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Abstract

Deuteron production in high-energy collisions is sensitive to the space–time evolution of the collision
system, and is typically described by a coalescence mechanism. For the first time, we present results
on jet-associated deuteron production in pp collisions at

√
s = 13 TeV, providing an opportunity

to test the established picture for deuteron production in events with a hard scattering. Using a
trigger particle with high transverse-momentum (pT > 5 GeV/c) as a proxy for the presence of a
jet at midrapidity, we observe a measurable population of deuterons being produced around the jet
proxy. The associated deuteron yield measured in a narrow angular range around the trigger particle
differs by 2.4–4.8 standard deviations from the uncorrelated background. The data are described by
PYTHIA model calculations featuring baryon coalescence.

∗See Appendix A for the list of collaboration members
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1 Introduction

Measurements of deuterons in high-energy collisions provide insight into baryon production and baryon
transport mechanisms which are sensitive to the space–time evolution of the collision system. Deuteron
and anti-deuteron spectra were measured in pp collisions at the CERN ISR [1, 2] and Tevatron [3],
photo-production processes and deep inelastic scattering of electrons at HERA [4, 5], electron-positron
collisions at CLEO [6] and LEP [7], and most recently at the LHC in pp collisions at

√
s = 0.9, 2.76, 7

and 13 TeV [8–11], as well as in nucleus–nucleus collisions at SPS [12], RHIC [13] and LHC [8, 14, 15]
energies. Deuteron production can be described by phenomenological models, according to which an
(anti-)neutron and (anti-)proton close in phase-space coalesce and bind together [16–18]. The coales-
cence mechanism is of broader interest, as it has been employed in describing the production of nuclei
and anti-nuclei as large as 4He and 4He [19, 20], nucleons and hyperons forming hypernuclei [21, 22],
searches for exotic states such as pentaquarks [23], and searches for colorless SUSY-hybrid states with
gluinos [24]. Statistical hadronization models, which assume particle production in thermal equilibrium,
were also successful in explaining the yields of light (anti-)nuclei along with other hadrons in Pb–Pb
collisions, but have difficulties to describe the data in smaller systems [25, 26].

New insights may be obtained by studying the production of deuterons from hard processes, which can
be explored by their formation within jets. To investigate the effects of jets on deuteron production, we
employ the two-particle correlation method, as suggested in Ref. [27]. Charged particles with transverse
momentum (pT) above 5 GeV/c are taken as trigger particles to approximate the jet direction. The
azimuthal correlation of deuteron candidates with respect to the trigger particle is measured in five pT
intervals between 1 and 4 GeV/c. Impurities are accounted for by using a sideband subtraction method,
and deuterons oriented randomly with respect to the trigger particle are subtracted using the zero yield
at minimum (ZYAM) method [28]. The integrated yields of associated deuterons obtained within an
azimuthal range of 0.7 rad relative to the trigger particle, representing the region of jet fragmentation,
are reported as a function of deuteron pT. In the coalescence picture, the smaller phase space provided
by the jet fragmentation may promote deuteron production. Hence, the data are compared to model
calculations based on PYTHIA (v8) with a coalescence afterburner [29].

The remainder of the letter is organized as follows. Section 2 briefly describes the various ALICE
subsystems, the dataset and event selection criteria for the measurement presented. Section 3 discusses
the particle identification and correlation analysis methods. Section 4 presents the measurement of the
associated deuteron yields, discusses the systematic uncertainties, and provides the comparison with the
PYTHIA-based coalescence afterburner model. Section 5 concludes the letter.

2 Experimental setup and dataset

ALICE is a general purpose detector at the LHC with cylindrical geometry and outer dimensions of
16× 16× 26 m3 [30]. A large solenoid magnet provides an uniform magnetic field of 0.5 T along the
beam direction (z direction) and encases the central barrel around the nominal interaction point (IP) at
z = 0. The measurements presented use a subset of the ALICE detector systems, including the V0 [31],
the Inner Tracking System (ITS) [32], the Time Projection Chamber (TPC) [33], the T0, and the Time-
of-Flight (TOF) [34] detectors. The V0 is a forward detector system used for event triggering. It consists
of two circular planes of plastic scintillators at 87 and 329 cm on opposite sides of the IP covering a
pseudorapidity of −3.7 < η <−1.7 and 2.8 < η < 5.1, respectively. The ITS is composed of six layers
of silicon detectors ranging from 3.9 to 43 cm radius around the beam pipe. Together with the TPC, it
is used for precise reconstruction of the primary vertex position and tracking of charged particles with
η < 0.9. The TPC is a large tracking drift detector (inner radius 85 cm, outer radius 250 cm and length
500 cm) providing up to 159 space points per track for momentum reconstruction as well as energy
loss (dE/dx) measurement for particle identification. The T0 consists of two sets of 12 Cherenkov
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counters around the beam pipe at −70 cm and 374 cm which provides a measurement of the collision
time. The TOF detector is a cylindrical wall with inner radius 3.7 m from the beam-pipe. The arrival time
of incident hadrons is measured using multi-gap resistive plate chambers with an intrinsic resolution of
about 80 ps. The particle identification method using a combination of tracking, timing, and energy loss
measurements is described in Sect. 3. Further details of the performance of the ALICE detector systems
are given in Ref. [35].

The analysis is based on the data recorded in pp collisions at
√

s = 13 TeV during the years 2015–
2018. The minimum-bias event selection required a hit in both sides of the V0 detector, resulting in
approximately 1.8 billion events corresponding to an integrated luminosity of about 30 nb−1.

Additional event selection criteria required at least one track in the ITS with a projection to a vertex
position within 0.5 cm along the beam direction from the position estimated by the T0 collision time.
This requirement suppressed events from out-of-bunch beam background. The z-vertex position was
required to be within 10 cm of the nominal IP to ensure approximately constant η acceptance within
the detector for all events. Pile-up events were suppressed by rejecting events with multiple vertices
reconstructed by the ITS that are separated by more than 0.8 cm (in the z-direction). Approximately 88%
of the minimum-bias events were accepted for further analysis.

3 Analysis method

Deuteron candidates in several pT intervals were correlated with charged trigger particles above 5 GeV/c.
The correlation was studied as a function of the azimuthal angle difference (∆ϕ) between deuteron and
trigger particle. In events with multiple triggers and/or deuteron candidates, all combinations were taken
into account. Events with more than one 5 GeV/c particle correspond to 9.7% of the selected minimum-
bias event sample, while events with more than one deuteron candidate are 0.05% of the total number of
events with a deuteron candidate.

Deuteron candidates were selected from reconstructed tracks in the central barrel with a pseudorapidity
range of |η | < 0.9 that passed several quality criteria. Tracks were required to contain at least two ITS
and 70 TPC clusters, as well as at least 80% of the maximum possible TPC clusters along its path. For
particle identification, agreement with the expected TOF (TPC) signal for deuterons within two (three)
standard deviations of the pT-dependent resolution was required, as explained further below. To suppress
secondaries, the distance-of-closest-approach (DCA) projections of the track to the reconstructed vertex
projected on the transverse plane and longitudinal direction, had to be less than 0.5 and 1 cm, respectively.

In order to maintain a uniform azimuthal (ϕ) distribution for trigger particles, the track quality criteria
were relaxed. In particular, the requirements of having a TOF hit, two ITS clusters, and maximal DCA
were not imposed. The trigger condition pT > 5 GeV/c results in an average trigger particle transverse
momentum of 6.7 GeV/c.

The time-of-flight (t) of a charged particle was obtained using the difference between the event collision
time and the arrival time at the TOF. Together with the momentum (p) and path length (L) from the track
reconstruction, the mass-squared (m2),

m2 =
p2

c2

(
t2c2

L2 −1
)

(1)

was calculated for deuteron candidates. Example m2 distributions of deuteron candidates for different
pT intervals are shown in Fig. 1. The signal component was fit using a Crystal Ball function [36]. The
standard deviation was approximated by the width of its Gaussian core. An exponential was used for the
background. An agreement within two standard deviations of the expected m2 value given by the fit was
required. Removing candidates with dE/dx measured using the TPC outside of three standard deviations
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Figure 1: Example m2-distributions for a) low, b) intermediate and c) high pT intervals. The signal
plus background fit is shown as a solid (red) line, and the extracted background as a dotted (black)
line. The ±2 standard deviation candidate region around the mean from the fit is shown in blue. In (a)
no sideband region is visible as the purity is essentially unity. In (b) and c) the sideband regions are
the shaded (orange) areas between 3–5 standard deviations on both sides of the peak. In the candidate
region, the signal is depicted in light blue, while the background is shown in dark blue. The purity in the
candidate region is approximately 100% in (a), 60% in (b) and 25% in (c).

pT-range (GeV/c) 1.0–1.35 1.35–1.8 1.8–2.4 2.4–3.0 3.0–4.0
Purity (%) 99.5±0.1 98.4±0.4 75.5±1.7 46.1±1.9 25.5±1.4

Table 1: Deuteron purity estimates for coarse pT intervals.

from the expected value of deuterons significantly reduced the background, especially in the pT region
below 2 GeV/c.

The deuteron purity was estimated from integration over the signal and background components of the
m2 fit functions. The purity was measured in fine pT intervals and then averaged with statistical weights
for the correlation measurement into five intervals, given in Tab. 1. The lower limit of the kinematic range
was set to 1 GeV/c to reduce the contamination by secondary (knock-out) deuterons from spallation in
detector material to the percent level [8, 9]. The purity is close to 100% for pT . 1.8 GeV/c. At larger
pT, the background increases gradually and the purity drops to about 25% in the highest pT interval.

A mixed-event technique was applied to correct for pair efficiency effects caused by non-uniformities of
the ϕ acceptance. To this end, every deuteron candidate was correlated with 15 trigger particles selected
from different events, which were categorized into ten event classes employing five multiplicity and two
z-vertex intervals. The integral of the resulting mixed-event ∆ϕ distribution was normalized to one. The
raw ∆ϕ distribution of deuteron candidates relative to the trigger particle is divided by the normalized
mixed-event distribution, resulting in the ratio Cdeut.cand.. The rather small number of events having both
the trigger particle and a deuteron candidate did not permit a further separation into intervals of rapidity.
As a result, triggers and deuterons on the edge of the pseudorapidity range (|η | < 0.9) have roughly half
the probability of being paired compared to those in the central region, an effect that would be corrected
for with mixing in two dimensions [37]. Depending on the purity (P) for a given pT interval, a fraction
of the ∆ϕ yield arises from misidentified tracks amongst the deuteron candidates. The contribution to the
yield from misidentified tracks was subtracted using ∆ϕ-correlations obtained in the sideband regions of
the m2 distributions with weights from purity estimates, according to

Cdeuteron(∆ϕ) =Cdeut.cand.(∆ϕ)− (1−P)
Ndeut.cand.

Nsideband
Csideband(∆ϕ) , (2)

where Ndeut.cand./Nsideband was used to normalize the number of associated counts in the sideband re-
gion (Csideband) to that of the deuteron candidate region (Cdeut.cand.). The distribution Cdeuteron represents
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the correlated yield with respect to ∆ϕ between the trigger particle and associated deuterons. The side-
band selection was chosen to be between 3–4 standard deviations on both sides of the peak. A Monte
Carlo simulation, where (anti-)deuterons were injected into pp events generated by PYTHIA [38] was
used to determine the momentum-dependent tracking efficiency (ε) and acceptance (A). Their product
strongly rises from 0.2 at pT = 1 GeV/c and levels out at about 0.55 above 1.5 GeV/c. The corrected
deuteron yield per trigger particle (Ydeuteron) was then obtained from

Ydeuteron(∆ϕ) =
Cdeuteron(∆ϕ)

Ntrig

1
ε ·A

, (3)

in the five intervals of deuteron pT, where Ntrig is the total number of trigger particles. A correction for
efficiency and acceptance of the trigger particles, which are approximately constant above 5 GeV/c, was
not applied because the related corrections would cancel in the ratio. The corrected per-trigger yield
distributions were obtained independently for deuterons and anti-deuterons and then added for the final
results.

4 Results

The per-trigger associated yield Ydeuteron versus ∆ϕ , which represents the probability of deuterons and
anti-deuterons being found within a specified pT interval and within ∆ϕ of a high-pT (> 5 GeV/c) trigger
hadron, is shown in Fig. 2 for five deuteron pT intervals. The markers represent the data points with
statistical uncertainties, while the boxes show the total systematic uncertainty.

Several independent sources of uncertainty associated with tracking, particle identification, sideband
correction, and purity, as well as efficiency and acceptance were included into the total systematic uncer-
tainty. Individual sources were estimated as follows: a) the DCA cut was narrowed from 0.5 (1.0) cm in
the xy-plane (z-axis) to 0.1 (0.1) cm, b) the minimum number of TPC clusters for a track was increased
from 70 to 90 hits, c) the TOF particle identification requirement on the mass-squared to be within 2
standard deviations of the mean mass was relaxed to 3 standard deviations, d) the mass-squared range
used to select the sidebands was changed from 3–4 standard deviations from the mean to 4–5 standard
deviations, e) the TPC particle identification requirement of agreement within three standard deviations
was tightened to two standard deviations, f) the purity calculation from signal and background fit func-
tions was compared to the purity found using bin-counting for the signal and a fit for the background,
and g) the mixed-event correction in ∆ϕ was not applied. In addition, a ∆ϕ-independent uncertainty
of 5% was applied to account for deficiencies in the deuteron efficiency and acceptance corrections. A
separate purity and track selection efficiency was estimated for each change associated with the deuteron
candidate track selection. The resulting variation (i.e. p/ε ×A) was found to differ by less than 10%
from the baseline value obtained using the standard selection.

Table 2 summarizes the various systematic uncertainties for the five pT intervals.

The resulting systematic uncertainties are largely point-to-point correlated in ∆ϕ . Hence, the shape of
the distributions shown in Fig. 2 exhibits for all pT-intervals, except the lowest, a characteristic double-
peak structure reminiscent of hard scattering, albeit sitting on a large pedestal value indicative of a large
contribution of deuterons produced in the underlying event. To quantify the per-trigger associated yield of
deuterons, the contribution of the uncorrelated background was estimated using the ZYAM method [28].
The ZYAM value was obtained by taking the average over the ranges π

2 ±
π

9 and 3π

2 ±
π

9 , which includes
eight ∆ϕ intervals. To estimate the corresponding uncertainty, also reported in Tab. 2, we fit a parabola
to the π

2 ±
π

9 region and use its vertex value as an alternative ZYAM estimate. The ZYAM uncertainty,
constructed by these two ways, is as such subject to statistical fluctuations. The central ZYAM value
along with its uncertainty are shown as a band in Fig. 2. In the lowest pT-interval the point-to-point
statistical fluctuations in the data are greater in magnitude than the potential underlying trend, resulting
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Figure 2: The per-trigger associated yield versus ∆ϕ for charged particles with pT > 5.0 GeV/c and
associate deuterons and anti-deuterons for different associate pT intervals: 1.0–1.35, 1.35–1.8, 1.8–2.4,
2.4–3.0, and 3.0–4.0 GeV/c. The markers represent the data points with statistical uncertainties, while the
boxes represent the systematic uncertainties associated with tracking, purity, and sideband selection. The
dotted line shows the ZYAM background estimate and the blue band is the uncertainty associated with
the ZYAM estimate. Histogram lines are PYTHIA 8.2 (Monash) model calculations with a coalescence
afterburner with p0 = 110 MeV/c. The calculation was scaled by 0.5 and 0.75 in the first two intervals,
required to approximately describe the measured deuteron spectrum at 13 TeV, as explained in the text.

in a large ZYAM uncertainty, which demonstrates that the separation between correlated yield and the
uncorrelated background is not possible. In all other pT-intervals a pronounced jet–associated deuteron
enhancement relative to the ZYAM value is visible.

In Fig. 2, the data are also compared to model calculations, based on PYTHIA 8.2 (Monash) [39, 40],
including a coalescence afterburner (AB) following Ref. [29] for deuteron production, which otherwise
is absent in PYTHIA. In the coalescence model, a (anti-)proton is combined with a (anti-)neutron if
each of their momenta in their centre-of-mass frame is smaller than p0, the sole free parameter of the
model. Using p0 = 110 MeV/c, the model describes the deuteron spectra in pp collisions at 7 TeV above
1.5 GeV/c within uncertainties of about 10%, while it overpredicts the data by up to 50% between 1–
1.5 GeV/c [9, 29]. Using the same value of p0 = 110 MeV/c, a similar agreement is achieved for the
data at 13 TeV [11]. The deviations at low pT of up to 50% originate from small differences of the level
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pT-range (GeV/c) 1.0–1.35 1.35–1.8 1.8–2.4 2.4–3.0 3.0–4.0
Statistical unc. 15.6% 13.4% 15.4% 31.7% 57.6%
Sources of sys. unc.
a) DCA cut 3.6% 3.5% 2.4% 0.4% 7.6%
b) TPC clu. min. 13.2% 9.7% 0.5% 0.0% 25.2%
c) TOF-PID 9.2% 7.3% 17.2% 5.6% 31.8%
d) Sidebands 1.9% 0.5% 14.5% 24.8% 14.3%
e) TPC-PID 7.0% 2.5% 3.4% 11.2% 20.6%
f) Purity det. 0.0% 0.2% 5.0% 11.1% 3.8%
g) Mixing 7.7% 11.2% 9.3% 12.7% 5.3%
Tracking eff. 5% 5% 5% 5% 5%
Total sys. unc. 20.3% 17.8% 25.7% 32.9% 49.0%
ZYAM unc. 101.0% 19.6% 3.7% 27.4% 10.5%

Table 2: Uncertainties for each associated pT interval. Top: Statistical uncertainty averaged over all ∆ϕ-
intervals. Middle: Contributions to systematic uncertainties for the different sources described in the text
as well as the total, which is obtained from adding the individual contributions in quadrature. Bottom:
Uncertainty associated with the determination of the ZYAM value.
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Figure 3: The per-trigger associated-deuteron integrated yield for trigger particles above 5 GeV/c on the
near side versus pT of the associated deuterons and anti-deuterons. Vertical bars show statistical uncer-
tainties, open boxes systematic uncertainties, and shaded (blue) boxes show the uncertainty related to the
subtraction of the uncorrelated background using the ZYAM method. Square markers are calculations
using PYTHIA 8.2 (Monash) with a coalescence afterburner, displaced by 30 MeV/c for better visibility.

of 10–20% between the measured and calculation proton yields [41]. Since there is a large contribution
from the underlying event, the calculation in Fig. 2 was scaled by 0.5 and 0.75 in the lowest two intervals,
to take into account the difference between the model and the data on inclusive deuteron production. The
coalescence model calculation describes the data with the exception of the lowest two associated pT
intervals, where it tends to overpredict the data.

To extract the per-trigger correlated yield in the jet peak region, Ydeuteron above the ZYAM line is inte-
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grated within |∆ϕ|< 0.7 rad,

Y near side
deuteron =

∫ +0.7

−0.7
(Ydeuteron(ϕ)−CZYAM) dϕ . (4)

The per-trigger associated-deuteron integrated yield on the near side as a function of deuteron pT is
presented in Fig. 3. The systematic uncertainties from the correlation measurement, which are largely
correlated, and from the ZYAM determination, which are largely uncorrelated across deuteron pT, are
shown separately. For every pT interval except the first, the deuteron yield is between 2.4 and 4.8
standard deviations larger than zero (considering the quadratic sum of statistical, systematic and ZYAM
uncertainties), indicating a contribution of deuterons produced in the vicinity of the trigger particle. The
yield of deuterons in the jet peak relative to the production in the underlying event was estimated by
computing the ratio of the per trigger yield to the ZYAM value multiplied by 2π . The resulting fraction
of deuterons produced in the jet is about 8–15%, increasing with increasing pT, indicating that in the
pT ranges explored by the measurement, the majority of the deuterons are produced in the underlying
event. The model calculations, integrated and corrected using ZYAM in the same way as the data, are
in agreement with the data. The fore-mentioned trend of the calculation to overpredict the data in the
two lowest pT intervals is still present, but not significant given the large uncertainty from the ZYAM
method.

5 Conclusions

Using a high-momentum particle (pT > 5 GeV/c) as a proxy for the presence of a jet at midrapidity,
we measured the per-trigger yield of associated deuterons and anti-deuterons in five pT bins, ranging
from 1 to 4 GeV/c in pp collisions at

√
s = 13 TeV. The associated yield integrated within a narrow

angular range of the trigger particle is between 2.4 and 4.8 standard deviations above the uncorrelated
background in every deuteron pT interval above 1.35 GeV/c. In the region of trigger and deuteron pT
probed by our measurement, the fraction of deuterons correlated with jets are about 10% of the number in
the underlying event. The data are described by PYTHIA model calculations when deuteron production
via coalescence is included.
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A. Modak4, N. Mohammadi35, A.P. Mohanty63, B. Mohanty88, M. Mohisin Khan16, Z. Moravcova91,
C. Mordasini107, D.A. Moreira De Godoy145, L.A.P. Moreno46, I. Morozov64, A. Morsch35, T. Mrnjavac35,
V. Muccifora53, E. Mudnic36, D. Mühlheim145, S. Muhuri142, J.D. Mulligan81, A. Mulliri23,56, M.G. Munhoz123,
R.H. Munzer69, H. Murakami134, S. Murray126, L. Musa35, J. Musinsky65, C.J. Myers127, J.W. Myrcha143,
B. Naik50, R. Nair87, B.K. Nandi50, R. Nania55, E. Nappi54, M.U. Naru14, A.F. Nassirpour82, C. Nattrass132,
R. Nayak50, S. Nazarenko111, A. Neagu20, L. Nellen70, S.V. Nesbo37, G. Neskovic40, D. Nesterov115,
B.S. Nielsen91, S. Nikolaev90, S. Nikulin90, V. Nikulin100, F. Noferini55, S. Noh12, P. Nomokonov76,
J. Norman129, N. Novitzky135, P. Nowakowski143, A. Nyanin90, J. Nystrand21, M. Ogino84, A. Ohlson82,
J. Oleniacz143, A.C. Oliveira Da Silva132, M.H. Oliver147, B.S. Onnerstad128, C. Oppedisano60, A. Ortiz
Velasquez70, T. Osako47, A. Oskarsson82, J. Otwinowski120, K. Oyama84, Y. Pachmayer106, S. Padhan50,
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