E0β

2γ φ̇

2πηhf 2

]
+ eV0 (sin φ − sin φs) = 0. (2.78)

In a stationary bucket, when φs = 0, this exact differential equation for large
amplitude motion is identical to that for a rigid pendulum:

�
d2θ

dt2 + g sin θ = 0. (2.79)

There is an extra term, sinφs, on the right hand side of the synchrotron equation
which is not there in the pendulum case but it could be introduced too for the
pendulum by using a magnetic ‘bob’ and biasing its equilibrium position to one
side by attaching a weight on a cantilever at right angles to the rod of the pendulum.
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Fig. 2.24 Adiabatic trapping
of coasting beam in growing
stationary bucket

In fact the unbiased pendulum corresponds to synchrotron motion when there is
no acceleration—we say the bucket is stationary. In Fig. 2.22 we saw how particles
close to the edge of the stable area of the bucket follow a fish-shaped trajectory
when φs = 0; before acceleration starts or when the beam is held at the same energy
in collider mode (see Fig. 2.24).

In order to accelerate φs must be made finite, in which case the figure changes
somewhat. The stable area becomes smaller and shaped like a fish—or rather a series
of fish chasing each other’s tails. Small amplitude motion will still be sinusoidal but
the ellipse will be centred on the stable phase φs and not on φ = 0.

2.5.4 Stationary Buckets

The size of the bucket depends on how close the stable phase, φs is to the crest of
the sine-wave. It shrinks to zero if φs = 90◦. There is a special case if φs is zero.
This is often the case as a beam injected into a synchrotron before acceleration has
started or in a collider where the r.f. simply holds the bunches together. The bucket
is then said to be ‘stationary’ stretching over all phases from −π to π. Its height is
the range of energies 2�E which the r.f. wave can constrain and this turns out to be
dependent on

√
V for a given φs. If V is reduced, the more energetic particles spill

out of the bucket.
Very often the particles are injected as a continuous ribbon without any longitu-

dinal structure crosshatched in Fig. 2.24. Usually acceleration has not yet started,
the magnetic field B is constant, and φs is zero. If V is increased slowly, the height
of the stationary bucket grows, and more and more of the energy spread in the beam,
�E, is trapped (Fig. 2.24). This is called “adiabatic trapping”.
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