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LHC Performance and ATLAS 
TDAQ Evolution 

Period Energy 
[TeV] 

Peak Lumi  
[1034 cm-2s-1] 

Peak 
Pileup 

Run 1 2009 - 2013 7 - 8 0.7 35 

Run 2 2015 - 2018 13 2 60 

Run 3 2022 - 2024 13 - 14 2 60 

Run 4+ 2027 -  14 5 - 7.5 140 - 200 

•  ATLAS TDAQ system evolution 
has been mainly driven by the 
evolution of LHC performance 

•  The current system still copes 
with updated requirements: 

–  Upgrading individual 
components was sufficient 

•  High Luminosity LHC upgrade 
will be done after Run 3 

•  It will require a major upgrade of 
the ATLAS TDAQ system: 

–  Phase-2 upgrade will take place 
during Long Shutdown 3 
between Run 3 and Run 4 
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ATLAS TDAQ Readout for Run 1 & 2 

24/10/20 22nd IEEE Real Time Conference 3 

•  Readout Drivers (RODs) provide 
interface between Front-End (FE) and 
DAQ: 

–  A dozen different flavors of VME 
boards developed and maintained by 
detectors 

–  Connected via point-to-point optical 
link to a custom ROBin PCI cards 

•  ROBin cards are hosted by Readout 
System (ROS) commodity computers: 

–  Transfer data to the High-Level Trigger 
(HLT) farm via a commodity switched 
network 

•  Evolutionary changes for Run 2: 
–  A new version of the ROBin card 

called ROBinNP used PCIe interface 



ATLAS Readout for Run 4 
•  HL-LHC upgrade will eventually 

provide: 
–  Up to 7.5 times of nominal luminosity 

–  Up to 200 interactions per bunch 
crossing 

•  Readout Upgrade Requirements: 
–  1 MHz L1(L0) rate (10x) 
–  5.2 TB/s data readout rate (20x) 

•  New readout architecture is 
based on the FELIX system: 

–  Transfers data from detector Front-
End electronics to the new Data 
Handler component of the DAQ 
system via a commodity switched 
network 
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The ATLAS Readout Evolution: Run 3 

•  ATLAS will use a mixture of the 
legacy and new readout systems 

•  First generation of FELIX 
system will be used for the new 
Muon and Calorimeter detector 
components and Calorimeter 
Trigger 

•  A new component, known as 
the Software Readout Driver 
(SW ROD) has been 
developed: 
–  Will act as a Data Handler 
–  Will support the legacy HLT 

interface 
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–  FULL Mode: 
•  12 links at full speed or 24 

links with 50% occupancy 
•  Up to 9.6 Gb/s per link input 

rate 
•  No virtual link subdivision for 

Run 3 

FELIX Card for Run 3 
•  A custom PCIe board with Gen 

3 x 16 interface installed into a 
commodity computer: 
–  24 optical input links for data taking 
–  48 links variant exists for larger 

scale Trigger & Timing distribution 
•  Can be operated in two modes: 

–  GBT Mode: 
•  4.8 Gb/s per link input rate 
•  Each link can be split into 

multiple logical sub-links (E-
Links) 

•  Up to 192 virtual E-Links per 
card for Run 3 
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* A dedicated talk about FELIX was given earlier in this session by Roberto Ferrari 



SW ROD Functional Requirements 
•  Receive data from FELIX system: 

–  Support both GBT and FULL mode readout via 
FELIX 

•  Replace legacy ROD component: 
–  Support custom data aggregation procedures as 

specified by detectors 
–  Support detector specific input data formats 

•  Support multiple data handling procedures: 
–  Writing to disk for commissioning, calibration, etc. 
–  Transfer to HLT for normal data taking 
–  Etc. 
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•  To address these requirements the SW ROD is designed as a highly 
customizable framework: 
–  Defines several abstract interfaces 
–  Internal components interact with one another via these interfaces 
–  Interface implementations are loaded dynamically at run-time 



SW ROD High-Level Architecture 

•  DataInput – abstracts input data source 
•  ROBFragmentBuilder – abstracts event fragment aggregation procedures 
•  ROBFragmentConsumer – an interface for data processing to be applied to 

fully aggregated event fragments: 
•  Multiple Consumers are organized into a list 
•  Each Consumer passes event fragments to the next one in this list 
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SW ROD Components: Default 
Implementations 

•  These implementations are provided in the form of a shared library 
that is loaded by the SW ROD application at run-time 

•  A custom implementation of any SW ROD interface can be integrated 
in the same way 
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SW ROD Performance 
Requirements 

Chunk 
Size (B) 

Chunk 
Rate per 
Link (kHz) 

Links per 
FELIX 
Card 

Chunk Rate 
per card 
(MHz) 

FELIX 
Cards per 
SW ROD 

Total 
Chunk 
Rate (MHz) 

Total Data 
Rate (GB/s) 

GBT 
Mode 

40 100 192 19.2 6 115 4.6 

Full 
Mode 

5000 100 12 (24) 1.2 (2.4) 1 1.2 (2.4) 6 
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•  The table contains the worst case requirements 
•  Data rates are similar for both GBT and FULL modes 
•  Chunk rate in GBT mode is higher by a factor of 100: 

–  Input chunks have to be aggregated into bigger fragments based on 
their L1 Trigger IDs 

–  That represents the main challenge for GBT mode data handling 



GBT Mode Performance Challenge 

•  In average a modern reasonably priced CPU has: 
–  # of cores * core frequency =  ~20-30 * 109 of CPU cycles 
–  Can perform multiple operations per cycle but this is hard to achieve for 

a complex application: 
•  In practice code operation/cycle >= 1.0 is considered well optimized 

•  With a total input rate of 115 * 106 Hz that would give: 
–  ~ 200-300 CPU operations per input chunk 
–  Using multiple CPU cores requires a multi-threaded application 
–  Passing data between threads at O(100) MHz rate would be practically 

impossible: 
•  Using queues or mutex/conditions will not fit into this budget 

•  The solution employed by the SW ROD is to assemble input chunks 
in the data receiving threads 
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GBT Event Building Algorithm 

•  Input links are split between a configurable number 
of reading/assembling threads per Data Channel: 

–  To scale with the number of input links that varies 
between detectors 

•  Each thread builds a fragment of a particular event: 
–  Copies input data chunks to a pre-allocated 

contiguous memory area 
–  Happening at O(10) MHz rate 
–  No synchronization or data exchange between threads 

•  Finally the slices are assembled together: 
–  Happening at the O(100) kHz rate 
–  Implemented with Intel tbb::concurrent_hash_map 
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Assembling 

Thread

Data Receiving/
Assembling 

Thread

Data Receiving/
Aggregation 

Thread

Final Event 
Fragments 

Aggregation

O(10) MHz O(100) kHz Amdahl's Law based 
parallelization formula 
 
 
 
S(n) - the theoretical 
speedup 
n - number of CPU cores/
threads 
P - parallel fraction of the 
algorithm 

 
P = 1 – CEA* 105/107  

= 1 – CEA * 0.01 
 

CEA – relative cost of final event 
aggregation operation 

CEA < 10   =>   P > 0.9  
will offer good algorithm scalability 



Hardware Configuration for Run 3 
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•  FELIX and SW ROD installation for Run 3 
finished recently 

•  SW ROD Computer: 
–  Dual Intel Xeon Gold 5218 CPU @ 2.3 GHz => 

16x2 physical cores 
–  96 GB DDR4 2667 MHz memory 
–  Mellanox ConnectX-5 100 Gb to FELIX 
–  Mellanox ConnectX-4 40 Gb to HLT 

•  FELIX Computer: 
–  Intel Xeon E5-1660 v4 @ 3.2GHz 
–  32 GB DDR4 2667 MHz memory 
–  1 Mellanox network card: 

•  ConnectX-5 100 Gb for FULL Mode computers 
•  ConnectX-4 25 Gb for GBT mode 

•  Such a setup has been used for the performance measurements presented in the 
following slides: 

–  Netio is a FELIX software network communication protocol built on top of Remote Direct 
Memory Access (RDMA)  

–  RDMA does not use kernel interrupts and makes it possible to pass data from the network 
card directly to user process memory 



Full Mode Performance Results 

•  Data Channel – is a single 
logical data input from 
detector Front-End: 
–  Data packets for the same 

data channel can be 
distributed over multiple 
optical links of the FELIX 
card 

•  For all tests except the first 
one the rate is limited by 
the network bandwidth: 
–  The communication 

protocol overhead for large 
data chunks is marginal 
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GBT Mode Algorithm Performance 

•  Can sustain ~150 kHz input rate 
for the input from 6 FELIX cards: 

–  6 * 192 = 1152 E-Links 
•  Can be further improved by 

optimizing the network protocol: 
–  The overhead is ~ 40% for 40B 

data chunks 
•  Scales very well with the number 

of threads/cores: 
–  CEA ≈ 7, P ≈ 0.93 
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# of E-Links 192  384 

# of threads Rate Efficiency Rate Efficiency 

1 164 1 148 1 

2 298 1.82 273 1.84 

3 435 2.65 392 2.65 
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SW ROD Scalability towards Run 4 

•  In GBT mode 1 MHz rate can be 
achieved for a small number of input 
links: 

–  Rates are CPU-limited 
–  Something that had almost no impact at 

100 kHz becomes critical at 1 MHz 
–  E.g. memory management adds 

significant overhead 
•  Memory Pool implementation was 

used in place of new/delete: 
–  Uses tbb::concurrent_queue for 

handling pre-allocated memory chunks 
–  This gives ~40% performance 

improvement 
•  Other possible optimizations are 

being studied 
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Summary 
•  A mixture of the legacy ROD-based and the new FELIX-based readouts will 

be used by ATLAS for the LHC Run 3 
•  SW ROD is a new component of the ATLAS DAQ system that will be used 

to receive data from the FELIX readout interface 
•  SW ROD provides a high performance framework that supports: 

–  Custom input data format 
–  Custom event building algorithms 
–  Custom event processing 

•  New FELIX based Readout paths have been mostly installed at the 
ATLAS experimental area 

•  A fully functional SW ROD implementation is ready for Run 3: 
–  Fully satisfies performance and functional requirements 

•  A study of how Run 4 performance requirements can be met is 
ongoing 
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Backup 
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LHC Evolution Timeline 
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https://project-hl-lhc-industry.web.cern.ch/content/project-schedule 



Data Receiving Thread Optimization 
Example 

•  Each data receiving thread operates at O(10) MHz data 
chunk rate: 
–  Even a trivial code modification can affect performance 

•  An example of the optimizations applied: 
–  To get an appropriate fragment from the cyclic buffer the algorithm used 

input chunks counter in a usual way: 

int buffer_pos = chunk_counter % buffer_size 
 

–  If a buffer size is set to 2n then this can be replaced with: 

int buffer_pos = chunk_counter & (buffer_size – 1) 
 

–  Applying this change gave 10% of overall performance gain 
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ROBFragmentConsumer Interface 
Performance Optimization (1/2) 

•  Uses push-style asynchronous 
communication model: 
–  When a new Fragment is ready Fragment Builder 

pushes it to the first consumer 
•  Multiple Consumers are organized into a list: 

–  Each consumer in the list forwards fragments to 
the next one 

•  A scalable default implementation is provided: 
–  insertROBFragment() function pushes event to 

the Intel tbb::concurrent_queue: 
•  Very fast operation which minimizes impact on the 

fragment supplier 
•  If the queue is full that exerts back-pressure, which is a 

required behavior 
–  A configurable number of threads retrieve 

fragments from this queue and apply specific 
processing 
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ROBFragmentConsumer Interface 
Performance Optimization (2/2) 

•  The first implementation 
suffered 20% performance 
loss for 2 consumers in the list: 
–  CPU branch prediction was 

confused as if (m_next) 
statement chooses different 
code branches with 50% 
probability 

•  Using std::function object 
fixes performance: 
–  More instructions to be 

executed 
–  But no branch prediction 

problem 
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insertROBFragment(ROBFragment & f){ 
  m_queue.push(f); 
  if (m_next) { 

 m_next->insertROBFragment(f); 
  } 
} 

// the next consumer 
m_next(std::bind(&insertROBFragment,  
     next, std::placeholders::_1); 
// the last consumer 
m_next([](){});  
 
insertROBFragment(ROBFragment & f){ 
  m_queue.push(f); 
  m_next(f); 
} 


