

Proc. 13th Int. Conf. on Nucleus-Nucleus Collisions JPS Conf. Proc. 32, 010036 (2020) https://doi.org/10.7566/JPSCP.32.010036

High-Statistics Sub-Barrier Coulomb Excitation of $106, 108, 110$ Sn

J. PARK¹, A. KNYAZEV¹, E. RICKERT¹, P. GOLUBEV¹, J. CEDERKÄLL^{1,2}, A. N. ANDREYEV^{2,3},

G. DE ANGELIS⁴, K. ARNSWALD⁵, L. BARBER⁶, C. BERGER⁷, C. BERNER⁷, T. BERRY⁸, M. J. G. BORGE^{2,9}, A. BOUKHARI^{2,10}, D. Cox¹¹, J. CUBISS³ D. M. CULLEN⁶, J. DÍAZ OVEJAS⁹,

C. FAHLANDER¹, L. P. GAFFNEY², A. GAWLIK^{2,12}, R. GERNHÄUSER⁷, A. GÖRGEN¹³

T. HABERMANN¹⁴, C. HENRICH¹⁴, A. ILLANA¹⁵, J. IWANICKI¹², T. W. JOHANSEN¹³, J. KONKI², T. KRÖLL¹⁴, B. S. NARA SINGH¹⁶, G. RAINOVSKI¹⁷, C. RAISON³, P. REITER⁵, D. ROSIAK⁵,

S. SAHA¹⁸, M. SAXENA¹², M. SCHILLING¹⁴, M. SEIDLITZ¹⁴, J. SNÄLL¹, C. STAHL¹⁴,

M. STRYJCZYK¹⁹, O. TENGBLAD⁹, G. M. TVETEN¹³, J. J. VALIENTE-DOBÓN¹⁵, P. VAN DUPPEN¹⁹, S. VIÑALS⁹, N. WARR⁵, A. WELKER², L. WERNER⁷, H. DE WITTE¹⁹ and R. ZIDAROVA¹⁷

¹Department of Physics, Lund University, S-22100 Lund, Sweden

²CERN, CH-1211 Geneva 23, Switzerland

³Department of Physics, University of York, York YO10 5DD, United Kingdom

⁴INFN Laboratori Nazionali di Legnaro, Viale dell'Università, I-2 35020 Legnaro, Italy

⁵ Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany

⁶Schuster Laboratory, University of Manchester, Manchester M13 9PL, United Kingdom

 7 Physik Department, Technische Universität München, D-85748 Garching, Germany

⁸Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

⁹Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain

¹⁰ Centre de Sciences Nucléaires et de Sciences de la Matière, 91400 Orsay, France

¹¹Department of Physics, University of Jyvaskyla, FI-40014 Jyväskylä, Finland

¹² Heavy Ion Laboratory, University of Warsaw, PL-02-093 Warsaw, Poland

¹³Department of Physics, University of Oslo, N-0316 Oslo, Norway

¹⁴Institut für Kernphysik. Technische Universität Darmstadt. D-64289 Darmstadt. Germany

¹⁵ Istituto Nazionale di Fisica Nucleare, Sezione di Milano, I-20133 Milano, Italy

¹⁶School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, United Kingdom

¹⁷ Faculty of Physics, Sofia University, 1164 Sofia, Bulgaria

¹⁸GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany ¹⁹Instituut voor Kern- en Stralingsfysica, KU Leuven, B-3001 Leuven, Belgium

E-mail: joochun.park@nuclear.lu.se

(Received July 17, 2019)

A Coulomb excitation campaign on ^{106,108,110}Sn at 4.4-4.5 MeV/u was launched at the HIE-ISOLDE facility at CERN. Larger excitation cross sections and γ -ray statistics were achieved compared to previous experiments at ~2.8 MeV/u. More precise $B(E2; 0^+_1 \rightarrow 2^+_1)$ values, lifetimes of states via the Doppler shift attenuation method, and new $B(E2; 0^+_1 \rightarrow 2^+_1)$, $B(E2; 2^+_1 \rightarrow 4^+_1)$ and $Q(2^+_1)$ values from the new Miniball data will be obtained and applied to test modern nuclear structure theories.

KEYWORDS: shell model, nuclear collectivity, Coulomb excitation

1. Introduction

In nuclear structure, the doubly magic nucleus 100 Sn is a key test case of the robustness of the traditional shells far away from stability. The single-particle description of 100 Sn and nuclei with similar *N* and *Z* may be weakened by collective behavior, driven by proton-neutron interactions and exhibited through core excitations and nuclear deformation. Many experiments to determine nuclear collectivity in even-mass Sn isotopes through measurements of reduced electromagnetic transition probabilities, *B*(*E*2), have been performed [1–6]. In order to achieve a higher experimental precision on the $B(E2)$ values to better evaluate different modern theories addressing this phenomenon, as discussed in Ref. [7] for instance, a series of safe Coulomb excitation (CE) experiments was carried out in a new campaign at CERN-ISOLDE.

2. Experiment method

Three unstable Sn isotopes 106,108,110 Sn were produced in separate experiments, where a 1.4-GeV proton beam from the CERN PS Booster induced spallation reactions on a lanthanum carbide target. Sn isotopes were selectively ionized with the Resonance Ionization Laser Ion Source (RILIS). and were post-accelerated at the HIE-ISOLDE [8] facility to 4.4-4.5 MeV/u before impinging on a ²⁰⁶Pb target with a thickness of [∼]4 mg/cm² . At these beam energies, contributions to the excitation cross section from nuclear reactions which are subject to large systematic uncertainties, are eliminated.

The γ rays emitted from the excited states of Sn isotopes were detected with Miniball [9], an array of segmented high-purity germanium detectors. Doppler correction of γ rays emitted in flight from beam nuclei was performed by measuring the particles' scattering angles with a CD-shaped double-sided silicon strip detector that is segmented in sectors and rings. Forward scattering angles of nuclei in the range of 20 $^{\circ}$ -60 $^{\circ}$ in the lab frame were covered by the CD detector, as shown in Fig. 1.

Fig. 1. Top left: energies detected in the CD detector as a function of the lab scattering angle θ , for a beam nucleus ¹¹⁰Sn and the knocked-out target nucleus ²⁰⁶Pb. Top right, bottom left and bottom right: Dopplercorrected γ-ray energy spectra for the $0^+_1 \rightarrow 2^+_1$ excitations of 110 Sn, 108 Sn and 106 Sn, respectively. The γγ coincidence projection spectra, gated on the $2^+_1 \rightarrow 0^+_1$ transitions, are shown in the insets. In all three Sn isotopes, the $4^+_1 \rightarrow 2^+_1 \gamma$ rays were observed for the first time in Coulomb excitation. Approximately 50% of the γ -ray data is shown for ¹¹⁰Sn, where the rest is pending a refined data sorting.

Fig. 2. Left: comparison of experimental (blue) and simulation (red) forward-emitted γ -ray energy spectra from the ¹¹⁰Sn beam, where the target nucleus ²⁰⁶Pb was detected in the same quadrant of the CD detector as Miniball. This spectrum was well reproduced in the simulation when assuming a 0.75-ps lifetime of the $2₁⁺$ state. Right: the same spectra, but with a simulated lifetime of 1.25 ps.

3. Preliminary results and outlook

By using a higher-*Z* target with higher beam energies, the CE cross sections were significantly enhanced compared to past CE experiments at REX-ISOLDE involving the same tin isotopes on a ⁵⁸Ni target [10, 11]. The γ -ray spectra from this experimental campaign at HIE-ISOLDE are shown in Fig. 1, along with a CD detector energy matrix for beam/target particle identification and Doppler correction. The gain in statistics is expected to improve the precision on $B(E2; 0^+_1 \rightarrow 2^+_1)$ values significantly. Furthermore, the CE to the $4⁺₁$ states in all three Sn isotopes was observed for the first time based on $\gamma\gamma$ coincidence projection spectra. This enables an opportunity to determine $B(E2; 2^+_1 \rightarrow 4^+_1)$ for the first time in ^{106,108,110}Sn. Evidence of γ rays from non-yrast states was also found, so that additional $B(E2; 0^+_1 \rightarrow 2^+_x)$ values may be extracted from the data.

In addition, a lifetime estimate of the 2^+_1 state in 110 Sn was performed via the Doppler shift attenuation method (DSAM). Using Geant4, the experimental setup, reaction kinematics and γ -ray emission/detection were simulated. By varying the hypothetical lifetime of the 2^+_1 state in ^{110}Sn , simulated γ -ray spectra from both the partially and fully stopped nuclei were then compared with the experimental spectrum. As shown in Fig. 2, a good agreement was found for $\tau = 0.75$ ps. Efforts to determine the final lifetime and proper uncertainties will be taken. Lifetime measurements of other CE γ rays will be attempted using the same DSAM, and compared to the values reported in Ref. [12].

By combining the CE results with previous experiments using the ⁵⁸Ni target, $Q(2₁⁺)$ will be investigated for 108,110 Sn and plotted against their *B(E2)* values for comparisons with shell model theories. Further analysis of the data and simulations are underway.

References

- [1] A. Banu et al., Phys. Rev. C 72, 061305 (2005).
- [2] C. Vaman et al., Phys. Rev. Lett. 99, 162501 (2007).
- [3] A. Jungclaus et al., Phys. Lett. B 695, 110 (2011).
- [4] G. Guastalla et al., Phys. Rev. Lett. **110**, 172501 (2013).
- [5] P. Doornenbal et al., Phys. Rev. C 90, 061302(R) (2014).
- [6] J. M. Allmond et al., Phys. Rev. C 92, 041303(R) (2015).
- [7] T. Togashi et al., Phys. Rev. Lett. **121**, 062501 (2018).
- [8] M. J. G. Borge, Nucl. Instrum. Methods Phys. Res., Sect. B 376, 408 (2016).
- [9] N. Warr et al., Eur. Phys. J. A 49, 40 (2013).
- [10] J. Cederkäll et al., Phys. Rev. Lett. 98, 172501 (2007).
- [11] A. Ekström et al., Phys. Rev. Lett. **101**, 012502 (2008).
- [12] M. Siciliano et al., arXiv:1905.10313v2.