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ABSTRACT 

CERN has the legal obligation to protect the public and the 
people working on its site from any unjustified exposure to 
ionizing radiation. Therefore, several monitoring systems are 
operated at CERN to evaluate the radiological impact of 
CERN’s accelerators and installations by active monitoring. 
Having highly reliable and available monitoring systems is 
hence a crucial factor to ensure a safe operation and steady 
availability of the accelerator. Besides designing reliable 
systems or implementing a condition-based maintenance 
strategy, the analysis of field data also helps to achieve these 
high reliability and availability goals. To decide, whether a 
system should be replaced or to estimate its situation on its 
lifetime curve, the analysis of field data is appropriate. This 
paper will present how failure data from maintenance 
interventions on the example of the Ventilation Gas Monitors 
(VGM) are used to estimate the system lifetime, failure rate 
and optimal point for exchange. A power law process is used 
to model the parametric growth curve of the number of 
failures and the Nelson-Aalen estimator is employed to 
model the non-parametric growth curve of the number of 
failures for repairable systems. The power law model is 
extrapolated and enhanced by its failure costs to make 
estimations about the necessary budget in the future and the 
optimal time for exchange. Additionally, confidence bounds 
and goodness-of-fit tests are included to evaluate the 
precision of the prediction. Taking advantage of open source 
software, a model with R language is established for all the 
calculations. 

The first chapter of this paper gives an introduction to the 
topic. The second chapter outlines the functioning, structure 
and lifetime requirements of the VGM system and presents 
its collected failure data. The third chapter specifies the 

mathematical background for repairable system analysis, 
how the parameters are calculated with maximum likelihood 
estimation and describes the implementation of the Cramér-
von Mises criterion and confidence bounds as goodness-of fit 
tests. The fourth chapter presents the results for the VGM 
system. The last chapter contains a conclusion and an 
outlook. 

1. INTRODUCTION  

Data collected from systems in the field are called fielded 
systems data and are analogous to warranty data. Fielded 
systems can be categorized as either non-repairable systems 
or repairable systems. When these systems are safety critical 
or customer products, it is often of interest to determine its 
reliability characteristics like the expected number of failures 
during the warranty period, maintaining a minimum mission 
reliability, evaluating the rate of wear-out, determining when 
to replace and overhaul the system or to minimize its life 
cycle costs. 

For cost reasons most complex systems are repaired and not 
replaced after each failure. Therefore, it is not possible to 
model these systems with the Weibull distribution, which is 
used to model non-repairable systems, but instead to use a 
process. The most commonly applied one is the power law 
process, which will also be used in this paper (ReliaSoft, 
2010). 

2. THE VGM SYSTEM 

The Ventilation Gas Monitors (VGM) at CERN aim at 
monitoring activity concentrations of short-lived radioactive 
gases and are equipped with alarm and interlock functions. 
Several units (39) are installed all over the CERN area since 
2008 with the start of the Large Hadron Collider (LHC) to 
continuously perform the measurements and ensure, amongst 
other monitoring systems, the compliance with defined 
radiation dose levels. 

Saskia Hurst et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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Figure 1 shows a VGM station, consisting of a measurement 
chamber, a data processing box, a power supply box, a signal 
processing, a monitoring station (PLC and panel PC), an 
airflow system (pump, valves, float flow meter) and the 
treatment box. 

 
Figure 1. Ventilation Gas Monitor (VGM) (Perrin, 2018). 

2.1. Structure and Measurement Principle 

Radioactive gases continuously flow through a measurement 
chamber equipped with two passively implemented planar 
silicon detectors (PIPS) by CANBERRA. The first detector 
is facing the gases, while the second, placed atop, serves as a 
guard detector for active ambient background compensation. 
The radionuclides of interest are short-lived, medium to high 
energy beta particles emitters (11C, 13N, 14,15O, 41Ar). In 
addition to pulse height discrimination (cut-off energies), 
unwanted signal rejection is made by mean of a thin foil 
placed in front of the measurement detector, that shields very 
low energy beta and all alpha particles, respectively emitted 
by tritium and natural radon progenies. The treatment box (in 
the center of the VGM`s information processing) receives the 
analogue pulses from the diodes and transmits the logic 
pulses to the data processing box. The activity concentration 
is derived from the measured net count rate, by mean of a 
calibration coefficient initially determined by Monte-Carlo 
simulations validated by measurements (Ferragut, 2005). 
Because the system is not capable to distinguish the 
respective contributions of the aforementioned radionuclides 
(beta particles, continuous and overlapping spectra), the most 
penalizing calibration coefficient is conservatively used 
(41Ar). 

Figure 2 shows the schematic functioning of a VGM. 

 
Figure 2. Schematic Structure of a VGM. 

2.2. Lifetime Requirements 

As the VGM system is procured from an external company 
and no longer available on the market, it could be replaced 
partially by an in-house developed monitoring system at the 
end of its lifetime. The VGM system is used since 2008 with 
the start of the Large Hadron Collider (LHC) and therefore 
field data collected for 12 years are available. This can be 
used to perform a reliability analysis to minimize its 
maintenance costs, having sufficient spare parts and 
complying with the required Safety Integrity Level (SIL) 2. 
The field data are maintained in a database which contains all 
failures, including the failure type, date of occurrence, repair 
costs and serves as basis for the analysis. 

2.3. Failure Data 

At CERN all maintenance data concerning the VGM are 
stored manually in a ©SharePoint database and automatically 
into REMUS Supervisory, Control and Data Acquisition 
system (SCADA) developed at CERN. REMUS contains all 
kind of data such as measurements, calibration, 
configurations and some hardware failures. In contrast 
©SharePoint was used for on field data collection. It contains 
only relevant hardware and software failures. Each failure is 
specified and the type of repair is mentioned. As the 
maintenance is done by an external contracting company, 
each repair can be linked to a separate invoice. Therefore, for 
each failure type the costs are also known. 

Table 1 contains a summary of the failure types that have 
occurred (extracted and summarized from ©SharePoint). 

Not all failures are relevant for the analysis; hardware-setting 
failures are for example purely related to the user and not the 
equipment. The power supply failure is a concrete wear-out 
failure and considered separately. In addition, detector 
failures are also considered separately, as the detector is not 
maintained by the same manufacturer. It is a separate part of 
the VGM. After discussion with experts, amplifier failures, 
measurement system failures, connector failures and EMC 
issues are considered together for the analysis. 

The failure data are right-censored, as the systems are only 
observed until a certain time. 
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Table 1. Failure Data. 

Failure type Failure details Fault correction 

Connector 
failure 

Clamp-; crimp-
connection, 
Vibration, broken 
socket 

Tightening of 
connections, cleaning, 
replacement of 
sockets/cables 

Detector 
failure  Replacement 

Amplifier 
failure 

Preamplifier, 
microprocessor, 
comparator broken 

Replacement 

Measurement 
system failure 

Fuse, 
microprocessor Replacement 

EMC issues Electrical noise on 
measurement, 

Isolating transformer, 
high-pass filter, ferrite 
core 

Hardware 
settings  Adjustment of the 

settings 
Power supply 
failure  Replacement 

Non-censored data in contrary would be available when a unit 
would be taken out of operation after a failure. In the example 
of the VGMs, the data are time-censored (until the point when 
the analysis was made). If the observation would stop after a 
predefined number of failures, the data would be called 
failure-censored (Birolini, 2017). 

3. APPROACH RELIABILITY ANALYSIS FROM FIELD DATA 

For repairable systems analysis, the R software was used to 
process the data coming from ©SharePoint, REMUS and 
invoices from the contracting companies. 

3.1. Repairable System Analysis 

Generally, in survival theory, the Weibull distribution is used 
to model the lifetime of non-repairable systems. To address 
the reliability characteristics of complex repairable systems, 
a process, most commonly the power law model is used 
instead of a distribution. The power law model is a parametric 
model and appropriate to model systems with “minimal 
repair”. This concept means that a failed system is repaired 
in a way just to get it operational again. If a system has many 
failure modes, the repair of a single failure does not improve 
the system reliability compared to its reliability before the 
occurrence of the failure. In this case, the sequence of failures 
at the system level follows a non-homogeneous Poisson 
process (NHPP) (ReliaSoft, 2010). 

In case the system is overhauled after a certain period, the 
reliability is greatly improved afterwards which can also be 
implemented in the power law model. The power law model 
with the mean cumulative number of failures MCF(t) is 
described by Eq. (1) and its intensity function f(t) (failure 
rate) in Eq. (2). 

 𝑀𝐶𝐹(𝑡) = 𝜆) ∙ 𝑡!"  (1) 

 𝑓(𝑡) = 𝜆) ∙ 𝛽) ∙ 𝑡#!"$%& (2) 

Herein 𝜆) is the scale estimate and 𝛽)  is the shape estimate. 

A special case for the power law model is when there is no 
change in the intensity function (β=1). This is referred to a 
homogenous Poisson process (HPP). When β<1, the system 
is improving over time, in contrary to β>1 where the system 
is degrading over time. 

This behavior is visualized in Figure 3. The MCF (Mean 
Cumulative Function) of the power law process for three 
different shape parameters is plotted. 

 
Figure 3: MCF for Different Shape Parameters. 

Reliability growth curves give the mean number of 
cumulative failures over time per unit and help to establish 
how often a system requires maintenance and the number of 
necessary replacement items in inventory. It can also indicate 
if the system is performing at an acceptable level. From the 
graphs, the trend of the process can be derived by its shape 
parameters and the rate of occurrence of failure over time can 
be deviated and compared to the SIL. The parameters of the 
power law model are estimated by the maximum likelihood 
method. 

Eq. (3) and Eq. (4) present the maximum likelihood 
estimators of the scale parameter 𝜆)  and the shape 
parameter	𝛽), whereas K is the number of systems and the qth 

system is observed continuously from time Sq to time Tq (q=1, 
2, ..., K). Nq is the number of observed failures during the 
period [Sq, Tq] by the qth system. Xi,q is the age of this system 
at the ith occurrence of failure (i=1, 2, …, Nq). If Xi,q=Tq the 
data on this system are failure terminated; if Xi,q<Tq the 
system is time terminated (ReliaSoft, 2010). 

 λ/ =
∑ N'(
')%

∑ 2T'
*" − S'

*"6(
')%

 (3) 

𝛽" =
∑ 𝑁!"
!#$

𝜆" ∑ '𝑇!
%& ln+𝑇!, − 𝑆!

%& ln+𝑆!,/"
!#$ − ∑ ∑ ln+Χ',!,

)!
'#$

"
!#$

 (4) 
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If all units have the same starting point  
(S1=S2=…=Sq=0) and end-point (T1=T2=…=Tq=0), the 
equations can be simplified to Eq. (5) and Eq. (6). 

 𝜆) =
∑ 𝑁+,
+)%

𝐾𝑇!  (5) 

 𝛽) =
∑ 𝑁+,
+)%

∑ ∑ 𝑙𝑛 < 𝑇𝛸-,+
>/*

-)%
,
+)%

 
(6) 

By extrapolating the parametric growth curve, estimations 
about the amount of failures and therefore the necessary spare 
parts in the future can be made. The growth curve of the 
cumulative number of failures of the VGM is also used to 
calculate future repair costs by enhancing the graph by its 
average repair costs. To minimize costs and optimize the 
replacement, the reliability growth curves of the VGM also 
serve as basis to calculate the optimal point of exchange. 

Failure data can also be plotted by the Nelson-Aalen 
estimator, which is a non-parametric estimator of the 
cumulative number of failures H(t) for non-censored, 
censored and incomplete data. Eq. (7) shows the calculation 
with di number of events (failures) at ti and ni the total 
individuals at risk at ti (Nelson, 2003). 

 𝐻(𝑡) =@
𝑑-
𝑛-0+10

 (7) 

This model is used additionally to the power-law model, but 
cannot be used for extrapolation. 

3.2. Evaluation of the Model Prediction 

To assess the accuracy of the prediction, confidence bounds 
are added and a goodness-of-fit test is integrated in the R 
model. 

3.2.1. Confidence Bounds 

One way to calculate confidence bounds for repairable 
systems is the Fisher matrix approach, named after Sir 
Ronald Fisher. The Fisher information is a characteristic 
commonly used in statistics. It can be defined for a family of 
probability density functions and can give a declaration about 
the quality of the parameter estimates for a model. Formally, 
it is the variance of the score (gradient of the log-likelihood 
function with respect to the parameter vector) (Ly, Marsman, 
Verhagen, Grasman, Wagenmakers, 2017). Fisher 
confidence bounds can be calculated for multiple censored 
data and are employed in most commercial statistical 
applications. This method has the advantage of being 
computationally very simple. 

This paper contains the calculation of confidence bounds on 
the estimation parameters β and λ and the mean cumulative 
number of failures. 

The calculation of the confidence bounds of the estimation 
parameters by the Fisher matrix approach is performed as 
following (ReliaSoft, 2010). 

Λ is the natural log-likelihood function, shown in Eq. (8). 

𝛬 = 45𝑁"(𝑙𝑛(𝜆) + 𝑙𝑛(𝛽)) − 𝜆 ?𝑇"
# − 𝑆"

#B + (𝛽 − 1)4ln	(𝑥$,")

&!

$'(

H
)

"'(

 (8) 

All variance can be calculated using the Fisher information 
matrix in Eq.(9) and implementing Eq. (10) - Eq. (12). 

!
𝑉𝑎𝑟(𝜆') 𝐶𝑜𝑣𝑎𝑟(𝛽', 𝜆')

𝐶𝑜𝑣𝑎𝑟(𝛽', 𝜆') 𝑉𝑎𝑟(𝛽')
. =

⎣
⎢
⎢
⎢
⎡ 𝜕

!Λ
𝜕𝜆!

𝜕!Λ
𝜕λ𝜕𝛽

𝜕!Λ
𝜕λ𝜕𝛽

𝜕!Λ
𝜕𝛽! ⎦

⎥
⎥
⎥
⎤
"#

 (9) 

with 

𝜕I𝛬
𝜕𝛽I = −

∑ 𝑁+,
+)%

𝛽I − 𝜆 ∙@𝑇+
! ∙ DlnD𝑇+GG

I
,

+)%

 (10) 

 𝜕I𝛬
𝜕𝜆I = −

∑ 𝑁+,
+)%

𝜆I  (11) 

 
𝜕I𝛬
𝜕𝜆𝜕𝛽 = −@𝑇+

! ∙ ln	(
,

+)%

𝑇+) (12) 

Confidence bounds for β are calculated as shown in Eq. (13), 
whereas zα is the α-level’s z-score. This value can be 
extracted from a z table for the defined α-level. The 
parameter α refers to the likelihood that the true population 
parameter lies outside the confidence interval. It is usually 
expressed as a proportion and calculated by 
1 - confidence level. The chosen confidence level in this 
paper is 90%, therefore α=0.1. 

 𝐶𝐵! = 𝛽/ ∙ 𝑒±𝑧𝛼∙J𝑉𝑎𝑟(𝛽K) 𝛽KL  (13) 

Confidence bounds for λ are calculated as shown in Eq. (14). 

 𝐶𝐵M = 𝜆/ ∙ 𝑒±𝑧𝛼∙J𝑉𝑎𝑟(𝜆K) 𝜆K⁄  (14) 
The calculation of confidence bounds on the mean 
cumulative number of failures is shown in Eq. (15) - Eq. (18) 
(ReliaSoft, 2010). 

 𝑁(𝑡) = 𝑁I(𝑡) ∙ 𝑒±𝑧𝛼∙J𝑉𝑎𝑟(/"(0)) /"(0)L  (15) 
with 

𝑉𝑎𝑟.𝑁0(𝑡)4 = 6
𝜕𝑁(𝑡)
𝜕𝛽 9

!

∙ 𝑉𝑎𝑟.𝛽;4 + =
𝜕𝑁(𝑡)
𝜕𝜆 ?

!

∙ 𝑉𝑎𝑟.𝜆;4 + 2 ∙ =
𝜕𝑁(𝑡)
𝜕𝛽 ? ∙ =

𝜕𝑁(𝑡)
𝜕𝜆 ? ∙ 𝐶𝑜𝑣𝑎𝑟(𝛽;, 𝜆;) (16) 

 
𝜕𝑁(𝑡)
𝜕𝛽 = 𝜆/ ∙ 𝑡𝛽K ∙ ln	(𝑡) (17) 

 𝜕𝑁(𝑡)
𝜕𝜆 = 𝛽) ∙ 𝑡	 (18) 
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Goodness-of Fit Tests 

To test the compatibility of the model and the data 
statistically, the parametric Cramér-von Mises criterion (𝜔I) 
is often used for the repairable system power law model 
(Crow, 1982). With this goodness-of fit test, a cumulative 
distribution function F* (theoretical distribution) can be 
compared to a given empirical distribution function Fn 
(empirically observed function) as shown in Eq. (19). 

 𝜔I = K [𝐹O(𝑥) − 𝐹∗(𝑥)]I𝑑𝐹∗(𝑥)
Q

$Q
 (19) 

The Cramér-von Mises criterion uses the integral of the 
squared difference between the empirical and the estimated 
distribution functions (Parr & Schucany, 1980). 

The Cramér-von Mises criterion is appropriate, when the 
failure data are complete (no gaps between [0, Tq]) and the 
start time for each system is equal to 0. If these conditions are 
not met, the general Chi-Squared test, the beta hypothesis test 
or the Laplace trend test could be applied. As in the presented 
example of the VGMs the failure data are complete and the 
start time of all system is 0, the Cramér-von Mises criterion 
is chosen. The following hypothesis H1 should be tested. 

H0 := Failure times do not follow a NHPP 

H1 := Failure times follow a NHPP with a failure intensity 
𝑢(𝑡) = 𝜆 ∙ 𝛽 ∙ 𝑡!$% 

The Cramer-von Mises statistic (𝐶RI ) is calculated as shown 
in Eq.(20) (ReliaSoft, 2010). 

 𝐶RI =
1

12 ∙ 𝑀 +	@<𝑧S
!T −

2𝑗 − 1
2 ∙ 𝑀 >

IR

S)%

 (20) 

with the following equations Eq. (21) - Eq. (23). 

 𝑀 =@𝑀+

,

+)%

 (21) 

Mq = Nq – 1 (failure-terminated data; xNqq = Tq) 

Mq = Nq  (time-terminated data; xNqq < T) 

𝑌-+ =
𝑥-+
𝑇+
; 	𝑌-+	𝑜𝑟𝑑𝑒𝑟𝑒𝑑 ∶= 𝑧% < 𝑧I < ⋯ < 𝑧R (22) 

 �̅� =
𝑀 − 1

∑ ∑ 𝑙𝑛 <
𝑇+
𝑥-+
>R*

-)%
,
+)%

 
(23) 

If the calculated Cramer-von Mises statistic for a given 
significance level α and the related M is less than the critical 
value (Table 2), then H1 is accepted. 

Table 2. Critical Values for Cramér-von Mises Test. 

 α 
M 0.20 0.15 0.10 0.05 0.01 
2 0.138 0.149 0.162 0.175 0.186 
10 0.125 0.142 0.167 0.212 0.32 
20 0.128 0.146 0.172 0.217 0.33 
30 0.128 0.146 0.172 0.218 0.33 
60 0.128 0.147 0.173 0.220 0.33 
… … … … … … 

4. RESULTS OF THE ANALYSIS 

The mentioned approach has been performed on the example 
of the VGMs. This section includes the results of the analysis. 

4.1. Rough Failure Analysis 

Figure 4 shows an event plot of all the occurred failures per 
system over time. The figure includes all 39 VGM on the axis 
of ordinates and their related failure times on the axis of 
abscissae. 

 
Figure 4: Event Plot of Failures per Unit. 

In total, 48 relevant hardware failures occurred (including 
connector failures) since the installation of the VGMs. The 
data are right-censored (time-censored); some systems never 
failed while others failed several times. This has to be 
considered in the calculation. 

It is already interesting to notice from the event plot that the 
amount of failures increases over time. 

In 2013, all power supply modules were exchanged, after 
several unit failures. The power supply module has a specific 
lifetime and is therefore excluded from the analysis. All other 
failure types were analyzed separately in the beginning. The 
results showed, that the estimation parameters were only 
slightly different for each failure type. As all growth curves 
showed a similar behavior, it was possible to analyze them 
together without hiding details. 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

6 

4.2. Growth Curve of cumulative number of failures 

Figure 5 shows the failure points calculated by the Nelson-
Aalen estimator and the estimated parametric growth curve 
by a power law model over time. The axis of ordinates 
contains the mean cumulative function (MCF), which 
describes the cumulative number of failures per unit and on 
the axis of abscissae the time in hours is shown from 2008 to 
2020, total hours (~105k). 

 
Figure 5: Mean Cumulative Function. 

The estimated growth curve is: 𝑁I(𝑡) = 6.78 ∙ 10$%U ∙ 𝑡%.WX 
with 𝛽)  = 1.85 and 𝜆) = 6.78∙10-10. 

As β>1, the systems number of failures is increasing over 
time and the process is already in the degrading (wear-out) 
phase. 

The instantaneous failure rate of the system (also called 
instantaneous hazard rate), which is describing the number of 
failures per hour, is shown in Figure 6. 

 
Figure 6: Instantaneous Failure Rate per Unit. 

Both graphs show the behavior of a degrading system. 

Based on the MCF it is possible to estimate until which time 
the spare parts are sufficient. Regarding the failure rate one 
could decide until what time it is still acceptable. Especially 
for safety critical systems this could be a limiting factor. 

4.3. Confidence Bounds and Goodness-of-Fit Results 

With the presented Fisher matrix approach, the confidence 
bounds of the parameter estimations as well as the confidence 
bounds on the mean cumulative number of failures were 
calculated. 

4.3.1. Confidence Bounds of β and λ 

The results of the confidence bounds of β and λ with α=0.1 
are the following: 

Fisher: 

𝐶𝐵!_Z[\]^ = 1.46, 𝐶𝐵!__``]^ = 2.35 

𝐶𝐵M_Z[\]^ = 4.27 ∙ 10$%I, 𝐶𝐵M__``]^ = 	1.08 ∙ 10$a 

Crow: 

𝐶𝐵!_Z[\]^ = 1.44, 𝐶𝐵!__``]^ = 2.31 

𝐶𝐵M_Z[\]^ = 5.26 ∙ 10$%U, 𝐶𝐵M__``]^ = 8.63 ∙ 10$%U 

As, for both methods, β is always larger than one, even for 
the lower bounds, it can be concluded, that the system is 
certainly in the wear-out phase and the failure rate will 
increase in the future exponentially. The system is not in the 
constant phase of its lifetime anymore. 

4.3.2. Confidence Bounds on Mean Cumulative Function 

Figure 7 shows the estimated mean cumulative number of 
failures with Fisher confidence bounds with α=0.1. The 
growth curve is extrapolated until 01/01/2027 (166560h). 

 
Figure 7: Mean Cumulative Function with Confidence 

Bounds. 

When extrapolating the growth curve, an estimation about the 
number of failures at a certain point in the future can be made. 
As for the VGM the number of spare parts is limited, this 
graph can help to plan the exchange of the system. 

4.3.3. Cramér-von Mises Test Statistic 

The result for the Cramér-von Mises statistic is 𝐶RI = 0.058.	
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For a significance level of α=0.1 and M=48, the Cramer 
statistic is lower than the critical value (0.172) and H1 can be 
accepted. 

Table 3: Cramér-von Mises Values 

 α 
M 0.20 0.15 0.10 0.05 0.01 
… … … … … … 
30 0.128 0.146 0.172 0.218 0.33 
60 0.128 0.147 0.173 0.220 0.33 
… … … … … … 

It can be concluded that the data follows a non-homogeneous 
Poisson process with a power law failure intensity. 

4.4. Cost Estimation and Optimal Maintenance Strategy 

For each failure type, the repair costs are known from the 
invoices of the external company. Considering this, the MCF 
can be expanded by the costs and the cumulative normalized 
repair costs per system can be plotted (Figure 8). 

 
Figure 8: Cumulative Normalized Repair Costs per System 

Unit. 

This estimation helps to plan the budget and maintenance and 
to find the optimal point to replace the system by a new one. 
As a rough estimate, this point is reached when the 
cumulative costs are equal to the asset costs of a new system. 

5. CONCLUSION & OUTLOOK 

From the statistical approach, it can be concluded that the 
VGM system is already in its degrading mode and the failure 
rate is increasing over time. The current failure rate is 
2.3·10-5 failures per million hours [fpmh]. The replacement 
for the VGMs is foreseen between 2027 and 2031. There the 
instantaneous failure rate per system would be 3.6·10-5[fpmh] 
and 4.2·10-5[fpmh] respectively. 

As spare parts are limited, the application of this system is 
restricted. This is the most critical point that should be 
considered when planning the exchange time. The 
extrapolation of the MCF helps to identify the time, where 
the maximum amount of failures occurred which can be 

replaced by components in stock. Regarding the VGMs the 
current cumulative number of failures is 1.23 per system unit. 
In 2027 and 2031 it would be 3.23 per system unit and 4.61 
respectively. This number contains all types of failures that 
have occurred. 

Regarding the repair costs, the results show that it is 
recommendable to wait until 2031 to exchange the system. 

The presented approach will be applied to other monitoring 
systems as well. Generally, the results of this analysis help to 
identify where the system is located in its lifetime curve, to 
estimate lifetime cost, to schedule maintenance and to plan 
the replacement of the system. 
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NOMENCLATURE 

fpmh failures per million hours 
HPP Homogeneous Poisson Process 
MCF Mean Cumulative Function 
NHPP Non-homogeneous Poisson Process 
SIL Safety Integrity Level 
VGM Ventilation Gas Monitor 
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