
The new software based readout
driver for the ATLAS experiment

Serguei Kolos,
University of California Irvine

On behalf of the ATLAS TDAQ Collaboration

24/10/20 22nd IEEE Real Time Conference 1

LHC Performance and ATLAS
TDAQ Evolution

Period Energy
[TeV]

Peak Lumi
[1034 cm-2s-1]

Peak
Pileup

Run 1 2009 - 2013 7 - 8 0.7 35

Run 2 2015 - 2018 13 2 60

Run 3 2022 - 2024 13 - 14 2 60

Run 4+ 2027 - 14 5 - 7.5 140 - 200

•  ATLAS TDAQ system evolution
has been mainly driven by the
evolution of LHC performance

•  The current system still copes
with updated requirements:

–  Upgrading individual
components was sufficient

•  High Luminosity LHC upgrade
will be done after Run 3

•  It will require a major upgrade of
the ATLAS TDAQ system:

–  Phase-2 upgrade will take place
during Long Shutdown 3
between Run 3 and Run 4

24/10/20 22nd IEEE Real Time Conference 2

ATLAS TDAQ Readout for Run 1 & 2

24/10/20 22nd IEEE Real Time Conference 3

•  Readout Drivers (RODs) provide
interface between Front-End (FE) and
DAQ:

–  A dozen different flavors of VME
boards developed and maintained by
detectors

–  Connected via point-to-point optical
link to a custom ROBin PCI cards

•  ROBin cards are hosted by Readout
System (ROS) commodity computers:

–  Transfer data to the High-Level Trigger
(HLT) farm via a commodity switched
network

•  Evolutionary changes for Run 2:
–  A new version of the ROBin card

called ROBinNP used PCIe interface

ATLAS Readout for Run 4
•  HL-LHC upgrade will eventually

provide:
–  Up to 7.5 times of nominal luminosity

–  Up to 200 interactions per bunch
crossing

•  Readout Upgrade Requirements:
–  1 MHz L1(L0) rate (10x)
–  5.2 TB/s data readout rate (20x)

•  New readout architecture is
based on the FELIX system:

–  Transfers data from detector Front-
End electronics to the new Data
Handler component of the DAQ
system via a commodity switched
network

24/10/20 22nd IEEE Real Time Conference 4

The ATLAS Readout Evolution: Run 3

•  ATLAS will use a mixture of the
legacy and new readout systems

•  First generation of FELIX
system will be used for the new
Muon and Calorimeter detector
components and Calorimeter
Trigger

•  A new component, known as
the Software Readout Driver
(SW ROD) has been
developed:
–  Will act as a Data Handler
–  Will support the legacy HLT

interface

24/10/20 22nd IEEE Real Time Conference 5

–  FULL Mode:
•  12 links at full speed or 24

links with 50% occupancy
•  Up to 9.6 Gb/s per link input

rate
•  No virtual link subdivision for

Run 3

FELIX Card for Run 3
•  A custom PCIe board with Gen

3 x 16 interface installed into a
commodity computer:
–  24 optical input links for data taking
–  48 links variant exists for larger

scale Trigger & Timing distribution
•  Can be operated in two modes:

–  GBT Mode:
•  4.8 Gb/s per link input rate
•  Each link can be split into

multiple logical sub-links (E-
Links)

•  Up to 192 virtual E-Links per
card for Run 3

24/10/20 22nd IEEE Real Time Conference 6

* A dedicated talk about FELIX was given earlier in this session by Roberto Ferrari

SW ROD Functional Requirements
•  Receive data from FELIX system:

–  Support both GBT and FULL mode readout via
FELIX

•  Replace legacy ROD component:
–  Support custom data aggregation procedures as

specified by detectors
–  Support detector specific input data formats

•  Support multiple data handling procedures:
–  Writing to disk for commissioning, calibration, etc.
–  Transfer to HLT for normal data taking
–  Etc.

24/10/20 22nd IEEE Real Time Conference 7

FELIX PC
FELIX

Network
Switch

Detector
Front-End
Electronics

FELIX

FELIX PC

FELIX
Detector

Front-End
Electronics

SW ROD SW ROD

•  To address these requirements the SW ROD is designed as a highly
customizable framework:
–  Defines several abstract interfaces
–  Internal components interact with one another via these interfaces
–  Interface implementations are loaded dynamically at run-time

SW ROD High-Level Architecture

•  DataInput – abstracts input data source
•  ROBFragmentBuilder – abstracts event fragment aggregation procedures
•  ROBFragmentConsumer – an interface for data processing to be applied to

fully aggregated event fragments:
•  Multiple Consumers are organized into a list
•  Each Consumer passes event fragments to the next one in this list

24/10/20 22nd IEEE Real Time Conference 8

SW ROD Components: Default
Implementations

•  These implementations are provided in the form of a shared library
that is loaded by the SW ROD application at run-time

•  A custom implementation of any SW ROD interface can be integrated
in the same way

24/10/20 22nd IEEE Real Time Conference 9

SW ROD Performance
Requirements

Chunk
Size (B)

Chunk
Rate per
Link (kHz)

Links per
FELIX
Card

Chunk Rate
per card
(MHz)

FELIX
Cards per
SW ROD

Total
Chunk
Rate (MHz)

Total Data
Rate (GB/s)

GBT
Mode

40 100 192 19.2 6 115 4.6

Full
Mode

5000 100 12 (24) 1.2 (2.4) 1 1.2 (2.4) 6

24/10/20 22nd IEEE Real Time Conference 10

•  The table contains the worst case requirements
•  Data rates are similar for both GBT and FULL modes
•  Chunk rate in GBT mode is higher by a factor of 100:

–  Input chunks have to be aggregated into bigger fragments based on
their L1 Trigger IDs

–  That represents the main challenge for GBT mode data handling

GBT Mode Performance Challenge

•  In average a modern reasonably priced CPU has:
–  # of cores * core frequency = ~20-30 * 109 of CPU cycles
–  Can perform multiple operations per cycle but this is hard to achieve for

a complex application:
•  In practice code operation/cycle >= 1.0 is considered well optimized

•  With a total input rate of 115 * 106 Hz that would give:
–  ~ 200-300 CPU operations per input chunk
–  Using multiple CPU cores requires a multi-threaded application
–  Passing data between threads at O(100) MHz rate would be practically

impossible:
•  Using queues or mutex/conditions will not fit into this budget

•  The solution employed by the SW ROD is to assemble input chunks
in the data receiving threads

24/10/20 22nd IEEE Real Time Conference 11

GBT Event Building Algorithm

•  Input links are split between a configurable number
of reading/assembling threads per Data Channel:

–  To scale with the number of input links that varies
between detectors

•  Each thread builds a fragment of a particular event:
–  Copies input data chunks to a pre-allocated

contiguous memory area
–  Happening at O(10) MHz rate
–  No synchronization or data exchange between threads

•  Finally the slices are assembled together:
–  Happening at the O(100) kHz rate
–  Implemented with Intel tbb::concurrent_hash_map

24/10/20 22nd IEEE Real Time Conference 12

Data Receiving/
Assembling

Thread

Data Receiving/
Assembling

Thread

Data Receiving/
Aggregation

Thread

Final Event
Fragments

Aggregation

O(10) MHz O(100) kHz Amdahl's Law based
parallelization formula

S(n) - the theoretical
speedup
n - number of CPU cores/
threads
P - parallel fraction of the
algorithm

P = 1 – CEA* 105/107

= 1 – CEA * 0.01

CEA – relative cost of final event
aggregation operation

CEA < 10 => P > 0.9
will offer good algorithm scalability

Hardware Configuration for Run 3

24/10/20 22nd IEEE Real Time Conference 13

•  FELIX and SW ROD installation for Run 3
finished recently

•  SW ROD Computer:
–  Dual Intel Xeon Gold 5218 CPU @ 2.3 GHz =>

16x2 physical cores
–  96 GB DDR4 2667 MHz memory
–  Mellanox ConnectX-5 100 Gb to FELIX
–  Mellanox ConnectX-4 40 Gb to HLT

•  FELIX Computer:
–  Intel Xeon E5-1660 v4 @ 3.2GHz
–  32 GB DDR4 2667 MHz memory
–  1 Mellanox network card:

•  ConnectX-5 100 Gb for FULL Mode computers
•  ConnectX-4 25 Gb for GBT mode

•  Such a setup has been used for the performance measurements presented in the
following slides:

–  Netio is a FELIX software network communication protocol built on top of Remote Direct
Memory Access (RDMA)

–  RDMA does not use kernel interrupts and makes it possible to pass data from the network
card directly to user process memory

Full Mode Performance Results

•  Data Channel – is a single
logical data input from
detector Front-End:
–  Data packets for the same

data channel can be
distributed over multiple
optical links of the FELIX
card

•  For all tests except the first
one the rate is limited by
the network bandwidth:
–  The communication

protocol overhead for large
data chunks is marginal

24/10/20 22nd IEEE Real Time Conference 14

1760

1135
765 575

384
192

96

0
10
20
30
40
50
60
70
80
90
100

1

10

100

1000

10000

1 2 3 4 6 12 24

R
at

e
(G

bp
s)

R
at

e
(k

H
z)

of Data Channels

Full Mode Test: 24 links, 5KB data
chunks, 6 reading threads

L1 Rate

Data Rate

GBT Mode Algorithm Performance

•  Can sustain ~150 kHz input rate
for the input from 6 FELIX cards:

–  6 * 192 = 1152 E-Links
•  Can be further improved by

optimizing the network protocol:
–  The overhead is ~ 40% for 40B

data chunks
•  Scales very well with the number

of threads/cores:
–  CEA ≈ 7, P ≈ 0.93

24/10/20 22nd IEEE Real Time Conference 15

of E-Links 192 384

of threads Rate Efficiency Rate Efficiency

1 164 1 148 1

2 298 1.82 273 1.84

3 435 2.65 392 2.65

0

50

100

150

200

250

300

350

400

450

500

192 384 576 768 960 1152

R
at

e
(k

H
z)

of E-Links

Input rate with 40
Bytes packets

192 E-Links per
Data Channel(DC)

1 thread per DC
2 threads per DC
3 threads per DC
Raw (100 Gb/s) limit
Payload (70 Gb/s) limit

SW ROD Scalability towards Run 4

•  In GBT mode 1 MHz rate can be
achieved for a small number of input
links:

–  Rates are CPU-limited
–  Something that had almost no impact at

100 kHz becomes critical at 1 MHz
–  E.g. memory management adds

significant overhead
•  Memory Pool implementation was

used in place of new/delete:
–  Uses tbb::concurrent_queue for

handling pre-allocated memory chunks
–  This gives ~40% performance

improvement
•  Other possible optimizations are

being studied

24/10/20 16

0

200

400

600

800

1000

1200

40 80 120 160 200 240 280

R
at

e
(k

H
z)

Message Size (bytes)

Input Rate with 48 links

memory pool

new/delete

22nd IEEE Real Time Conference

Summary
•  A mixture of the legacy ROD-based and the new FELIX-based readouts will

be used by ATLAS for the LHC Run 3
•  SW ROD is a new component of the ATLAS DAQ system that will be used

to receive data from the FELIX readout interface
•  SW ROD provides a high performance framework that supports:

–  Custom input data format
–  Custom event building algorithms
–  Custom event processing

•  New FELIX based Readout paths have been mostly installed at the
ATLAS experimental area

•  A fully functional SW ROD implementation is ready for Run 3:
–  Fully satisfies performance and functional requirements

•  A study of how Run 4 performance requirements can be met is
ongoing

24/10/20 22nd IEEE Real Time Conference 17

Backup

24/10/20 22nd IEEE Real Time Conference 18

LHC Evolution Timeline

24/10/20 22nd IEEE Real Time Conference 19

https://project-hl-lhc-industry.web.cern.ch/content/project-schedule

Data Receiving Thread Optimization
Example

•  Each data receiving thread operates at O(10) MHz data
chunk rate:
–  Even a trivial code modification can affect performance

•  An example of the optimizations applied:
–  To get an appropriate fragment from the cyclic buffer the algorithm used

input chunks counter in a usual way:

int buffer_pos = chunk_counter % buffer_size

–  If a buffer size is set to 2n then this can be replaced with:

int buffer_pos = chunk_counter & (buffer_size – 1)

–  Applying this change gave 10% of overall performance gain

24/10/20 22nd IEEE Real Time Conference 20

ROBFragmentConsumer Interface
Performance Optimization (1/2)

•  Uses push-style asynchronous
communication model:
–  When a new Fragment is ready Fragment Builder

pushes it to the first consumer
•  Multiple Consumers are organized into a list:

–  Each consumer in the list forwards fragments to
the next one

•  A scalable default implementation is provided:
–  insertROBFragment() function pushes event to

the Intel tbb::concurrent_queue:
•  Very fast operation which minimizes impact on the

fragment supplier
•  If the queue is full that exerts back-pressure, which is a

required behavior
–  A configurable number of threads retrieve

fragments from this queue and apply specific
processing

24/10/20 22nd IEEE Real Time Conference 21

<<ROBFragmentConsumer>>

EventSampler

<<ROBFragmentConsumer>>

HLTRequestHandler

<<ROBFragmentBuilder>>

insertROBFragment

insertROBFragment

ROBFragmentConsumer Interface
Performance Optimization (2/2)

•  The first implementation
suffered 20% performance
loss for 2 consumers in the list:
–  CPU branch prediction was

confused as if (m_next)
statement chooses different
code branches with 50%
probability

•  Using std::function object
fixes performance:
–  More instructions to be

executed
–  But no branch prediction

problem

24/10/20 22nd IEEE Real Time Conference 22

insertROBFragment(ROBFragment & f){
 m_queue.push(f);
 if (m_next) {

 m_next->insertROBFragment(f);
 }
}

// the next consumer
m_next(std::bind(&insertROBFragment,
 next, std::placeholders::_1);
// the last consumer
m_next([](){});

insertROBFragment(ROBFragment & f){
 m_queue.push(f);
 m_next(f);
}

