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Introduction (Abstract)

The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5 x 1034 cm2 s’1, five times higher than the design luminosity of the LHC.
The hadronic ATLAS Tile Calorimeter (TileCal) (Figure 1) [1] is a sampling calorimeter with steel as absorber and plastic scintillators as active medium. The light
produced in the scintillating tiles is guided to photomultiplier tubes (PMTs), where analog signals are produced to be shaped and conditioned before being digitized
every 25 ns. TileCal Phase-11I Upgrade for the HL-LHC will allow the system can cope with the increased radiation levels and out of time pileup. The
upgraded system will digitize and send all the calorimeter sampled signals to the off-detector systems, where the events will be reconstructed and
shipped to the first level of trigger, all at 40 MHz rate. Consequently, development of more complex trigger algorithms will be possible with the more precise
calorimeter signals provided to the trigger system. The new hardware comprises state of the art electronics with a redundant design and radiation hard
electronics to avoid single points of failure, in addition to multi-Gbps optical links for the high volume of data transmission and Field Programmable Gate Arrays
(FPGASs) to drive the logic functions of the off- and on-detector electronics. A hybrid demonstrator prototype module containing the new calorimeter module
electronics, but still compatible with the present system was assembled and inserted in ATLAS during June 2019, so that the Phase-11I system can be tested in |
real ATLAS conditions.

The Demonstrator read-out system.

The Demonstrator system [1] will continuously sample data of two digitized gains of up to 48 TileCal PMTs at 40 MHz (Figure 2). The Demonstrator

> 12 Photomultiplier (PMTs) to turn light pulses to electric signals, .

> 12 Front-End Boards (FEBs) to shape and condition the PMT signals,

> An Adder based board to group the PMTs in cell pseudo-projective towers and
send analogue sums to the legacy L1Calo trigger system. .

> a Mainboard (MB) to continuously sample and digitize two gains of PMT signals, *

> a Daughterboard (DB) to distribute LHC synchronized timing, configuration and*,
control to the front-end, and continuously read-out of the digital data from all the
MB channels to the off-detector systems via multi-Gbps optical links.
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The data is sent off-detector to be stored in pipelines, reconstructed and triggered-out by: 5
> Tile Preprocessors (TilePPr) that receives legacy TTC (Timing Trigger and
Control) commands and triggers, DCS (Detector Control Systems) commands, and
sends the triggered data to the legacy ROD (Read Out Driver)
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