A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS detector

- detector concept, description and R&D and beam test results

Yusheng Wu

University of Science and Technology of China

For ATLAS HGTD Project

2020 IEEE NSS and MIC, Oct 31 to Nov 7

ATLAS Detector

Future: HL-LHC up to 3ab⁻¹ 14 TeV pp collisions

Unprecedented opportunities, Unprecedented challenges

(ATLAS-TDR-031)

More info.

11/02/2020

Y. Wu

3

Motivation for HGTD

Precise timing O(10) ps will introduce a new dimension for physics at ATLAS

- Improve on the pileup suppression
- Would enhance lifetime/pID measurement

See also relevant discussion in <u>CMS Timing Detector</u>

Minimum-bias scintillator ending service then → Opportunity to install a novel detector

- Forward region only (no plans nor resources for a full coverage)
- Tight spatial constraints
- Radiation hardness and O(10) ps timing requires → advanced detector technologies
- Also a luminosity detector

HGTD in a nutshell

About O(1) mm and O(10) ps

1.3 mm – unit sensor size

- About the spatial precision of track extrapolation from silicon trackers
- Balanced also between occupancy, double hits, dead areas, capacitance, and increasing channel numbers

35-70 ps per hit

- Already cutting-edge specification
- bottom line: per-hit time resolution ≤ 100 ps to guarantee effectiveness in physics case

Complexity of tracks v.s. vertices, especially in forward region, worsen z₀ resolution

Timing the tracks (blue) can help to solve the mystery

Y. Wu

Demonstration of Physics Potentials

Up to 2 x more power to further suppress pileup contributions in the forward region, on top of the planned full silicon detector

For analyses subject to pileup backgrounds (e.g. VBF H → invisible), sizable improvement of S/N with help of HGTD

Three-ring and Replacement

Timing Measurement

** with timewalk correction expected

LGAD Design

* Pioneered by CNM, Barcelona; further developed with CERN RD50 collaboration

Silicon detector has good virtues for this application (radiation-hard, granularity, mature tech., ...) Keys^{*} to achieve desired resolution Thin: 50 μ m Gain: x20 (\rightarrow 10 fC) Larger dV/dt Larger S/N Less Landau non-uniformity

Sensor Performance

Sensor Performance

Operation and Plan

Planned operation voltage for LGAD v.s. lumi / R

LGAD manufacturing shown to meet detector specification

Further optimization ongoing ...

Frond-end Electronics

ALTIROC Key characteristics:

- Radiation hardness
- Noise <= 0.5 fC
- Dynamic range: 4-50 fC
- Low min-threshold: 2 fC
- Cross-talk < 5%
- Jitter, time-walk, TDC O(10) ps
- e-link driver bandwidth up to 1.28 Gbit/s

Single channel schematic

FEE performance

Test-beam LGAD+ALTIROC time resolution

15

Luminosity Measurement

Precise knowledge of luminosity is a key to many physics studies

HGTD provides precise bunch-bybunch luminosity measurement in its outmost ring

High granularity → great linearity between measurements and luminosity

Unique two timing window scheme at ASIC level give in-situ measurement of noise/afterglow

The Flow

Summary

HGTD will be a novel subdetector in ATLAS for HL-LHC, providing precise timing measurement capabilities and unique luminosity measurement, to host in a very narrow space

Adapt novel detector technologies (LGAD) and require highstandard ASIC, both been carefully R&D-ed and found promising

Technical Design Report (<u>ATLAS-TDR-031</u>) recently approved by CERN, R&D / prototyping / production continues in next years, to be install in 2026-2027

Although forward only, potential of physics capabilities shall not be underestimated and is being pursued

Thank you for your attention!

Backup

Now: 140 fb⁻¹ 13 TeV pp collisions

Measurements

Searches

- 95% CL	Upper Exclusion Limits	ATLA	S Preliminar
		$\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$	$\sqrt{s} = 8, 13 \text{ TeV}$
E ^{miss} ∫X dt[6-1) Limit	5	Reference
i Yes 96.1 - 36.7 - 37.0 - 3.6 - 36.7 - 36.7 - 36.7 - 36.1 J Yes 36.1 3 J Yes 36.1	No. No. No. No. Max Al. Max Co. Gas 2.3 TeV Gas mode 2.3 TeV	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1711.00001 1207.04147 1703.04727 1606.02065 1518.02065 1207.04147 1806.02065 1207.04145 1809.0206 1809.10023 1809.10023
- 139 - 36,1 - 36,1 2,J Yes 139 Yes 36,1 J Yes 36,1 J Yes 139 - 139 - 139 2,J 139 36,1 - 80	Emain 33.17 Emain 2.47 M/L Emain 2.17 M/L Prime 2.17 M/L Winner 1.27 M/L Virian 3.2 M/L Virian 1.3 M/L Winner 1.3 M/L Winner 2.3 M/L Winner 3.2 M/L Winner 3.2 M/L	$F(w = 1.25;$ $F(w = 1.25;$ $F_{w} = 3;$ $g_{w} = 3;$ $g_{w} = 3;$ $f_{w} = 1;$ $f_{w} = 1,25;$	1903.06248 1706.07242 1005.09998 2005.05138 1906.05099 1001.05992 2004.14638 1906.0509 1712.06992 2004.14638 1906.0509 1712.06518 CERN+EP-2020.013 1007.10473 1007.10473
- 37.0 - 138 1 Yes 26.1	Λ Λ Λ Λ 2.57 TeV	21.8 TeV 7 ₁₁ 35.8 TeV 7 ₁₂ C ₆ I = 57	1703.09127 CERN-EP-2020-006 1911.02005
Yes 36.1 Yes 36.1 J Yes 3.2 J Yes 36.1	mead 1.85 TeV mead 1.67 TeV Mead 1.67 TeV Mead 700 GeV Max 700 GeV	g_{y} =0.25, g_{z} =1.0, $m(y) = 1.0 \text{eV}$ g=1.0, $m(y) = 1.0 eVm(y) < 150 GeVy = 0.4$, $d = 0.2$, $m(y) = 10 GeV$	1711,03801 1711,02001 1608,02272 1912,09743
Yes 36.1 Yes 36.1 - 36.1 Yes 36.1	LO mass 1.4 TeV LO mass 1.56 TeV LO' mass 1.00 TeV LO' mass 970 GeV	$\beta = 1$ $\beta = 1$ $B(1, 0) \rightarrow 0\tau) = 1$ $B(0, 0) \rightarrow \tau\tau) = 0$	1902,80077 1902,80077 1902,88103 1902,89103
36.1 36.1 1j Nes 36.1 1j Nes 36.1 1j Nes 79.8 Yes 20.3	T miss 1.37 TeV Brinss 1.24 TeV Training 1.64 TeV Y miss 1.65 TeV Brinss 1.21 TeV Gross 690 GeV	$ \begin{array}{l} SU(2) \mbox{ doublet} \\ SU(2) \mbox{ doublet} \\ SU(T_{0,1} \rightarrow W) = 1, c_{1}(T_{0,1}W) = 1 \\ H(Y \rightarrow W_{0}) = 1, c_{2}(W_{0}) = 1 \\ r_{0} = 0.5 \end{array} $	1808.02343 1808.02243 1807.11883 1912.07343 ATLAS CONF-2018-03 1509.04491
- 135 - 36.7 - 36.1 - 20.3 - 20.3	q" mass q" mass 5.3 T 5.4 TeV 7" mass 5.0 TeV 7" mass 5.0 TeV	EXTEV and q^* , $h = m(q^*)$ and q^* , $h = m(q^*)$ and q^* , $h = m(q^*)$ h = 3.0 TeV h = 1.6 TeV	1910.88447 1709.10440 1805.80298 1411.2921 1411.2921
Vos 79.8 - 36.1 - 20.3 - 36.1 - 20.3 - 36.1 - 36.1 - 34.4 13 TeV data	M ⁴ miss 560 GeV H ⁴ miss 870 GeV H ⁴ miss 870 GeV multichapt price moss 1.22 TeV must chapt price 9.37 TeV 10 ⁻¹ 1	$m(W_0) = 4.1 \text{ TeV}_{-K_0} = g_0$ OV production OV production, $3/(f_1^{ret} - r_0) = 1$ OV production, $ g_1 = 5e$ OV production, $ g_1 = 1g_0$, spn 1/2 10 Happe space to a log TraVit	ATLAS CONF-2018-00 1829.11105 1710.89748 1411.2821 1812.8923 1905.10130
13 dz	- 20.3 Nos 79.8 - 36.1 - 20.3 - 36.1 - 20.3 - 36.1 - 34.4 TeV statos or physical statos or physical (J)	- 0.0 Premo 147091 - 0.0 Premo 200 GeV 227Y - 0.0 Premo 200 GeV 227Y - 0.0 Premo 200 GeV 227Y - 0.0 Premo 200 GeV 200 GeV 200 GeV - 0.0 Premo 200 GeV 200 GeV 200 GeV - 0.0 Premo 200 GeV	- 0.0 0.0 0.000 0.000 0.000 - 0.00 0.000 0.000 0.000 0.000 - 0.00 0.000 0.000 0.000 0.000 0.000 - 0.00 0.000

1000+ phase spaces or channels investigated

Standard Model more precisely **verified**, yet **no new physics** found

Ultimate sensitivity to help reveal the nature of Higgs boson and existence of new physics at High-luminosity LHC, with about 3 ab⁻¹ 14 TeV pp collisions

More

Y. Wu

11/02/2020