CentOS Linux for the ATLAS MUCTPI Upgrade

- Introduction
- MUCTPI Upgrade
- System-on-Chip
- Use of CentOS
- Summary

<u>R. Spiwoks</u>^a, A. Armbruster^a, P. Czodrowski^a, N. Ellis^a, P. Farthouat^a, S. Haas^a, A. Kulinska^{a,b}, A. Marzin^a, P. Papageorgiou^{a,c}, T. Pauly^a, S. Perrella^a, M. Saimpert^a, P. Vichoudis^a, T. Wengler^a

a) CERN, Switzerland
b) AGH University of Technology and Science, Krakow, Poland
c) National Technical University of Athens, Greece

ATLAS Experiment

General-purpose experiment at the Large Hadron Collider (LHC) at CERN: proton-proton collisions at a centre-of-mass energy of ~14 TeV, with bunch crossing (BC) every 25 ns (40 MHz) with up to 80 collisions (pile-up) expected for the next run (2022)

⇒ More than 10⁹ interactions per second potentially interesting to physics: need trigger system in order to select events which are interesting to physics and which can be recorded at a reasonable rate

ATLAS TDAQ System

Diagram from https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsDAQ

Two-level trigger system:

- Level-1 Trigger: based on custom electronics and firmware reduction to 100 kHz event rate
- High-Level Trigger: commercial off-the-shelf computers, network and software reduction to ~1.5 kHz (peak) event rate and ~1.5 GByte/s data rate

ATLAS Level-1 Trigger System

Diagram from https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsDAQ

- Based on muon (dedicated detectors) and calorimeter (reduced granularity) information
- MUCTPI = Muon to Central Trigger Processor (CTP) Interface: Combines trigger information from barrel (resistive plate chambers) and end-cap and forward (thin-gap chambers) muon detectors
- Topological Trigger Processor combines muon and calorimeter information
- Central Trigger Processor (CTP) takes final Level-1 Accept decision

ATLAS MUCTPI

- Combines information from 208 muon sector logics
- Avoids potential double counting of muon candidates (overlap handling)
- Sends highest-p_T candidates to the topological trigger processor
- Sends multiplicities to CTP

Up to Run 2 (2018): VME based system, with electrical cables from muon sector logics to MUCTPI, and 18 different modules

Geometrical coverage of typical overlap of barrel, endcap and forward sectors

Upgrade of the ATLAS MUCTPI

For Run 3 (2022) we need to enhance the trigger selectivity at higher luminosity:

- More muon candidates per sector and more information per candidate
 ⇒ need higher bandwidth
- Provide improved overlap handling
 ⇒ need more processing
- Provide possibility for muon-only topological trigger processing in MUCTPI
- More muon candidates with full granularity to topological trigger processor
- Make it future-proof for Run 4

ATCA based system, with optical links between muon sectors and to MUCTPI, which is a single module

Use state-of-the-art FPGAs (Xilinx Virtex/Kintex Ultrascale+) for the data transfer and processing

System-on-Chip

How to control the MUCTPI?

Previously, we had a Single-Board Computer (SBC) in the VME crate

SBC was running Scientific Linux CERN (SLC), the user application software was fully integrated into the ATLAS TDAQ system

 \Rightarrow System-on-Chip = CPU + FPGA (note, that this is a slightly more restrictive definition than usual)

- Processor system (PS) = like CPU:
 - Based on multi-core ARM processors
 - Has memory and peripherals: GbE for communication with ATLAS run control; I2C, SPI, GPIO, etc. for control of hardware
 - Runs software: "bare-metal" application or operating system, e.g. Linux
- Programmable logic (PL) = like FPGA:
 - Has logic cells, memory blocks, I/O links, and MGTs
 - Implements interfaces to the other processing FPGAs, can implement real-time logic or additional peripherals, e.g. 10GbE

Xilinx Zynq/ZynqMP

MUCTPI uses Xilinx FPGAs, so it was natural to use a Xilinx SoC:

Xilinx Zynq Ultrascale+ MPSoC ZU3eg, quad ARM Cortex A53 (armv8/aarch64, 64-bit), 1.2 GHz, 4 GByte DDR4

What operating system to use?

Note: Xilinx/Vivado and Xilinx/SDK are used to prepare other boot files:

- Bitstream file: for programmable logic
- First-Stage Boot Loader (FSBL): software to initialize hardware and to load bitstream file and bootloader
- Device tree files: used by the Linux kernel

PetaLinux (Xilinx) or Yocto/OpenEmbedded with Xilinx meta layers:

- Linux kernel and (Xilinx) drivers
- Linux root file system
- U-Boot for loading kernel, device tree, and root file system

This is not a CERN certified OS and will not be allowed to run on the ATLAS Technical Control Network (ATCN) – needs to be isolated behind a gateway PC

Requires effort for updating continuously ... ATLAS system administrators or CERN-IT will not provide support for it

CentOS (1)

Operating system is key to the operation of the SoC and its integration into the ATCN and the ATLAS TDAQ software!

⇒ Use CERN CentOS (<u>http://www.centos.org</u> and <u>https://linux.web.cern.ch/centos</u>):

- Widely accepted
- Available for aarch64
- Continuously updated

Cross install on a host PC:

- Example: dnf ... --forcearch=aarch64 ... groupinstall 'Minimal Install'
- Uses qemu and Linux' binfmt_misc capability
- Full recipe on the twiki page https://twiki.cern.ch/twiki/bin/view/SystemOnChip/CentOSForZynqMP

This is a result from the SoC Interest Group, system-on-chip@cern.ch:

- Workshop in 2019: https://indico.cern.ch/event/799275/
- Interest group meetings: <u>https://indico.cern.ch/category/11883/</u>
- Twiki page: https://twiki.cern.ch/twiki/bin/view/SystemOnChip/WebHome
- Organising committee following up on common issues:
 e.g discussions with CERN-IT to provide CentOS/aarch64 in the same way as CentOS/x86_64 ...

Note: this is not agreed upon for Run 3, and will only come for Run 4, in the meantime ATLAS MUCTPI will continue using CentOS, and run behind a gateway PC

CentOS (2)

Use kernel (Xilinx-specific drivers) and U-Boot from Yocto (alternatively PetaLinux)
 Mount cross-installed CentOS rootfs via NFS (could also be on SD card)

⇒ Full operating system, provides:

- ssh for login
- bash, python, tcl, expect, etc. for scripting
- NFS mount of other file systems, NTP for date and time
- Linux tools for network: ip, ifconfig, DHCP client, ...
- iptables for network security
- Many other packages can easily be installed

\Rightarrow looks like any other CERN Linux system:

```
[spiwoks@pcphllct07] ~> ssh llct-muctpi
spiwoks@llct-muctpi's password:
[spiwoks@llct-muctpi ~]$ uname -a
Linux llct-muctpi 4.19.0-xilinx-v2019.1 #1 SMP Mon Oct 28
12:26:20 UTC 2019 aarch64 aarch64 aarch64 GNU/Linux
```

But how to add user application software for access to the hardware features? How to add ATLAS TDAQ run control software?

Software Development

Use cross compilation:

gcc for aarch64 from CentOS repository or developer.arm.com, or build from source (ggc.gnu.org)

Re-use work flow from previous generation:

- Describe all registers of the MUCTPI with the bit fields, memories and FIFOs in XML file
- We developed software to generate from the XML file VHDL code for firmware and C++ code for software (firmware/software co-development)
- Registers and memories are mapped (AXI) into processor system of SoC using /dev/uio
- C++ code accesses /dev/uio using read/write functions (+ we developed a kernel module for DMA)

Cross compilation works with CMake (build tool chosen by ATLAS TDAQ and for MUCTPI)

The ATLAS TDAQ software can be cross compiled in the same way:

 \Rightarrow Build a run control application to be run on the MUCTPI

Worldwide LHC Computing Grid (WLCG) provides builds for aarch64:

 \Rightarrow e.g. use ROOT for histograms, graphs, etc. for monitoring

We have a single script for setup on the host PC (development) or on the MUCTPI (deployment)

⇒ Developer/user does not notice the "cross" environment

Results

Sample python code

The MUCTPI C++ low-level software to access the MUCTPI hardware runs directly on the SoC, e.g. menu/test programs

Python wrappers for the software allow one to use it for interactive debugging, e.g. in test scripts

The MUCTPI C++ software is used by a TDAQ run control application for integration into the ATLAS TDAQ system:

Note: the TDAQ gateway running on the host PC is necessary until the MUCTPI will be allowed on the ATCN

ATLAS TDAQ GUI

Summary

- We have successfully built a new MUCTPI using the ATCA standard and a System-on-Chip (SoC)
- When running CentOS on the SoC, and using cross-compilation, the software work flow is exactly as before when using VME and a Single-Board Computer
- There are a lot of projects for the High-Luminosity LHC (2027) in ATLAS and CMS: thousands of such systems using ATCA and SoCs
- SoC Interest Group is looking into common solutions: <u>https://twiki.cern.ch/twiki/bin/view/SystemOnChip/WebHome</u>