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One loop verification of SMIEFT Ward Identities

We verify Standard Model Effective Field Theory Ward identities to one loop
order when background field gauge is used to quantize the theory. The results
we present lay the foundation of next to leading order automatic generation of
results in the SMEFT, in both the perturbative and non-perturbative expansion

using the geoSMEFT formalism, and background field gauge.
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1 Introduction

The Standard Model Effective Field Theory (SMEFT) [1,2] is a core theory for interpret-
ing many current and future experimental measurements in particle physics. The SMEFT is
defined by the field content of the Standard Model, including an SUy,(2) scalar Higgs dou-
blet (H), and a linear realization of SU(3) x SU(2) x U(1)y symmetry. Operators of mass
dimension d are suppressed by powers of an unknown non-Standard Model scale A%%.

The SM treated as an EFT has both derivative and field expansions. The Higgs field
expansion plays an essential role as it can collapse terms in a composite operator onto a target
n-point interaction when the classical background field expectation value of the Higgs is taken.
This introduces modifications of low n-point functions, and the corresponding Lagrangian
parameters such as the masses, gauge couplings and mixing angles. These modifications
result in much of the interesting phenomenology of the SMEFT.

Actively organising the formulation of the SMEFT using field space geometry is advanta-
geous. This approach is known as the gecoSMEFT [3], and builds on the theoretical foundation
laid down in Refs. [4H10]. The geoSMEFT separates out the scalar field space expansion (in
a gauge independent manner) from the derivative expansion. This approach naturally gener-
alizes the SM Lagrangian parameters to their SMEFT counterparts, which are understood to
be the masses, gauge couplings and mixing angles on the curved background Higgs manifoldﬂ
The degree of curvature of the Higgs field spaces is dictated by the ratio of the Electroweak
scale o7 = /(2HTH) compared to the scale of new physics A. The geoSMEFT enables all
orders results in the vp/A expansion to be defined, due to the constraints of a self consistent
description of the geometry present in the theory, and has already resulted in the first exact
formulation of the SMEFT to O(v7./A*) [11].

Organizing the SMEFT using field space geometry can be done while background field
gauge invariance is maintained by using the Background Field Method (BFM). The BFM is
also advantageous, as then gauge fixing does not obscure naive and intuitive one loop Ward-
Takahashi identities [12}/13] (hereafter referred to as Ward identities for brevity) that reflect
the unbroken SUL(2) x U(1)y global symmetries of the background fields. The geoSMEFT
approach was developed by first determining the BFM gauge fixing in the SMEFT in Ref. [9].
The BFM Ward identities for the SMEFT were reported in Ref. [10].

LGenerally the canonically normalised SMEFT parameters consistently defined on the curved background
manifold of the Higgs are denoted in this work with a bar superscript, such as Mz — Mz, sy — s etc..
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Remarkably, the BFM Ward identities are, for the most partE] the natural and direct
generalization of the SM BFM Ward identities; with the SM parameters generalized to the
curved field space Lagrangian terms in the geoSMEFT [10]. This supports the notion that
the use of the BFM in the SMEFT is of increased importance. When a field theory does not
have a physical non-trivial background field configuration, the use of the BFM is largely a
choice of convenience in a calculation. In the SMEFT the physics is different, as it is an EFT
with a non-trivial background manifold, namely, the Higgs taking on its vacuum expectation
value (7). As such, a BFM based approach to the SMEFT naturally and efficiently organizes
the physics that is present, at higher orders in the power counting expansions, and the loop
expansion. Considering the complexity of the SMEFT, the cross checks afforded in this
approach are quite valuable to validate results and avoid subtle theoretical inconsistencies.
Although subtle, such inconsistencies can introduce violations of background field symmetries
(i.e. make it impossible to consistently incorporate the IR effect of the field space geometries)
and dramatically impact conclusions drawn from experimental constraints, which are S matrix
elements that depend on a consistent projection of the field space geometry. For a discussion
on one such subtlety in Electroweak precision data, with significant consequences to the
SMEFT global fit effort, see Ref. [14].

The BFM Ward identities constrain n-point functions and the SMEFT masses, gauge cou-
plings and mixing angles. As the higher dimensional operators in the SMEFT also obey the
SU(3) x SUL(2) x U(1)y symmetry of the SM, the one loop Ward identities formulated in
the BFM are respected operator by operator in the SMEFT. In this paper, we demonstrate
this is indeed the case. We explicitly verify a set of these identities (relating one and two
point functions) to one loop order, and demonstrate the manner in which various contribu-
tions combine to satisfy the BFM Ward identities of the SMEFT operator by operator, in a
consistent formulation of this theory to O(v2./A? g2,,/1672).

2 SMEFT and geoSMEFT
The SMEFT Lagrangian is defined as

ol
Ad—4

Lsmerr = Loy + L9, L9 = > QD for d > 4. (1)

The SM Lagrangian and conventions are consistent with Ref. |3,/15,16]. The operators di)
are labelled with a mass dimension d superscript and multiply unknown Wilson coefficients
CZ-(d). Conventionally we define CN'Z.(d) = Cl-(d)f)gle//\d_él. The parameter vr = /(2HTH) in
the SMEFT is defined as the minimum of the potential, including corrections due to higher-
dimensional operators. We use the Warsaw basis 2] for £ and otherwise geoSMEFT [3] for
operator conventions. GeoSMEFT organizes the theory in terms of field-space connections G;
multiplying composite operator forms f;, represented schematically by

ESMEFTZZGz‘(I,Aa¢---)f7La (2)

2An exception is the modification of the tadpole terms dependence in the SMEFT Ward identities, due to
the need to carefully treat two derivative operators involving the Higgs field.
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where G; depend on the group indices I, A of the (non-spacetime) symmetry groups, and the
scalar field coordinates of the composite operators, except powers of D* H, which are grouped
into f;. The field-space connections depend on the coordinates of the Higgs scalar doublet
expressed in terms of real scalar field coordinates, ¢; = {1, P2, P3, P4}, with normalization
L {2 +idy
H{ér) V2 [<Z54 - i¢3} '
The gauge boson field coordinates are defined as WA = {W!, W2, W3, B} with A = {1,2,3,4}.
The corresponding general coupling in the SM is aq = {g2, g2, 92, 91}. The mass eigenstate
field coordinates are A4 = {W+ W~ Z, A}.

The geometric Lagrangian parameters that appear in the Ward identities are functions of
the field-space connections. Of particular importance are the field space connections hry,gap
which we refer to as metrics in this work. These metrics are defined at all orders in the
geoSMEFT organization of the SMEFT operator expansion as

(3)

vy 8L
hiy(6) = v SMEFT

0 5(D,9) 3(Dyo)? ’ @)

L(a,B-+-)—0

and

_QQ;W Gop 52£SMEFT
£ WA OWE

9aB(¢) = (5)

L(a,B-+)—0,CP-even

The notation L(a, 3---) corresponds to non-trivial Lorentz-index-carrying Lagrangian terms
and spin connections, e.g. (D*®)X and Wﬁj. The explicit form of the metrics are given in
Ref. [3]. Here d is the spacetime dimension. The matrix square roots of these field space
connections are /g ,, = <gAB>1/2, and Vhrs = <h[J>1/2. The SMEFT perturbations are
small corrections to the SM, so the field-space connections are positive semi-definite matrices,
with unique positive semi-definite square rootsE|

The transformation of the gauge fields, gauge parameters and scalar fields into mass
eigenstates in the SMEFT is given at all orders in the vp/A expansion by

WA,V — \/EABUBCAC’V, (6)
aA — \/EAB UBC,807 (7)
¢’ = \/EJKVKL@L7 (8)

with A = (W W=, 2, A), oL = (&1, &, ¢, H}. B is obtained directly from a” (defined
above) and Upc. The transformation of the quantum fields is of the same form. The matrices
U,V are unitary, and given by

0 0

0 0

Upc = , Vik =
o

o ogkak
= oshsk

= okult
o
_ o O O

0 5o
—55 Cg

3Note that \/§AB\/§BC =64 and \/HU\/EJK = L.
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These matricies U, V are rotations; i.e. orthogonal matricies whose transpose is equal to the
matrix inverse. The short hand combinations

ug = 5"’ use, U NP =U"Vg
AB
Ve =Vh' Vg, VHE =VPPVhgr,

are useful to define as they perform the mass eigenstate rotation for the vector and scalar fields,
and bring the corresponding kinetic term to canonical form, including higher-dimensional-
operator corrections. As can be directly verified, the combined operation is not an orthogonal
matrix whose transpose is equal to the matrix inverse; i.e. Z/lé, Vé are not rotations. Although
the transformation between mass and canonically normalized weak eigenstates are properly
and formally rotations in the SM, this is no longer the case in the SMEFT.

3 Background Field Method, Gauge fixing and Ward identi-
ties

The BFM [17H19] is a theoretical approach to gauge fixing a quantum field theory in a manner
that leaves the effective action invariant under background field gauge transformations. To
this end, the fields are split into quantum (un-hated) and classical (hatted) background fields:
F — F + F. The classical fields are associated with the external states of the S-matrix
in an LSZ procedure [20], and a gauge fixing term is defined so that the effective action is
unchanged under a local gauge transformation of the background fields in conjunction with a
linear change of variables on the quantum fields, see Ref. [19].

In the BFM, relationships between Lagrangian parameters due to unbroken background
SUL(2) x U(1)y symmetry then follow a “naive” (classical) expectation when quantizing the
theory. These are the BFM Ward identities. In the case of the SMEFT, the naive BFM Ward
identities of the SM are upgraded to involve the canonically normalized Lagrangian parameters
(i.e. barred parameters) defined in the geoSMEFT by using the field space connections.

The BFM generating functional of the SMEFT is given by

Z[F, J] _ /DF det |:AgA:| eifdw4(S[F+F}+£GF+sourceterms)'
AaB
The generating functional is integrated over the quantum field configurations via DF', with F'
field coordinates describing all long-distance propagating states. The sources .JJ only couple to
the quantum fields [21]. The issue of gauge fixing the SMEFT in the BFM was discussed as
a novel challenge in Ref. [22] (see also Refs. [23-25]). The core issue to utilizing the BFM in
the SMEFT (to calculate complete dependence on IR quantities such as masses) is to define
a gauge fixing procedure in the presence of higher dimensional operators, while preserving
background field gauge invariance. Ref. [9] reported that such a gauge fixing term is uniquely

JAB X i €. N
Lop = _ﬁgf‘ Gh, gX = (‘)MWX’“ — G%DWEWD’“ + ngcqﬁl hik Vé(,J(f’J- (9)
Here g and h are the background field values of the metrics, as indicated with the hat su-

perscript. See Ref. [9] for more details. This approach to gauge fixing has an intuitive inter-
pretation. The fields are gauge fixed on the curved Higgs field space defined by the SMEFT
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(field) power counting expansion (i.e. in op/A). This is done by upgrading the naive squares
of fields in the gauge fixing term, to less-naive contractions of fields through the Higgs field
space metrics gap, hrx. Such contractions characterize the curved Higgs field space geometry
the theory is being quantized on to define the correlation functions. When the field space
metrics are trivialized to their values in the SM: h 17 =077 and gap = d4p. The field space
manifold is no longer curved due to SMEFT corrections in this o7/A — 0 limit. The gauge
fixing term in the Background Field Method then simplifies to that in the SM, as given in
Ref. [26/28).
The Faddeev-Popov ghost term, derived from Eqn. |§| is [9]

Lrp = — gapt® |-0%04 — <gugf)DC(VVD’M +WPH) + gADCwl?gu (10)

A - A A . N AU P -
—&ppE WD (W L WER) — ZQAD(W + 0NV b A d) [ uC.

Our notation is such that the covariant derivative acting on the bosonic fields of the SM
in the doublet and real representations respectively is [9]

DMH = (8“+ig2Wa7“aa/2+ig1 yhBM)H, (11)
1 -
(D*g)" ("85 — §WA’”%{1,J)¢J, (12)

with symmetry generators for the real scalar manifold 74 j (see Ref. [3,9] for the explicit forms
of the generators). Here o, are the Pauli matricies and a = {1,2,3}, y, is the Hypercharge
of the Higgs field. The structure constants (that absorb gauge coupling parameters) are

~A A . ~1
€Bc = 92€ Bo» with € 23 = 92,

I
- govy 7, for A=1,2,3
Fho=97" M (13)
917a,y, for A=4.
For infinitesimal local gauge parameters dé.4(z) the BF gauge transformations are
Y,
5 i1 _6AA o J
¢ = —oat 224,
WA = — (0165 + & WOH)saP,
R . SaARE L satAK
Oh1s = hics —5 2 + hie ——5 22,
8gap = o €pa 0" + gac épp 6aP,
0G* = —&% 5 6a"G",
Sfi =Ny, 6
0fi =’ [N, ;. (14)

The BFM Ward identities follow from the invariance of I[F',0] under background-field
gauge transformations,
ST[F, 0]
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In position space, the identities are |9

. A or :Yé g o0 - . o oI .
_(ausA A C,u _ o aJ E A T AL F.
0= ((9 (53 € BC W ) 5Wﬁ 9 (ZS (5(%[ + : <f.7AB,'L 5f,L 5fiAB’]fj> . (16)
J

The structure constants and generators, transformed to those corresponding to the mass
eigenstates, are defined using bold text as

Lr

C  _ 7,-1\C= D4 ,E I _ts A
eqy = U ) a€ppUs Uy, YG,L = §7A,L Ug
i Ad A
X, = Ay Uy

The background-field gauge transformations in the mass eigenstates are
BACH = — |68 + €y AV 35C
00K = — (VI v L VR EN 5. (17)

The Ward identities are then expressed compactly as [9]

or
B¢
or ——; oI oI . or P or .
= O¢ AL T T AR ) c Yp _ ~WK_ I L&N
= 0 6AX7M +; <fjAX,i 6ﬁ 5fiAX7jf]> (5_,2[0#6 XYA 5(i)K (V )1 FYX,LVN(I) .

In this manner, the “naive” form of the Ward identities is maintained. The descending
relationships between n-point functions encode the constraints of the unbroken (but non-
manifest in the mass eigenstates) SU(2)r, x U(1)y symmetry that each operator in the SMEFT
respects.

4 Background Field Ward Identities

The results of this work are the SMEFT extension of the treatment of the Electroweak Stan-
dard Model in the BFM, as developed in Refs. [26133]. Our results (with appropriate nota-
tional redefinitions) simplify to those reported in these past works in the limit o7/A — 0.
The background Higgs field H takes on this vacuum expectation value, while the quantum
Higgs field has vanishing expectation value
2 1 B2 + i ] 1 [@2 + i¢1]
H =— . ~ H = — A
=175 LT T i — idy 01 =7 |64 - igs
In the remainder of this paper we verify that a set of the Ward identities hold at one loop
order. This requires some notation. Our convention is that all momentum are incoming (here
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denoted with k*) and we define short hand notation as in Refs. [28-33]

VLV — YAt k. ky YA kuky vy
~ir (k) = (—guyk2+kjﬂky+guyM?/> STV <—9;w+22) SR ) V719
2 S
L ikt SAX (1), (20)
JASD3
2 N
o ik SAT (K2, (21)
JAGPA
5T 5T - e
— = = k¥ [i Mz + XXk, 22
5(1)35A31/ 5A31/5(I)3 |: 2 ( ):| ( )
T e + 5% (k?) (23)
5D35D3 ’
62F R v STWTF /12
6°T [ WEGT 12
Siser = [:FMW+2 (k )], (25)
°T 2 | bt d g2
——— = i+ (k) (26)
SP+oD—
T i(k2 — m%) + o TH (k2). (27)
SHSH i
The two point function mass eigenstate SMEFT Ward identities in the BFM are [10]
2
r
= H#’ (28)
SASAY Y
2
r
A T (29)
A DI
6T -6
O:au%_MZf7 (30)
SABHE AV SB35 AYY
and
2r _ 2r
o=t gy, 0T (31)
SA3RED! SP35D!
gz O [3,3] [4,3] [3,4] [4,4]
+ 932756)4 [(\/EMA]\/E - \/E[473}\/ﬁ ) 5% — (\/E[4,4]\/E - \/E[4,3}\/E ) 5}1} ’
2 2
(VLA v S N (32)
SWERAY v SHEAYY
5T _ 5T igy OT
0=0t—— — +iMy—F—=— (Vh ivh X 33
WD W shEedl T 4 g ( ¥ “’31) (33)

R R N S N F S A Ee N

To utilize these definitions, note that sign dependence of k* being always incoming in the case
of charged fields leads to several implicit sign conventions that must be respected to establish
the Ward identities. From these identities, it follows that

£ =0, £74(0) =
S (k) =0, 27 %(0)

0, (34)
0, (35)
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and

AX(k?) = 0, SAR(k?) = 0. (36)

Limiting the evaluation of the field space metrics to £(®) corrections in the Warsaw basis [2],
further identities that directly follow are

0= S2Z(K2) — iMz22X(k2), (37)
0 = K2SZX(k2) — iMz SN (k) + i %ZTH (1 - C*HD) : (38)
and
0 = SV (12 £ Ny = WT (12), (39)
0 = B22W5OT (k) £ My 20T (12) ¥ %TH (1 — Cpo + (’ED) . (40)

Note the appearance of the two derivative operators involving the Higgs field modifying the
tadpole terms TH = —idT'/ 6H fixing the vev. It is important to include such corrections,
which are a consistency condition due to the background field geometry the SMEFT is quan-
tized on.

Several of the remaining two point functions vanish exactly, and the corresponding Ward
identities are trivially satisfied. The geometric SMEFT Lagrangian parameters to £ ap-
pearing in the Ward identities are the geometric SMEFT masses [15]

2 57%77%7 4l
w 4
_ 2 B 1 5, o A 1 5, _ =
M3z = ZT(912 +7,°) + 3 o7 (9" +92°) Cp + 5“% 9192 Caw B, (42)
C C

and the geometric SMEFT couplings

€= ,g; g2f 5 [1 - = gl 92 5 CN'HWB} : =312 + 3% + 91 92 > Cuwp, (44)
V317 + G5 91° + 92

1247,
91 =91(1+Cup), G2 = g2(1 + Crw). (45)

These parameters are defined at all orders in the v /A expansion in Ref. [3,|11], and we stress
the Ward identities hold at all orders in the o7 /A expansion, and also hold for cross terms
in the perturbative expansion and vy /A expansion. As such, the Ward identities provide
a powerful and important cross check of non-perturbative and perturbative results in the
SMEFT.

4.1 SM results; Bosonic loops

We verify the Ward identities at the level of divergent one-loop contributions to the various
n-point functions. In the case of the SM, we confirm the results of Refs. [28-33] and reiterate
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these results here for a common notation and due to their contributions to the SMEFT Ward
identities. We focus on two point functions involving the gauge fields due to the role that
the scalar and gauge boson field space metrics have as the field space geometry modifies the
Ward identities into those of the SMEFT. The results (using d = 4 — 2¢ in dim. reg.) are

ross 1 div 2 42 -7
YAA (12 _ 91 92 E2 46
2770 g (62 +93) " \16m2¢)’ (46)
rsax 1 div
SA k2 =0 47
i L ( )_ SM ) ( )
r a3 1 div 4 2 2
W], = - (B, (48)
i lsm (91 + 93) 9672e
r o+ 1 div
E.AZ k2 — 4
| L ( )_ SM 07 ( 9)
and
{222( )| = 8k?(g1 — 4393) +3(€ + 3)07 (97 + 93)* (g1 + 393) (50)
o su 7687 € (g7 + g3) ’
522" _ (£+3)07(9F + 63) (g7 + 393) .
) gy = 25672¢ ’ (51)
p20]9 _ (E+3)irVgi + 95 (91 +393)
ER) gy = 12872 ’ (52)
[ )] div_ g3(3(§ +3)v7(gi + 3g3) — 344k?) (53)
lsm T6872¢ ’
AN g5 (£ + 3)v7(g7 + 393)
[EEV Y (kZ)_ sm ; 25(;:;261 ) (54)
W .2y] % 9 div (€ +3)vr(gi + 395)
$OtWT (1.2 — W2 __ Y9 1 2
{ (k ) SM [ ( )] SM 12872¢ ’ (55)
o 7 div 2 4a— div
(SR A S =
_ 1 Y (€ +3)K* (g7 + 393)
a SM 647m2e ’
(57)
pHY U (397 + 995 + 9672 + 12g20E + g3 (693 + 4XE)) .
[ ]SM - 256 12 ¢ : ( 8)

Reducing to the SM limit the SMEFT Ward ID (A — oo, v — v) yields the corresponding
SM Ward ID, consistent with Refs. [28-33]. These expressions satisfy the SM Ward identities.
The fermion self energies in the SM, and the fermionic contributions to the bosonic two point
functions are suppressed here.

4.2 SM results; Fermion loops

Unlike the contributions to the bosonic one and two point functions discussed in the previous
section, the contributions from fermion loops depend on the number of fermion generations.
We discuss these contributions in a factorized fashion in the SM and the SMEFT for this
reason. The bosonic one and two point functions contributions in the SM from fermion loops

10
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are shown in Fig. (1], which give the results

o - div 2 .2 32 k?
EA'A kZ — 91 92 e 59
=T ( ).SM (P+95) \ 9/ 1672 " (59)
roaa 1 div
_Ef'A(k)Q)_ ur = 0, (60)
(@ AZ 2] % 2097 go — 129195 K
E.AZ ]{?2 _ 1 2 61
Ram )_SM 9(g1% + g22)  16n% (61)
r .z 1 div
_zfz(kF)_SM = 0, (62)
) P, 2 2
A 1 div 492 k2 NC my, 95
S AR R _ X9 N~ _C Ty I2
{ T )y 3 16n%¢ %: 3272 (63)
A a 1 div Nwm g3
WHW— 12 _ Y I2
{EL (k ) sy Z 39712¢ (64)
IS 1 div 5g + 39 ]{;2 m?p (.g% + g%)
Y22 (1.2 _ 1 2 _ NY v g2 65
[ o )_SM g2 + g3 3672 Z ¢ 3272 (65)
ss o div Nwm (97 + 93)
nEZ (1.2 _ p 1
[ Lo ).SM Z 32m2¢ ’ (66)
S 1div 2 2
ol JETR
B, = MR YR 67
1 div TR div
W= (1.2 _ [yt Y 92
[2 GOl [2 (> } Z NEY]or 22, (68)
)™ - s vgve - Z NSV (69)
Jsm 1672 ¢ < CY 167r v’
() WL o Vv R BV (70)
lsm 1672 € ” cv 16 26 v
Hidiv P
[T ]SM - 1671'2 Z N Y¢ (71)

Here Yy, is the fermion 1 Yukawa coupling, and Ng = (3,3,1) for up quarks, down quarks
and leptons respectively. n sums over the generations and colours in each generation. These
expressions, consistent with those in Ref. [28-33] satisfy the SM limit BFM Ward identities.

4.3 SMEFT results; Bosonic loops

Directly evaluating the diagrams in Fig. [} with a full set of all possible higher dimensional
operator insertions, we find the following for the SMEFT. The results have been determined
automatically using a new code package for BFM based SMEFT calculations to one loop
order. This code package is reported on in a companion paper [34]. The results have also been

11
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directly calculated by hand independently in a cross check and verification of the automated
generation of results. In many cases, consistently modifying the SM parameters into those
of the geoSMEFT leads to some intricate cancelations in Wilson coefficient dependence in
a Feynman diagram, through modified Feynman rules in the BFM, and subsequently in the
summation of the diagrams into the two point functions. Further cancelations, and non-trivial
combinations of Wilson coefficient dependence, occurs combining the full two point functions,
with the geoSMEFT lagrangian parameters that feed into the Ward identities. Such intricate
cancelations follow from the unbroken background field symmetries.

4.3.1 Operator Qyp

Defining the combinations of coupling which occur frequently for this operator as

(91 +395)E+497 g5 (E—T)+8(9f +93)N)

7%HB = 3972¢ ’ (72)
Py = (OS2 -
Penp = W’ (74)
Phup = LATITDE (75)

the two point functions in the SMEFT are

[ AA,g.20]9 = 2 95 Pé‘HB
S5k = Cupk’ —5—5=, 76
e, g+ )’ (70
rosa 7 div
ZAE) ], =0, (77)
(o2 2] % - Pup . 9192 P
wAZ (2" = —Cypk? [91 92 7cuB CHE | 78
e, (91 +93)%  2(gf+93) ()
r s 1 div
SpER)|, =0, (79)
. 1CHuB
c 2 div _ 2731 27)3 92 7)2
n2Z2)] - 0 [kz 917cHB | 12 917CHB | ;2 91 CHB] 7 0
c 2 div N 2 7)2
SPE)| = Cupop AECHE, (81)
L 1CHB

L div a2 2 2

1Cup V9i+9312872¢

12
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PO 1 div N 2,42 (€ +3)
SPENT (52 — Cypir N9 812 83
{ v F)], HBUT ~o8n2e (83)
e o a R BE+D)
SWEWT (12 — CpypopBt928 1Y) 84
{ v ) HBYUT ™ o8 a2 ¢ (84)
Ty 1div P div ~ 292 (€ +3)
SOV (52 S [2¢ W k2] — CppopdL92s12) 85
[ ( ) Cun (%) Cun HBUT™ 6o (85)
“n 1 div S s div - 5 +3
EXX ]{72 — |:ECI>+<I> k2 :| — C 2 —k27 — 4
|: ( )_ C’HB ( ) OHB HB 91 327’(26 +UTPCHB s
(86)
di = _
[TH} CZ){B = Cupdi Peup; (87)
o di - di
»AA(K2) ~w and |24 (k?) ~w are exactly vanishing in the BFM, consistent with the
L Cup L Cup

div div . 9
3 _ are proportional to k=,
C

BFM Ward identities. Conversely [Esz(kQ)] and [EéA(kQ)} c
HB HB
and only vanish as k? — 0. This is also consistent with the SMEFT BFM Ward identities.
The remaining Ward identities are maintained in a more intricate and interesting fashion.
For example

3 . 2 2 > . di 2 é = . di
it = IR o)t A0 o]
HB 2 97 + 95 SM

9 (397 +593) | i (91 +393)
256 72 € 25672¢ ’

91 (g3 + 293)

6472 ¢

= —Cup?v7(£+3) [

= —Cupv7(£+3) (88)
5 div

which exactly cancels [Efz (k:z)} ‘o

Here we have not expanded OlﬁJB@T, simply for compact notation. Expanding v out in
terms of the SM vev and corrections does not change the Ward identity for this operator.
The manner in which the Ward identities are maintained in the SMEFT involves a nontrivial
combination of the appearance of the SMEFT geometric Lagrangian parameters in the Ward
identities, in conjunction with the direct evaluation of the one loop diagrams in the BFM.
In the later, one must expand out the dependence on corresponding Wilson coefficient in the
geometric SMEFT pole masses diagram by diagram.

establishing the corresponding BFM Ward identity.
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Similarly, the following Z identity has the individual contributions

5 . di ~ 5 2 3) (3 2 5 2
2 {sz(kz)} o Gy 2 291 (€+3) (391 +593)
Cus g7+ 931282 €
_ .. di V2 + 2o .. di 2CHuRv ..
—iMz {EXX(]{2)1| v N9t gr [EXX(k.Q)] S ;91 CnB T [EXX(kQ)]
2 Cus  2+/g? + g3

(89)

div

9

SM

. vr g7 (E4+3) (391 +5¢ Cup o _
— Gy LD B EOG) b s fa

Vg3 + 951282 2

. CHBQ% [ H]dw
S )

2\/g% + 93 "

97 1 CH [ HBg1 7 div
’L?T — glvT gl+92PHB+ \/QITQ [T }SM’

that combine to satisfy the corresponding Ward Identity.
The charged field Ward identies are satisfied directly for this operator, as

[vaw (kg)]d“f

CuB

] TR div
+ EL =) =0

CuB

and

2 [qovtd 2] | G207 [qd-d+ 2|9 92 (pmydiv
k[z (k)}éHB+ : [2 (k)}éHB—E[Ty ~0.

4.3.2 Operator Qgw

Defining the combinations of coupling which occur frequently for this operator as

(g1 +393)E+49795(E=T)+8 (gl +93) N

1 _
Ponw = 3272e ’
p2 o _ B+OQ2gi+345)
CHW 3272 ’
p3  _ B9i—37g3
CHW 4872¢
i _ (9% +27g3) +12X¢
CHW 12872¢ ’

14
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the two point functions in the SMEFT are

roaaz 7 div ’P
EA'A k? ) — C k2 gl CHW , 98
- ( )'CHW e (97 + 93)? (98)
roa s 1 div
ZE |, =0, (99)
A2y 2,] 4 - P g1 62 P2
wAZ (2] — oo k2 [91 92 Ferw CHB 100
SR LR T 23+ ) (100)
Cis ooqdi
217 (k%) CZW = 0, (101)
. div ~ 2. D3 2 D2
$22(x2)]" - Cyw [kz 9 Perw 12 ngCH;/V + 72 92 PC’HW] : (102)
- 1Cnw (g +93)° (97 + 93) 2
r 55 7div ’P
_Efz(k2)_ e Crw v7 9 Pesw 2CHW, (103)
L ~div B S 2 2 2
lenw VO +g3128n2e
ST 2019 . P 2 P (g7 + 693) g3 (€ +3)
TWEWT (1.2 i S {kz CHW | 1.2 .2 CHW +B 72 1 2) 92 } 05
{ r (k) Crw VY g2 4 g2 P22y g2 12872¢ (105)
VEWF 2,19 5 (97 +693) g5 (£+3)
SWEWF (1.2 _ 2 \91 2) 92 1
{ v W, = G 12872 ’ (106)
o 2] | o (998 ¢ (6+3)
W (1?2 = |V (k2 = —Cpw op-——2 107
[ ) | ( )}é},w HWoT 8me 0 107
N 7 div P div ~ +3
|:EXX(]<;2)- o - [2<1>+q> (kQ)] o = Chw g3 [ 3 k2 §2 5 + o5 PCHW:| (108)
div ~ _
[T = Crw g3 03Pl (109)

[Eé,&(ﬁ)}d@w _ [Zéé(y)}?v = 0 and [23@4(#)}? [234:“‘1(152)}? have the same
HW HW HW HW

dependence on k? as in the case of Cyp. The corresponding SMEFT BFM Ward identities
are satisfied in the same manner. Further, we find

_ 5 2 25 s di 20 o s di
iR () = VAT InZhge)) " BRI ToZige) "
2 Craw 2 g%—l—gg SM
2 2 2 2 2 2
~ _ 95 (Tgi +995) | 95 (g7 +3935)
= _C 2 3 110
aw o7 (& + )[ 95672¢ | 256n% | (110)
~ 2 9 2+3 2
B - (5+3)92(91—292)7 (111)
64 74 €

di
which exactly cancels [EZZ (kQ)} "

Caw
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In the case of Cgyy, the remaining Z identity has the individual contributions

div B = 2 2 2
Cuw \/9%4—931287{26
_ “n div 2 25 “n div 20 D . n div
—ilM = [EXX(]{;Q)} = — 7\/91;92” [2XX(k2)] R C’;W UT2 {2x><(k2)} 7
Cyw 2 gl —+ 92 SM

. v +3) (793 49 C R
— i Cyw k2 ot g5 (€ +3) (797 92) i HWQ%UT 7+ 2 Phw,

VG + 93128 72 2

i éng% [ H]dw

- ) (113)
92 g% _'_gg SM
. QZ H . CH CHW g% Hdiv
el ——s T 114
1y 5 92’UT\/91+927DHW‘*‘12 P+ [ ]SM’ (114)
that combine to satisfy the corresponding Ward Identity.
A charged field Ward identities is satisfied directly, as
N N div div P div
[ )] BVt )] B Gy [V )] =0, (115)
Cuw 2 CHW SM

the remaining identity also requires the redefinition of the W mass into the geoSMEFT mass
to be established as

P+ div - (934 993) g2 (€ +3)

k:2 EW+<I> k2 _ k2‘ 1 2 11
{ ( )}CHW Crw k" or 1282 ¢ ’ (116)
_ Y 7 A2 div 7 - P div
My [Eé <1>+(k2)} _ 922UT [Ed) q>+(k2)}é Jr92211T Cor [E(b <1>+(k2)}SM’

HW
92 ~ Fdiv mdiv o (91 +993) g2 (€+3)
= Z=C T Z T o~ Crwk
o Cmw | Jomr + % > T )ew HW vT 12872 ¢ ’
92 (] 92 A4 Hydiv 92 (ol djy
-5 ] = 5 Crw Ty, 5 [T%] 600 - (117)

4.3.3 Operator Qywp

The Wilson coefficient of the operator Q) w p modifies the Weinberg angle of the SM into the
appropriate rotation to mass eigenstates in the SMEFT, given in Eqn. @ The same Wilson
coefficient shifts the definition of the Z mass in Mz, modifies gz to gz etc. The various
contributions to the BFM Ward identities combine in the following (somewhat intricate)
fashion. Again defining combinations of coupling which occur frequently as

(g1 +393)E+ 1295+ 491 g3 (€ —4) +8(g7 + g3) \)

Pluws = 3972e , (118)
Py = CTOAT2G) (119)
Penws = 922—;2369%’ (120)
Peuwp = ot 41_2‘(]53;6_ 1A 57 (121)
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Figure 1: Two point function diagrams evaluated in the SMEFT. In each diagram, all possible
operator insertions are implied in the one and two point functions. Here long dashed lines are
scalar fields, including Goldstone boson fields, and short dashed lines are ghost fields.
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the two point functions in the SMEFT are

ros . 1 div ~ 'Pl
DAA (L2 - _C k2 9192 Fcuwn 129
s T g3 12
roaa 1 div
)], =0, (123)
o < div : (g2 — g?) P
ZAZ k2 — C k,? _\J2 1 CHW B 7)3 124
R ( )_ o HWB 2 (o2 + 62)2 + PorwB| > (124)
r s 1di
S| = o, (125)
L 1Cuwns
N 1 div - Pl k2 7)2
w22 (1.2 - g2 _LCHWB 2 FCHWB 196
S 1 div ~ 732
w22 (1.2 - 0 -2 9192 "cowB 127
Rl G HW B VT 5 ; (127)
. 1 di - 5 2 2
[EZX(kZ) ~w = —iCywn UT g1 92 (5 + 3) (3 g1 t 592) (128)
1Cuws \/g%+g§1287r26
T (9110 - K 0765 (E+3)
SWEWF (12 = C T2 129
{ W) HWB 992 | Je et T og a2, (129)
VEI 140 - 5 9195 (£+3)
[ZEV WI (kZ)- C'HWB - CHWB U% 122871'26 ’ (130)
T fy 1div P div ~ 2643
) P by (] e At (131)
- VCHWB HW B
o2y ] A TN . 20§ +3 9.4
[E ) s = {Z ( )]GHWB = Cuwp 192 | =k 5om + 01 Penw(l52)
di ~ _
(TG, . = Crws 19203 Pemws; (133)
Once again
N div S div
=) =[] = (134)
HW B Crwa
and the fact that
U di . di
[EéA(kQ)} sk [2%3 (k:2)} K
CHWB C’HWB

directly establish the SMEFT BFM Ward identities involving the photon. Due to the modi-
fication of the mass parameter of the Z to Mz one finds

. 2. 25 . ; A _ ) .
iR = i VAR [52g2)] W 9192Cnwstr BRG] v
2 Crwnp 2/gi + 93 SM
SR 9192397 +593) 9192 (97 + 393)
mwp or (6 +3) [ 256 72 € + 25672¢ )
2 2
A —2 9192(97 +293)
frnd — JIJa\J]l ' =I2) 1
Criws V1 (6 +3) ==, o (135)
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SN div
This combined result cancels [E%Z(kz)} & exactly. A similar modification of gz to gz in
HW B
the SMEFT Ward identities in the BFM results in

% di ~ 3) (3 5
Cuws \/g1 —|—92 128 4 €
_ . di 21 425 di C o di
B - -
1 2

. = o1 g192 (E+3) (362 +592) . Cuws ~
= iCywpk? ( ) 897 2)—1 91920%\/9%+9%7)§1{W37

Vgi+95128n2¢ 2

CHWBYLG2 (o div
e e =———— [/} , (137)
9 g%—i—g% [ ]SM
g C di
i 9ZrH HW39192 /gl + g2 PHB‘H Crwp 9192 [T ] iv (138)
2 2/9% + 93

The remaining two point function Ward identities are trivially satisfied for this operator.

4.3.4 Operator Qup

For all operators in the SMEFT, a consistent analysis of the effects of an operator is essential
to avoid introducing a hard breaking of a symmetry that defines the theory. The two deriva-
tive Higgs operators in £ satisfy the Ward identities in a manner that involves a direct
modification of tadpole contributions. Including such effects in a formulation of the SMEFT
is essential, even at tree level, for the background field gauge invariance encoding unbroken
but non manifest SU(2)r, x U(1)y symmetry of the theory to be maintained. These symmetry
constraints are the Ward identities.
We define for Cyp the short hand notation

2(97 +3g3) €+ (997 +2193) ‘1‘24)\

Penp = 51272¢ (139)
, _ 15gi +30g7 g3 +94i —608A2—4§A(9f+39§) 14
Ponp = 1024 72 ¢ . (140)
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The one and two point functions dependence on Crp at one loop is

roa » 7 div
)], =0, (141)
ros» 1 div
), =0, (142)
r sz 7 div ~
E.AZ k‘2 - _ k‘2 g1 g2 14
7 ()] Cup Cup k19530 (143)
r +s 1 div
TR, =0, (144)
(22,24 = 2 9% 2/ 2 2\ pl
_ET (k )_ Cp Cup [k 962 TUr (91 +92)PCHD] ; (145)
r 2.4 ~ div -
_Efz (kQ)_ onn Cup 07 (97 + 93) Péup (146)
oo o 7div P 3 (g2 4+ 3¢3) € + 1597 + 3393 + 48\
ZX (1.2 - _ 2 2 1 2 1 2
[2 ), iCp /g2 + g2 e . (147)
TN 1 div PO div ~ ,DQ (g2 — 92)
ZVViVV¥ k2 — |:2)/Viv\/$ k2 i| —_3C 2 YT \J2 1 148
[ ) v ), HD 92 55672 ¢ (148)
N 1 div P div . (92 _ 92)
NIV (12 - _ [Ed’ w kﬂ —3Cypop 22— 91 149
{ (K)]e, K)e, HDUT ™98 72 ¢ (149)
oo 7 div N 2 2 2 4 2¢2) 4+ 24\
[EXX(kZ) i — _2Chp (91 +395)¢ ‘E268(7§i126+ 93) + ’
- HD
L RE 393 (93 4 293) — 2X (g7 + 393)€ — 1762 (150)
T~HD 25672
SN 5 3(03—91) | o~ 9(gf+03)7 — 25607
D I e 2 c L9 151
{ e, HD —giae VT CHD 51272¢ : (151)
div ~ _
[T, = Cup©Péyp; (152)

g div
The photon Ward identities are trivially satisfied for this operator. As [E%Z (kQ)} é x k2

HD
the remaining identity for 42 directly follows. Further, Mz is modified by Cgp in the
geoSMEFT, and one finds the expected relationship

_ s N NPy s di Crno s di
iR = i VAT (w2 g+ gHRT (2250
2 Cup 3 SM
= —Cup ot (gt + 93) Peup: (153)
SN div
leading to the cancelation of [Efz(k2)] c

HD
The remaining Z identity has individual contributions

—il s {Zfoz(kz)}div _ —i@ [Eii(kg)}dfﬂ —iméHDvT [2**(k2)]div7

2 Cup 8 SM
2 2 ; 5 div
VYL G5 pEydiv 2{2" 2}
= X222 \TH L — k| XXk 154
? 2 [ }OHD ( )C,HD7 ( )
.§Z H .\/g%—i-g% Hidiv
i5TT = i 7716, (155)
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that combine to satisfy the corresponding Ward Identity. The BFM Ward identity: EEWW? +
My s+

= 0, is directly satisfied for this operator. More interesting is the modified
Tadpole contribution in the identity

T S 5 & g C
0=k>SV"® 4 My 220 %TH (1 + ’ZD) : (156)
The individual terms of this Ward identity, dependent on Cup expand out as
ERIAT S [wa—ri“
OHD ’
o A 92(93 —9i)
_ 1
3k§ UTCHD 1287T26 5 ( 57)
2 2 212 2
_ ¢z . 5 9(g7 +95)° — 256\
Mo 00T £2 (93 — 97) 2 1792 1
w orCrp g2 3K Sog s e TOr 102472¢ » (158)
g2 H C’HD . g2 1 div g2 = 1 div
-5 7T <1+4 ) i) [T ]éHD_chD (T gor > (159)
and the Ward identity is satisfied as
= 9(g}+g3)? — 25602 4 : C :
G 991 +93) B ) (160)

12872¢ 17% Cup 17%

4.3.5 Operator Quno

The one and two point function dependence on Cg is

S v B v U T e U] T N CY
2%?3(#):2:5 - éﬂmw [k +95% (g} + g3)] (162)
:zfé(ﬁ):dg; — 3Cy @%W, (163)
[Zéx(kz):déi:[j = —32CHDUT\/91T92W, (164)
[wa;(k%:zm — C’HD38ZZ2 (4K +9g272], (165)
[Z?ivw(kz):dgzm _ C'HD%, (166)
i ~ div s v 3
[2¢+W_(k2).2m = - [E¢_W+(k2)]zm = —3CHnor 25, (167)
{222(k2):?; — Cun [ 312 9§2+292 T§;l>\22:| (168)
[25’*@(1@2):?; ~ Cun [—318 329226+ %gg‘f] (169)
[TH]dC'i:m — Cun ok 34t +69192+9922‘g6628)‘2+4)\5(91 +392) (170)
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For Qg the identities involving the photon are trivially satisfied. The identities without a
tadpole contribution are also directly satisfied for this operator. For the identities involving a
tadpole contribution, the dependence on C'yg combines to satisfy the BFM Ward identity as

5 n div - 2 2
k2 [EZX(k:?)] C 3iCun R op gt + WL 9 (171)
6472 e
_ “ div - 2 2 64 )\2
, 2 e 2, 2 20195 | o
il [Zxx(k )] = —iorCun\/g? + 62 [—31{ el ety IR
= 2 2 . 2 2 .
. = RV + div .V + ~ div
i %ZTH(l ~Cyn) = i 7912 % [TH}GHD —1 7912 % Cun [T $u

A 3 A2

and the individual terms in the corresponding charged field Ward identity, dependent on Cgp
expand out as

sy 2 1div - 33
k2 [EW+¢ :|C’ = Cynovur kQ&T;ZQQG’ (174)
HO

_ « ~ . qdiv - 3 6492)\2
s [2‘1’ ‘Iﬂ — Cypor |-3k2 -2 32 175
W Cuo Hovr 647T26+UT 64m2e |’ (175)

92 nH = 92 ppHdiv 92 ~ Hdiv
_ET (1_CHD> - 9 [T ]GHD+§CHD [T ]SM’
5 )\273

- Oy 2T (176)

m2e

4.3.6 Operator Qg

The operator @ leads to a modification of the vacuum expectation value in the SM into that
of the SMEFT. Qg also contributes directly to the Goldstone boson two point functions, and
generates a tadpole term at one loop. It follows from the results in Ref. [10] that for this
operator

s~ 7div . .7 div i

(=] = [ = [T (177)
Cy Cy

and we find this relationship holds as expected, with

= . 178
Cy 12872 € (178)

] div __3CH 7 (64) + (91 +395) )
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4.3.7 Operator Qw

The two point function dependence on Cyy is entirely transverse and is given by

div div

- - A IS div AR
AA 1.2 _ AZ 1.2 _ Z2Z1.2 _ WEWTF 72 _
SR = [22Ee)], =[EPe)], = BV, =0 o)
r s i o1div o g2 i k2T
] A LI Fy S ) (150)
L 16w 8m2e(g; +95) | U7 |
[ AZ 2,19 3Cwaigs | k2]
YAZ (12 — __°ZWIlT g2 o | g2 181
i T ( )_ Cur 871'26(9%—1—‘9%) I 92 5%_ ) ( )
- s div 3Cwags [ k2T
YEZ (k2 = —— """ 32 92 | k2 182
i T ( )_ C’W 87'('26(9%"—9%) I 92 T)%_ 9 ( )
SRRV 1div 3C'W g2 kz
[ZQW T (k) 6 T e [393—2@2 K, (183)
- T
5 1 div AlA div div P div
»EX (k2 — |2V (g2 — | SRR (g2 — |xeteT (g2 —0, (184
(2% e, [ ( >}6W |25 >}éw [ ( >}éw , (184)
div

As the contributions from this operator come about due to field strengths, which limits the
Helicity connections, the results are purely transverse, and also proportional to k2. The overall
coupling dependence also directly follows from rotating the fields to mass eigenstates. For
this operator, the SMEFT Ward identities are directly satisfied.

4.4 SMEFT results; Fermion loops

4.4.1 Operator Qyp

A - div B 2 .4 64 k‘2

s AA (2 - 0 919 D% 186
L P HE (219279 1672 (186)
ro» 1 div

SR, =0, (187)
L 1Cup

roaa 1div - 4 k2

T ( )_ Corn HB P+ 229 (591 + 1891 g5 — 395) Tor2e " (188)
r +.4 1 div

S|, =0, (189)
- “~UHB
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5 5 div SGHB k2n 92 (5g4+10g2g2—394)
nZZ k:2} _ NYm 97 1 (997 195 2
=75 ) us CHB%: Tl R e T (97 + 93)° ’

(190)

5 5 'd’iU Nwm gl
w22 (1.2 - _C ¢TI 191
[ e, HBZ 16m2¢ (191)

o))t = v <k2>}d“’ = [ ) = )t <o,
1Cus Cus Cusp Cusp
(192)

5. 1 div L~ UT
w2 = ic gt NY2, 193
[ ( )_ Cun HB327T 91 +g2 Z v ( )
A 1 div o div div

OV (12 - [EXX k2] — [TH1% . 194
=V @), w7 =g, (194)

Most of the BFM Ward identities are trivially satisfied. These contributions come from
rescaling of SM results to the two point functions through fermion loops. An interesting case
is the Z Ward identity where the geometric Z mass dependence on this Wilson coefficient
plays a role

w22 inEc = [222} @ iCupgivr [EZX} o z@ [EZX} aw
L HB QW SM 2 éHB 7
— (195)
4.4.2 Operator Qg
o . vdiv - 192 64 K2
E'A‘A k2 ) _ C 91 92 el n, 196
- ( )—CHW HW (91 +93)* 9 16m%€ 199
roa s 1 div
sHe] =, (197)
L 1Caw
PN 1 div ~ 4 2
SAZ (12 = —Cuw — 2922 (5gt —14g7 g3 — 3g8) ——— 198
), HW 2y A (591 — 1491 9 = 362) 7e—-n»  (198)
roa s 1 div
Efz(k:Z) ) — 0, (199)
L 1Crw
. div 8C'HW k*n 92 (594 - 692 92 - 394)
Ezgk2:| - _C Nw > 95 2 \991 192 2/
=75 o HW; ¢ 162 9 16m2c (9% + 93)*
(200)
N div ~ Nw m2 92
w22 (1.2 } _ _C I 201
[ o )C‘HW CHW%: 16m2e ' 201
o div 2 8C k*n
ZW+W ]{32 } - —_C Nﬂ) 93 HW 9
=) Crw HWZ Mg\ T P igen )
(202)
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Submission

1 div

DTS .
|

-C’HW

div

s @)l =

1Cuw
div

=V ) -

—C’HW

1 div

(224 (?) -

-éHW

1 div

[Zm( k2)

1Cuw

Ngm? g3
_CHWZ o

203
1672 (203)
0, (204)
PO div ~
_ sV g2 } —C NEY2pp P2 205
=), my 3 NGV g e OO
2
. A _ 932
iCrw Y NEYZor : (206)
%: v 327‘1’26\/9%‘}'93
[TH)4"  —o. (207)

Caw

The BFM photon Ward identities are trivially satisfied. The remaining Ward identities we

examine work out as

NEZ Nz xEX

E2NEX N SRR 4 %ZTH

SYVT L gy VT
F2EWVET L Ny 02T 0% %TH

4.4.3 Operator Qywp

roaa 1 div
AR

L 1Chrwsa
roaa 1 div
Sk

L 1Chrwsa
r o+ 1 div
72 (k%))

L 1Crwsa
1 div

22 02)

1Cawsa

[Ezz}d” _iCuw g3 vr [ng} divi\/g} + g50r [sz} div
L Cuw 2 g% + g% SM 2 Cuw
0, (208)
25 NYY?2 div 1 ,
- g vr 2 P [ AA} Hdiv
C —= = |k — | XXX — T
RSN %: 1672€ on T g T Lsu
0, (209)
A _ o ) s
[ a2k ([Ew*ﬂ L Gy [PV ) ,
Cuw 2 Cyw SM
0, (210)
~ PN div éHW 92 _ HFHE div div
L2 [Ewiw} 4 [E‘I’ ) ] TH
CVHM—/'_ 9 vr SM + [ ]SM ’
0. (211)
3 3 2
= 91 92 64 k
_c i 212
HWB (P + 927 9 1672 n, (212)
0, (213)
2 2 2
A 91 92 32 5 2 k
C —_— - 214
HWB (g%+g§)2 9 (91 92) 1672 (214)
0, (215)
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Submission

5 5 1 div
D]

1Caws

5 5 1 div
(=E202) -

1Crwa

A Ay — 7 div
[w @) =
- C”’HWB
5 7 div
22 #?) —

1Caws

[2**(1#)_ S

1Crwa

~ 64OHWB k2n 9393
o N 2 9192 172 (216
HWBZ CMyle2e T 9  16m2e (g%+g§)22 )
m 9192
di
(s <k2>} ) (218)
Cruwn
o di
)] <o, (219)
CawnB
. _ 9192
1Cawn Né‘p Y oy ’ (220)
LN e S
H d'i'v
[T ]@HWB _o (221)

The BFM Ward identities involving the photon and charged fields are trivially satisfied. The
remaining identities of interest work out as

D22 Nz nEX

252X s SR %ZTH

4.4.4 Operator Qyp

[z

0,
k>

0.

.1 div

sm’
(222)

22190 NG GUT [(g]M - 919207 ¢
7. i/ X —1Cgwp—F———x= |2
Cuws 2 Cuws 2\/9% + g%
2% A 91 92 o] B 17 div
b)) _ZCHWBﬁ o |2 —[T ]SM ,
CHWB gl + g2 SM

For this operator the non-zero divergent results for the fermion loops are

[22* (k:Q)] o

CHpD

[zfo% (k2)] -

Cup

B
776,

\Y 91 +92

Y
i Cypop Y2l 22 oRT ZN Y7, (224)
Cupvi Yy 2 Cup "
3271-26T Z NC Y¢ 3972¢ Z N Y¢’ (225)
"
OHD Hdiv
- (T g, (226)

Only the Ward identities involving the Tadpole contributions are non trivial for this Wilson
coefficient dependence, and these results combine with the SM divergent terms from fermion
loops to exactly satisfy the Ward identities.

4.4.5 Operator Quno

The fermion loops are simple for this operator, with only the Tadpole being non-vanishing
when considering divergent terms at one loop

EdEN

= Cup [T" } (227)

Cuo SM
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so that

TH (1 - CHD) —0. (228)

4.4.6 Class 5 operators: Qux

Class five operators (in the Warsaw basis, see Table 1)) can act as mass insertions and also lead
to direct vertex corrections emitting goldstone bosons. In addition, a four point interaction
is present that is not present in the SM which contributes to two point functions through a
closed fermion loop, as shown in Fig.[[ We define the mass eigenstate Wilson coefficients

pr

with the rotation between mass (primed) and weak eigenstates

Yrr =UW, L/ R » (230)

where the fermion sum is over ) = {u,d, ¢} and p,r sums over mass eigenstate flavors. The
contributions to the one and two point functions are

P 1 div S div PP div
S0 = sl = [pREe)]L = [2R2)L =0, @
1Cyn Cyn Cyr wH
P 7 div [ Aty Ay— div Nw ) g ~
W 1.2y — [yt g2 } - 292y o 939
S, = P, = G Y Ol (232)
5 5 7 div div Nd} 2 (92 + 92) ~
EZZ k2 ) — EZZ k2 :| _ C "T \J1 2 Y Cl 7 233
5020 ] 4 Ngor /9 + 63 ~
»EX (K2 = —i ¢ LRy, C 234
[ e, iD= e ¥ eH (234)
TR 7 div [ div N¢ VT g2 ~
_ [z = [yf’ W (32 } N T2y e 235
{ (k%) Con (k%) Cpu Z 32m2e 4 vH (235)
N 1 div ]{; Nw 3 N’AZ} 772 B
PX (|2 = -y —Cvy, —CTys 236
[ ( ) Con Z 1672 vi %: 16m2e B U (236)
(=7 (k2)] A Z BNG e Z 3NG g ¢ (237)
leyw — 16m2e gy W TonZe R oo
Hidiv 3Nc 03 3
[T ] Com Z 1672¢ Y;% Cléfpf (238)

The Ward identities are satisfied in the same manner as those in the SM involving fermion
loops.

4.4.7 Class 6 operators: Q.p, Qup, Qui

Class six operators (see Table[l]) only act as vertex corrections. We define the mass eigenstate
Wilson coefficients

Clp =U'(1), L) CypU(eh, R), (239)
pr
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and find

Bk

[V

o)

[=f02)
[=#02)

o7 (k)

kQ)} dNiv

div

VB

lepB

div

C{Z}B

Submission

=226

/

div

YB

91 95 k?

(97 + g3)4m2e

=[] =[sEe], <o

(240)

|:Qe Y;)ep ée/zB +QaN:Yy C~'(/iB + Qu Ne YZZ? é{;B + hC:| )
pp

pp  pp pp
(241)
L -(92 —T79)Ye C' s+ (13¢%2 —3¢93)Yu C' g + h.c
(g% + g3)32m2€¢ | 2 Y pp ?,? ! 2 mp 1;5 -
g2 k? [ ~
7t Dzante |39~ 59)Ya Cap + h-c.] : (242)
1 2 L pp

Gk [ o e BB -BNey s
(7t oDionze | B9 —9)Ve C Yu Gy + hec.
PRI R A A w )

g1 k? [(¢? —3g3)Nc o, ~,

Y, C h.c. 243

(93 + g3)16m2€ | 3 K %g+ cl (243)
5. div [ div PO div

[EZX(kQ)} ) P |:2¢+W (k2):| i _ |:E¢ W+ (kZ)} " _ 0’

C{pB C;B C':ZJB

(244)

[E&Q@—(kg)] div _ [TH]djv —0 (245)

Cip Cun '

Here Qy = (—1,-1/3,2/3) for ¢ = (e, d,u). As the non-vanishing divergent results are purely
transverse, the SMEFT Ward identities are trivially satisfied. A subset of these results can
be checked against the literature, and they do agree with Ref. [35].

4.4.8 Class 6 operators: Q.w, Qaw, Quw

We define mass eigenstate Wilson coefficients in the same manner for this operator class and

find

)

S ()

52 012)

div
A
YW

=2 (6]

g3 g2 k?

(97 + g3)4m2¢

g1 k?

(97 + g3)32m%

go k?

(97 + g3)32m% |

g2 k?

(97 + 93)167%¢

div div

— {Ez\ﬁw—(kz)} = [Efz(kQ)} =,
wa wa
(246)
[Qe Ye Cly + NeQaYa Clyy + NeQuYu Cryyy + h-C-] ;
PP pp pp pp P pp
(247)
(36 — 562V Clay + (567 — 11 g2)Vu Clyp + h] ,
L pp pp pp PP
(97 = 793)Ya Coy + h.c.] , (248)
pp pp

(36t~ )Y Cl + (53~ 3V Cla + 1.
pp pp

(02 + g2)167% (97 —393)Ya Copy + h-C-] : (249)

pbp  pp
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AR y— div k2 ~
SV (2 B Upyns Cly Ve + hec. 250
[ T ( )}%W (92 + g3) 16 72 P]\ngS 67}2/ pq+ ‘ (250)

g2 k? {
—————5 NCVCKMC Yu +NCVCKMC Y4 —i—hc],
(97 + 93) 1672 pr r‘g/ pr dr‘;V Pq
SN div ARy — div DAt div
[sz(kz)}é/ = — {zyﬁ w (k2)] ., = [Eqﬁ W (kz)}é/ =0, (251)
YW YW YW

N div AL div div
SRR = [0 (k) = [T"]% =o. (252)

=, = | |y, = ",

Once again, the non-vanishing divergent results are purely transverse, and the SMEFT Ward
identities are trivially satisfied.

4.4.9 Class 7 operators: Qpe, Qrus QHdy QHud

For this operator class, we define the mass eigenstate Wilson coefficients

Clign = U (¥, R) Cpryy U(W, R), (253)
pr

and note that only the flavour diagonal contributions r = p contribute at one loop due to the
lack of flavour changing neutral currents in tree level couplings in the SM. Directly we find

ro s 7 div
AR

L 1y,
r o+ 1 div
2A202)],

L 1Cryp
r o+ 1 div
22202)],

L 1Cryp

P 7 div
=PV )]
1Cuyp,
PO 7 div
=PV )]
1Chyp,

55 1 div
ZEEwY)]

1Chyp,

[EZZ(k2)} div

CH/lZ)R

N di
=Mw)] =0, (254)
CH’QZJR
YL P N.QuCly + Ne QuC! 255
= - 2A2¢ Qe He+ Qu Hut cQu Hd ( )
pp pp
= 0, (256)
92 NC Q}T Yd Yu

= —C, V& rr PPy e 257

h;#d ch 64m2e + h.c., (257)
92 NC UT Yd Yu

= —C. VA rr PPy pe. 258
h;#d C’é(TM 64m2e + h.c., (258)
k2

= 1921 |:QeCHe + Nc Q. CHu + Qq NCCHd:| (259)
m P PP

+ (911+69§)UT [é}{e Y2 — No @y, Y2 4+ No Chyy Yfl} . (260)

moe pp PP pp PP PP pp

2 2\ =2

= (gll-ggg)vT [C’}{e YZ — No Cjy, Yii + Ne C}IdY?z} , (261)

mee pp PP pp PP PP pp
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4 ~di 2 2 5 N - B
[sz(k2) " 7Vg1+292”T [C}R Y2 — N Gy Y2 + Ne Clyy Y?l} ., (262)
“CrHyp pp PP pp PP PP PP
TN a A 2 ] o K
[EXX(k; ) = = |Gl Y2 = N&Cy Y3+ No Cha Y3 | —o, (263)
1 CHyp pp PP pp PP pp ppl 4T7€
TR 1 div div ~ 92 NC ’UTY Y
Va2 = [2¢+W } = C WV TR e
[ ( )_CWR Cryp, I{,ﬁd Cfer 3272
(264)
e 1.2 = NeYa Y];;?
b)) k = C%, VA —" =+ h.ec 265
= AP HudVCEM ™ grze (265)
H1div .
] Crrgy = O (266)

These results directly satisfy the corresponding SMEFT Ward identities.

4.4.10 Class 7 operators: Q(I;%, Q(l)

For the left handed fermion operators in this class, we similarly define the mass eigenstate
Wilson coefficients

o =ut (v, L) CYY Uy, L). (267)
pr

Again, only the flavour diagonal contributions r = p contribute at one loop due to the lack of
flavour changing neutral currents in tree level couplings in the SM. We find

rosax 1 div PN div
DA L = B L =0, (268)
) T THyL Hyyp,
r +3 1 div k
YAZ (1.2 _ Cl(l) - 70/(1) 9192 269
=T ( ) éﬁl?pL ng 3 Hal 4872¢ (269)
r 23 1 div
i T THyL
A + A)— 1 div A + Ay — di/l}

[E;" W), = [zzv W (k2)} ) (271)

T THYL CHyy,
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22 div Ne sy~ | 9tk (97 +93) 0% 1 1
[Z%Z(H)} o TC}gq) - Clnd de T me | Chig (Vi = YE) +Cpy) v
CHyy, Pp P PP pp pp pp pp
(272)
PN 1 div (92_'_92),172 ~1(1
[252(18) Lo = e NG CH(Y3 —Y2)+ CpvE |, (273)
“CHy, e pp pp PP pp PP
SN 7 div ~ ~ + 7l
)] Lo = 0| NeCl(vi —YE)+ Oy | VAR 916 9191 (274)
Cry, pp PP pp pp PP moe
o 7 div ~ ~ k2
U] L, = [Nl (v - Y+ Ol YE | (275)
- HwL pp PP pp pp PP 8me
A di IS
[E(b W+(k2) ~Zj21) {E(ﬁw (k2>} =0(1) [TH]dZ}él) =0. (276)
i¥e; c CHyy
Hvyyp, Hyyp,
Again the SMEFT Ward identities are directly satisfied by these expressions.
4.4.11 Class 7 operators: QS%, ngl
In this case one finds
o 1 div g div
DA Ly = [0 L =0, (277)
) T THyp Hipy,
202 Z | Ne a4 o | 902k (275)
~1(3 2.
] 1 Clih)pL o pp 4872e
r +s 1 div
S0 | pw = 0, (279)
) T THyL
AR — 1 div ~1(3 ~1(3 ng‘Z
[zgv V)| L. = [Ne O Vesens + O Uiy + hc. s (280)
““Hyp pro TP pr p
2 -2
- g2U2T NCC( )VCKM(Y“ +Yd)+C}J([?Z)UPMNSY€ +h.c.|,
64 7 pr rp rr pp pr D
(281)
ARy div 2 52
EVV)| e = o | Ne O Verm(YE +Y3) + Ol Upyns Y2 + he |
Hyyp, 64 pr P pp pr rp
(282)
22,,2y]4" 3, 3| 93 k2
[ET (k )] e = |NeCE +c T (283)
Hy, PP
2 2y 52
+ v
— N (vi +Yd)+01§2 yz | Wit (284)
pp PP pp pp PP 327e
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.. 1 div ~ ~ 2 1 g2) 52
ZFE0)] Lo = - [Ne Gl (VE +Y3) + O Y2 (91329;)% (285)
““Hyp pp PP PP pp PP e
. 1 di / o2 2 5
X (k2) jv — N¢ C’(3) (YZ+v? )+C( ) y?2 M7 (286)
C/(3) d H/ 16 2
““Hyp oy PP pp pp PP moe
22y ] /(3) 3 2 | K
[EXX(k Jow = [NeChy (VE+Y3) + O vE | o, (287)
Y Hyy pp pp pp 24
L i o di
e = [T (288)
&) &)
T THyYpL Hyp
U
= 92 2T NCCI—([)VCKM(Y“ +Yd)+C}-(I?Z)UPMNSYe +hC
327T pr D rr pp pr rp pp
sy ol div k2
|:E¢+¢ (l{Q):| ~ = 3 NCC}&)VCKM(Y“ +Yd)+0;-(I3Z)UPMNSYe +hC
CHyy, 167%€ pr rp rr pp pr D
(289)
[T % = o (290)
Hyp,

Again, these results directly satisfy the corresponding SMEFT Ward identities.

5 Discussion

Theoretical consistency checks, such as the BFM Ward identities examined and validated at
one loop in this work, are useful because they allow internal cross checks of theoretical calcu-
lations, and provide a means of validating numerical codes that can be used for experimental
studies. This is of increased importance in the SMEFT, which is a complex field theory.

It is important to stress that the Ward identities are always modified transitioning to the
SMEFT from the SM, but the nature of the changes to the identities depends on the gauge
fixing procedure. If the Background Field Method is not used, then only more complicated
Slavnov-Taylor [36-38] identities hold. These identities also necessarily involve modifications
from the SM case due to the presence of SMEFT operators. The derivation in Ref. [9], that is
expanded upon in this work, should make clear why this is necessarily the case. The identities
are modified because the Lagrangian quantities on the curved background Higgs manifold’s
present, that the correlation functions are quantized on, and related in the Ward or Slavnov-
Taylor identities, are the natural generalization of the coupling constants and masses of the
SM for these field spaces.

To our knowledge, the first discussion on the need to modify these identities in the SMEFT
in the literature is in Ref. [39], and this point is also consistent with discussion in Ref. [40,/41],
which recognizes this modification of Ward identities is present.

In the literature, one loop calculations have been done in the SMEFT within the BFM [15]
22,35,42-46|, and also outside of the BFM [23,40,41,47-53]. It is important, when comparing
results, that one recognizes that radiative scheme dependence, includes differing dependence
on Wilson coefficients in the two point functions. These functions differ in the BFM in
the SMEFT, compared to other schemes, because the corresponding symmetry constraints
encoded in the Ward identities or Slavnov-Taylor identities also differ. Scheme dependence
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is manifestly a very significant issue in the SMEFT when seeking to build up a global fit,
which will necessarily combine many predictions produced from multiple research groups. It
is important that scheme and input parameter dependence is clearly and completely specified
in a one loop SMEFT calculation to aid this effort, and one should not misunderstand scheme
dependence, and equate differences found in results in different schemes with error when
comparing. In this work, we avoid such an elementary mistake. In any case, we stress again
that in the SMEFT, in any gauge fixing approach, the Ward identities, or Slavnov-Taylor
identities, necessarily differ from those in the SME]

We also emphasize the appearance of the two derivative Higgs operators in the Ward
identities, modifying the tadpole contributions. This is consistent with, and an explicit rep-
resentation of, the discussions in Refs. [16,54,55]. The subtle appearance of such corrections
again show the need to take the SMEFT to mass eigenstate interactions in a consistent
manner )| A consistent treatment of the SMEFT to all orders in 7/A [3] while preserving
background field invariance leads directly to the geoSMEFT. This approach also gives an
intuitive interpretation of how and why the Lagrangian parameters are modified, due to the
presence of the curved Higgs field spaces modifying correlation functions.

6 Conclusions

In this paper we have validated Ward identities in the SMEFT at one loop, when calculating
using the Background Field Method approach to gauge fixing. These results lay the ground-
work for generating numerical codes to next to leading order in both the perturbative and
non-perturbative expansions in the theory while using the Background Field Method in the
geoSMEFT. The results also offer a clarifying demonstration on the need to carefully define
SMEFT mass eigenstate interactions, to ensure that the theory is formulated in a consistent
manner. Utilizing the Background Field Method is of increased utility (in the opinion of the
authors of this paper) in the case of the SMEFT, as this is an effective theory including a Higgs
field. Any correct formulation of the SMEFT is consistent with the assumed SU(2)r, x U(1)y
symmetry at one loop, and this can be checked by comparing against the Ward-Takahashi
or Slavnov-Taylor identities. We encourage those developing alternative formulations of the
SMEFT to demonstrate the consistency of their results with the corresponding symmetry
constraints classically, and at one loop, to ensure that the various approaches are all well
defined.

In this work we have demonstrated that the Ward identities provide an excellent oppor-
tunity to cross check loop calculations performed in the SMEFT. In future works, this will
allow for consistency checks of relevant full one-loop contributions to the effective action. For
example, the full one-loop calculation of the W-boson propagator can be consistency checked
against the full loop calculation of W-¢ mixing. The background field method will also allow
for Dyson resummation of the one-loop corrections to the propagator without breaking gauge
invariance [32]. To the best of the authors’ knowledge, no works concerning the SMEFT have
formulated or confirmed the corresponding Slavnov-Taylor identities for traditional R gauge
fixing. This work provides a clear foundation from which these next steps can be approached.

4For an alternative point of view on these issues see Ref. [49)
5Tt is interesting to compare the treatment of such effects in this work to Ref. [56]
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1:X3 2: HS 3: H4D? 5:2H? + h.c.
Qc | fAPCGIGErGSr  Qu | (HIH)?  Qun (H'H)O(H'H) Qe | (H'H)(Ipe, H)
o | pasegavgBagen Qup | (H'D,H)" (H'D,H)  Quu | (H'H)(@yu,H)
Qw | TEWIvW e K Qan | (HTH)(gyd, H)
Q| KWW oW Kn

4: X2H? 6: > XH + h.c. 7:2H2D

Que | HHGAGW — Quy | (o e,)r HWI, M (H'i'D . H)([,7"1,)
Qua | HIHGA G Qe | (l,o"e,)HB,, @ (H'iDLH) (1,71,
Quw | HIHW!L W Quc | (@po" Tu,)H G4, Que (H'i'D LH) (@77 e,)
Quw | HIHWLW — Quw | (g0 u, )T HW], Qi (D H) (@7 4r)
Qus | H'HBLB™  Qus | (40" u,)H By, QY | (HYDIH) @G )
Qus | H'HB,,B» Qua | (@o"TAd,)H G4, Qtin (H''D . H)(a,y"u,)
Quws | HIFTHWLB®™ Qv | (@0md,)r HWI, Qra (H'i'D  H)(d"d,)
Quivg | HiTTH W], B Qas | (G0t d,)H By, Quud + hoc. | i(H'D,H)(a,y"d,)

Table 1: The independent dimension-six operators built from Standard Model fields which
conserve baryon number, as given in Ref. [2]. Four-fermion operators have been removed as
they aren’t relevant to this analysis. The operators are divided into seven classes: X3, HY,
etc. Operators with +h.c. in the table heading also have hermitian conjugates, as does the
Y?H?D operator Qpruq. The subscripts p,r are flavor indices. Table taken from Ref. [42].
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