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I
n the standard model of particle physics (SM)1–4, three lepton 
families (flavours) exist. The number of leptons of each family 
is conserved in weak interactions, and violation of this assump-

tion is known as lepton flavour violation (LFV). No fundamental 
principles forbid LFV processes in the SM. The phenomenon of 
neutrino oscillations, where neutrinos (the neutral leptons) of one 
flavour transform into those of another5,6, indicates that neutrinos 
have mass and LFV processes do occur in nature. The mechanisms 
responsible for neutrinos acquiring mass and weak interactions 
violating lepton flavour conservation remain unknown. More 
experimental data are needed to constrain and guide possible gen-
eralizations of the SM explaining these phenomena.

An observation of LFV in charged-lepton interactions would be 
an unambiguous sign of new physics. In particular, decays of the 
Z boson into a light lepton (electron or muon) and a τ lepton at 
colliders are of experimental interest. The abundance of Z bosons 
produced at the Large Hadron Collider (LHC) offers the opportu-
nity to strongly constrain potential LFV Z → eτ or Z → μτ interac-
tions, in particular those proportional to the centre-of-mass energy 
of the decay7. Moreover, Z → eτ, μτ decays are less constrained by 
low-energy experiments than Z → eμ decays. According to current 
knowledge, these decays can occur via neutrino mixing but are too 
rare to be detected. Only 1 in approximately 1054 Z bosons would 
decay into a muon and a τ lepton8. An observation of such decays 
would therefore require new theoretical explanations. For example, 
theories predicting the existence of heavy neutrinos9 provide a 
fundamental understanding of the observed tiny masses and large 
mixing of SM neutrinos. In such theories, up to 1 in 105 Z bosons 
would be expected to undergo an LFV decay involving τ leptons. 
The ATLAS experiment can test the predictions of such theories 
by observing or setting ever more stringent constraints on LFV 
Z-boson decays.

Constraints on the branching fractions (B) of the LFV 
decays of the Z boson involving a τ lepton have been set by the 
experiments at the Large Electron–Positron Collider (LEP): 
B(Z → eτ) < 9.8× 10

−6 (ref. 10) and B(Z → μτ) < 1.2× 10

−5  

(ref. 11) at the 95% confidence level (CL). The ATLAS experiment12 
at the LHC has set constraints B(Z → eτ) < 5.8× 10

−5 at 95% CL 
using part of the Run 2 data and B(Z → μτ) < 1.3× 10

−5 using the 
Run 1 data and a subset of the Run 2 data13.

This work uses proton–proton (pp) collision data collected  
by the ATLAS experiment during Run 2 of the LHC, containing 
about eight billion Z-boson decays. Only events with a τ lepton  
that decays hadronically are considered. Neural network (NN) clas-
sifiers are used in a novel way for optimal discrimination of signal 
from background, and to achieve improved sensitivity in the search 
for LFV effects in the data using a binned maximum-likelihood 
fit. The result for the μτ channel is combined with a previous LHC  
Run 1 result to further improve the sensitivity. These results set  
constraints on LFV Z-boson decays involving τ leptons that super-
sede the most stringent ones set by the LEP experiments more than 
two decades ago.

The ATLAS experiment and data sample
To record and analyse the LHC pp collisions, the ATLAS experiment 
uses a multipurpose particle detector with a forward–backward 
symmetric cylindrical geometry and a near 4π coverage in solid 
angle12,14,15. It consists of an inner tracking detector surrounded by a 
superconducting solenoid, electromagnetic and hadronic calorim-
eters, and a muon spectrometer.

The search uses the complete dataset of pp collision events at 
a centre-of-mass energy of 

√

s = 13 TeV collected by the ATLAS 
experiment during LHC Run 2. This dataset was recorded using 
single-electron or single-muon triggers16 and corresponds to an 
integrated luminosity of 139 fb−1. For the search in the μτ channel, 
the results are combined with those of a previous similar search 
using pp collisions at 

√

s = 8 TeV during LHC Run 1, correspond-
ing to an integrated luminosity of 20.3 fb−1 (ref. 17).

Candidates for electrons18, muons19, jets20–22, and visible decay 
products of hadronic τ-lepton decays (τhad-vis)23,24 are reconstructed 
from energy deposits in the calorimeters and charged-particle 
tracks measured in the inner detector and the muon spectrometer.
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Electron candidates are required to pass the Medium 
likelihood-based identification requirement18 and have pseudora-
pidity |η| < 1.37 or 1.52 < |η| < 2.47. Muon candidates are required 
to pass the Medium identification requirement19 and have |η| < 2.5. 
Both the electron and muon candidates must have transverse 
momentum pT > 30 GeV and satisfy the Tight isolation require-
ment18,19. The lower bounds on the electron and muon transverse 
momenta are driven by the acceptance of the trigger selection.

Quark- or gluon-initiated particle showers (jets) are recon-
structed using the anti-kt algorithm20,21 with the radius parameter 
R = 0.4. Jets fulfilling pT > 20 GeV and |η| < 2.5 are identified as con-
taining b hadrons if tagged by a dedicated multivariate algorithm25.

The τhad-vis candidates are reconstructed from jets with pT > 10 GeV, 
|η| < 1.37 or 1.52 < |η| < 2.5, and one or three associated tracks, 
referred to as ‘1-prong’ (1P) and ‘3-prong’ (3P), respectively. The 
τhad-vis identification is performed by a recurrent NN algorithm23, 
which uses calorimetric shower shapes and tracking information to 
discriminate true τhad-vis candidates from fake candidates from quark- 
or gluon-initiated jets. The τhad-vis candidates are required to pass the 
Tight identification selection, which has an efficiency of 60% (45%) 
for true 1P (3P) τhad-vis candidates, constant in the τhad-vis candidates’ 
transverse momentum, and a misidentification rate of 1 in 70 (700) 
for fake 1P (3P) candidates in dijet events. Dedicated multivariate 
algorithms are used to further discriminate between τhad-vis and elec-
trons, and to calibrate the τhad-vis energy24. The τhad-vis candidate with 
the largest pT in each event is the selected candidate and is required 
to have pT > 25 GeV. Based on simulation, in Z → ℓτ decays, the τhad-vis 
candidate is expected to be correctly selected 98% of the time.

The missing transverse momentum (Emiss

T

) is calculated as 
the negative vectorial sum of the pT of all fully reconstructed and 
calibrated physics objects26,27. The calculation also includes inner 
detector tracks that originate from the vertex associated with the 
hard-scattering process but are not associated with any of the recon-
structed objects. The missing transverse momentum is the best 
proxy for the total transverse momentum of undetected particles 
(in particular neutrinos) in an event.

Search strategy
The Z → ℓτ → ℓτhad-vis + ν (ℓ = light lepton, e or μ) signal events have 
a number of key features that can be exploited to separate them 
from the SM background events. The signal events are character-
ized by their unique final state, which has exactly one ℓ and one τ 
lepton, with the invariant mass of the pair being compatible with the 
Z-boson mass. The ℓ and τ leptons carry opposite electric charges 
and are emitted approximately back to back in the plane transverse 
to the proton beam direction. Since the τ lepton is typically boosted 
due to the large difference between its mass and the mass of its par-
ent Z boson, the neutrino from its decay is usually almost collinear 
with the visible τ-decay products. The neutrino escapes detection 
and is reconstructed as part of the Emiss

T

 of the event. In a signal 
event, this is the only major source of Emiss

T

.

The major background contributions for this search are as fol-
lows: lepton-flavour-conserving Z → ττ → ℓτhad-vis + 3ν decays, where 
one of the τ leptons decays leptonically and the other hadronically; 
Z → ℓℓ decays, where one of the light leptons is misidentified as the 
τhad-vis candidate; events with a quark- or gluon-initiated jet that is 
misidentified as the τhad-vis candidate. The last of these are hereaf-
ter referred to as events with ‘fakes’ and are mostly W(→ ℓν) + jets 
events and purely hadronic multijet events. Other SM processes 
with a real ℓτhad-vis final state, such as decays of a top–antitop-quark 
pair, two gauge bosons or a Higgs boson, and those with a real τhad-vis 
and a jet misidentified as a light lepton, such as W(→ τν) + jets,  
are considered, although their contribution to the overall back-
ground is minor.

The signal and background events are separated by using a set  
of event selection criteria that help to define a signal-enhanced  

sample, referred to as the signal region (SR). The main selection 
criteria are listed in Table 1 and will be explained in the following. 
They are primarily based on the multiplicity of reconstructed par-
ticle candidates and the event topology, in particular the transverse 
masses (mT), which are defined as

m

T

(X, Emiss

T

) ≡

√

2p

T

(X)Emiss

T

(

1− cos(ϕ
X

− ϕ

E

miss

T

)
)

(1)

where X is either a light lepton or a τhad-vis candidate and ɸ denotes 
the azimuthal angle. A schematic of the expected signal and back-
ground topologies is described in Extended Data Figs. 1 and 2.

NN binary classifiers are used to distinguish signal events from 
W + jets , Z → ττ and Z → ℓℓ background events. The NNs are 
trained on simulated events (‘Signal and background predictions’). 
Each individual NN is optimized to discriminate against a particu-
lar background process in a given decay channel. The input to these 
NNs is a mixture of low-level and high-level kinematic variables, 
as detailed in Methods. The low-level variables are the momentum 
components of the reconstructed ℓ, τhad-vis candidate and Emiss

T

. The 
high-level variables are kinematic properties of the ℓ–τhad-vis–E

miss

T

 
system, such as the collinear mass mcoll(ℓ, τ), defined as the invari-
ant mass of the ℓ–τhad-vis–ν system, where the ν is assumed to have 
a momentum that is equal in pT and ϕ to the measured Emiss

T

 and 
equal in η to the τhad-vis momentum. Given the finite training-sample 
size, the high-level variables help the NNs to converge faster, 
while the NNs exploit any residual correlations between the  
low-level variables.

The outputs from the individual NNs are numbers between 0 
and 1 that reflect the probability for an event to be a signal event; 
they are combined into a final discriminant, hereafter referred to 
as the ‘combined NN output’. The combination is parameterized by 
weights associated with each individual NN and optimized for dis-
crimination among various background processes distributed dif-
ferently along the range of combined NN output values, as detailed 
in Methods. This allows the maximum-likelihood fit to determine 
the background contributions more precisely, which ultimately 
improves the sensitivity.

Events classified by the NNs as being background-like are 
excluded from the SR, as indicated in Table 1. The signal accep-
tance times selection efficiency in the SR is 2.7% for the eτ chan-
nel and 3.0% for the μτ channel, as determined from simulated  
signal samples.

Table 1 | Main selection criteria for events in the signal region

Main selection criteria Purpose

At least one τhad-vis candidate Select events with ℓ–τ pair 
candidateExactly one isolated light lepton

Opposite-sign charged ℓ–τhad-vis pair

m

T

(τ

had−vis

, E

miss

T

) < 35GeV

Reject Z → ττ and W + jets events

mvis(ℓ,τhad-vis) > 60 GeV Invariant mass of the ℓ–τhad-vis pair. 
Reject events incompatible with 
ℓ–τ pairs from Z-boson decays

No tagged b-hadron jets Reject t̄t  and single-top-quark 
events

Combined NN output > 0.1 (0.2) for 
events with 1P (3P) τhad-vis candidates

Reject background-like events

NN (optimized for signal versus 
Z → ℓℓ) output > 0.2

Ensure orthogonal region for 
correcting Z → ℓℓ simulation  
(ℓ misidentified as 1P τhad-vis 
candidate, see section ‘Signal and 
background predictions’)
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Signal and background predictions
Predictions for signal and background contributions to the event 
yield and kinematic distributions in the SR are based partly on 
Monte Carlo (MC) simulations and partly on the use of data in 
regions that are enriched in background events and do not overlap 
with the SR.

The signal events were simulated using PYTHIA 828 with matrix 
elements calculated at leading order (LO) in the strong coupling 
constant (αs). Parameter values for initial-state radiation, multi-
parton interactions and beam remnants were set according to the  
A14 set of tuned parameters (tune)29 with the NNPDF 2.3 LO parton  

distribution function (PDF) set30. Nominal signal samples were 
generated with a parity-conserving Zℓτ vertex and unpolarized τ 
leptons. Scenarios where the decays are maximally parity-violating 
were considered by reweighting the simulated events using 
TAUSPINNER31. The event weight was computed as the probabil-
ity of occurrence of each generated signal event, based on its kine-
matics, when assuming a specific τ-polarization state (left-handed  
or right-handed).

Background Z → ττ events were simulated with the SHERPA 
2.2.132 generator using the NNPDF 3.0 NNLO PDF set33 and next- 
to-leading-order (NLO) matrix elements for up to two partons,  
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Fig. 1 | Distributions of the combined NN output in control regions and validation regions. a,b, CRZττ for the μτ channel with 1P (a) and 3P (b) τhad-vis 

candidates. c,d, Same-sign validation region (VRSS) for the eτ channel for events with 1P (c) and 3P (d) τhad-vis candidates. The expected contributions are 

determined in a fit to data (‘Constraints on B(Z → ℓτ)’). The panels below each plot show the ratios of the observed yields to the best-fit background 

yields. The hatched error bands represent a one standard deviation of the combined statistical and systematic uncertainties. The statistical uncertainties 

on the data are shown as vertical bars. The last bin in each plot includes overflow events. Similarly good agreement is observed in the same-sign validation 

region for the μτ channel and CRZττ for the eτ channel, which are not shown here.
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and LO matrix elements for up to four partons, calculated with 
the COMIX34 and OPENLOOPS35–37 libraries. They were matched 
with the SHERPA parton shower38 using the MEPS@NLO prescrip-
tion39–42 with the default SHERPA tune. This set-up follows the 
recommendations of the SHERPA authors. Background Z → ℓℓ 
events were simulated using the POWHEG-BOX43 generator with 
NLO matrix elements and interfaced to PYTHIA 8 to model the 
parton showers, hadronization and underlying events. All MC 
samples include a detailed simulation of the ATLAS detector with 
GEANT 444, to produce predictions that can be compared with the 
data. Furthermore, simulated inelastic pp collisions, generated with 
PYTHIA 8 using the NNPDF 2.3 LO PDF set and the A3 tune45 were 
overlaid on the hard-scattering events to model the additional pp 
collisions occurring in the same proton bunch crossing. All simu-
lated events were processed using the same reconstruction algo-
rithms as used for data.

The simulation of Z-boson production is improved with a cor-
rection derived from measurements in data. The simulated pT spec-
tra of the Z boson are reweighed to match the unfolded distribution 
measured by ATLAS in ref. 46. This improves the predictions of 
signal, Z → ττ and Z → ℓℓ events, which are simulated at different 
orders in αs using different generators. It also reduces the uncertain-
ties related to missing higher orders in αs.

The predicted overall yields of signal and Z → ττ events are 
determined by a binned maximum-likelihood fit to data (see 
next section) in the SR and in a control region enhanced in 
Z → ττ → ℓτhad-vis + 3ν events (CRZττ), using an unconstrained fit 
parameter, which accounts for theoretical uncertainties in the total 
Z-boson production cross-section (σZ), as well as the experimen-
tal uncertainties related to the acceptance of the common ℓτhad-vis 
final state. The selection criteria for events in the CRZττ are the 
same as those for events in the SR, except that events are required 
to have 

m

T

(τ
had−vis

, E

miss

T

) > 35GeV

, m
T

(ℓ, Emiss

T

) < 40GeV and 
70 GeV < mcoll(ℓ, τ) < 110 GeV.

A much smaller contribution to the total background originates 
from Z → ℓℓ events. Their predicted overall yield is based on the 
measured value of σZ (ref. 47) times the measured integrated lumi-
nosity. The uncertainty in the measurement is taken into account. 
The predicted rates of misidentifying electrons and muons in 

Z → ℓℓ events as 1P τhad-vis candidates are corrected using data in a 
region enriched in Z → ℓℓ events and orthogonal to the SR, where 
the last selection criterion in Table 1 is inverted and the outputs of 
the NN classifiers optimized to reject Z → ττ, and W + jets events are 
required to be greater than 0.8. The corrections are derived as func-
tions of pT and |η| of the τhad-vis candidate. Statistical uncertainties in 
the correction are considered.

Events with fakes are one of the dominant contributions to the 
background, and are estimated from data using the ‘fake-factor 
method’, which is described in ref. 13. A fake factor is defined as the 
ratio of the number of events with a fake τhad-vis candidate passing 
the Tight τhad-vis identification requirement to those failing it. Four 
fake factors, one for each of the most important backgrounds with 
fakes (W(→ ℓν) + jets, multijet, Z(→ ℓℓ) + jets and tt̄  events), are 
measured in data in four corresponding fakes-enriched regions. 
Each of these regions has a dominant contribution from one of the 
four targeted backgrounds with fakes. These regions do not overlap 
with any of the regions used in the final maximum-likelihood fit. 
The purity of the multijet-enriched region is improved by introduc-
ing two additional selection criteria: events must have a same-sign 
charged ℓ–τhad-vis pair and m

T

(ℓ, Emiss

T

) < 40GeV. The fake factors 
are measured as functions of the transverse momentum of the τhad-vis 
candidate, separately for eτ and μτ events and for events with 1P or 
3P τhad-vis candidates.

The number of events with a fake 1P or 3P τhad-vis candidate in 
a given pT range in the SR or CRZττ is estimated by the number 
of events with a τhad-vis candidate failing the Tight identification 
requirement, but otherwise satisfying all other selection criteria for 
that region, multiplied by an average of the fake factors. To calcu-
late this average, the fake factors are summed with weights equal to 
the expected relative contribution of the corresponding background 
to the total yield of events in the region with the inverted identi-
fication requirement. This approach is used to model the kine-
matic properties of the events with fakes. The total predicted yields 
of these events in the SR and CRZττ are instead determined by a 
maximum-likelihood fit to data (see next section), separately for 
events with 1P and 3P τhad-vis candidates. This approach avoids the 
uncertainties associated with the simulation of events with fakes, 
and makes full use of the large amount of data collected.

The remaining background processes (summarized as ‘Others’ 
in the following) have relatively small contributions in the SR and 
are estimated using simulations. They include events from the pro-
duction and decays of top quarks, pairs of gauge bosons, the Higgs 
boson and W(→ τν) + jets. The yields of these events are normalized 
to their theoretical cross-sections.

The modelling of the estimated background is validated using 
events in regions where a possible contamination from signal is 
negligible. Especially important to the search is the modelling of the 
combined NN output distribution of Z → ττ events and events with 
fakes. This is validated by comparing the predicted distributions 
with data in the CRZττ and in a region similar to the SR, but with 
events that have same-sign charged ℓ–τhad-vis pairs, as shown in Fig. 1.

Constraints on B(Z → ℓτ)
A statistical analysis of the selected events is performed to assess 
the presence of LFV signal events. The statistical analysis method is 
detailed in Methods. A simultaneous binned maximum-likelihood 
fit to the combined NN output in the SR and mcoll(ℓ, τ) in the CRZττ 
is used to constrain uncertainties in the models and extract evi-
dence of a possible signal. The fit is performed independently for 
the eτ and μτ channels. Events with 1P and 3P τhad-vis candidates are 
considered separately. Hypothesis tests, in which a log-likelihood 
ratio is used as the test statistic, are used to assess the compatibility 
between the background and signal models and the data.

There are four unconstrained parameters in the fits: two of them 
determine the overall yields of events with fake 1P τhad-vis or 3P τhad-vis 

Table 2 | Summary of the uncertainties and their impacts on the 
measured branching fraction B(Z → ℓτ)

Source of uncertainty uncertainty on 
B(Z → ℓτ ) (×10−6)

eτ μτ

Statistical ±3.5 ±2.8

Systematic ±2.3 ±1.6

 τ leptons ±1.9 ±1.5

  Energy calibration ±1.3 ±1.4

  Jet rejection ±0.3 ±0.3

  Electron rejection ±1.3

 Light leptons ±0.4 ±0.1

 E

miss

T

, jets and flavour tagging ±0.6 ±0.5

 Z-boson modelling ±0.7 ±0.3

 Luminosity and other minor backgrounds ±0.8 ±0.3

Total ±4.1 ±3.2

The statistical uncertainties include those in the determination of the yields of the events with 

fakes and from Z → ττ or Z → ℓτ decays. The uncertainties related to light leptons include those in 

the trigger, reconstruction, identification and isolation efficiencies, as well as energy calibrations. 

The uncertainties related to jets and Emiss

T

 include those in energy calibration and resolution. The 

uncertainties related to the Z-boson modelling include those in the correction of the simulated 

transverse momentum and the measured production cross-section of the Z boson.
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candidates, one determines σZ times the overall acceptance and 
reconstruction efficiency of the ℓτhad-vis final state in Z → ττ and sig-
nal events, and the last one, the parameter of interest, determines 
the LFV branching fraction B(Z → ℓτ) by modifying an arbitrary 
pre-fit signal yield.

Constrained parameters are also introduced to account for sys-
tematic uncertainties in the signal and background predictions. 
In the case of no significant deviations from the SM background, 
exclusion limits are set using the CLS method48.

Systematic uncertainties in this search include uncertainties  
in simulated events in the modelling of trigger, reconstruction, 

identification and isolation efficiencies, as well as energy calibra-
tions and resolutions of reconstructed objects. Conservative theory 
uncertainties ranging between 4% and 20% are also assigned to the 
predicted cross-sections used for the estimation of minor back-
ground processes. These uncertainties are not assigned to events 
with fakes or Z-boson decays, whose yields are determined from 
data. These events constitute only a small fraction of the back-
ground events in the SR. The dominant uncertainties in this search 
are those in the overall yields of events with fakes, which are pre-
dominantly of statistical nature, and those in the τhad-vis energy cali-
bration, which are independent between 1P and 3P τhad-vis candidates 
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Fig. 2 | Distributions of the combined NN output in the signal region. a,b, eτ events with 1P (a) and 3P (b) τhad-vis candidates. c,d, μτ events with 1P (c) and 

3P (d) τhad-vis candidates. The expected contributions are determined in the fit to data. The expected signal, normalized to B(Z → ℓτ) = 5× 10

−4, is shown 

as a dashed red histogram in each plot. The panels below each plot show the ratios of the observed yields (dots) and the best-fit background-plus-signal 

yields (solid red line) to the best-fit background yields. The hatched error bands represent a one standard deviation of the combined statistical and 

systematic uncertainties. The statistical uncertainties on the data are shown as vertical bars. The last bin in each plot includes overflow events.
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and constrained by the fit of the collinear mass spectrum to the data 
in the CRZττ. A summary of the uncertainties and their impact on 
the best-fit LFV branching fraction is provided in Table 2, which 
shows that the sensitivity of the search is primarily limited by the 
available amount of data.

The best-fit expected and observed distributions of the com-
bined NN output in the SR are shown in Fig. 2. The best-fit yields of 
Z → ττ and events with fakes are close to the pre-fit predicted values 
and are determined with a relative precision of 2–4%. Table 3 shows 
the best-fit expected background and signal yields and the observed 
number of events in the SR of the eτ and μτ channels with an addi-
tional requirement of a combined NN output > 0.7 to consider the 
most signal-like events.

The best-fit amount of Z → ℓτ signal corresponds to the branch-
ing fractions B(Z → eτ) = (−0.1± 3.5(stat)± 2.3(syst))× 10

−6 
and B(Z → μτ) = (4.3± 2.8(stat)± 1.6(syst))× 10

−6. The 
positive best-fit value of B(Z → μτ) is related to a small excess of 
observed events relative to the background-only hypothesis. This 
excess has a significance of 0.9 standard deviations when the events 
with 1P and 3P τhad-vis candidates are fitted simultaneously.

No statistically significant deviation from the SM prediction is 
observed, and upper limits on the LFV branching fractions are set. 
For the μτ channel, a more stringent upper limit is set by combin-
ing the likelihood function of the presented measurement and a 
similar measurement done with ATLAS Run 1 data17. Systematic 

uncertainties from the two measurements are considered uncor-
related in the combined likelihood function. The upper limits are 
shown in Table 4 for LFV decays with different assumptions about 
the τ-polarization state. In the scenario where the τ leptons are 
unpolarized, the observed upper limits at 95% CL on B(Z → eτ) 
and B(Z → μτ) are 8.1 × 10−6 and 9.5 × 10−6, respectively.

In conclusion, these results from the ATLAS experiment at the 
LHC set stringent constraints on LFV Z-boson decays involving τ 
leptons (using only their hadronic decays), superseding the most 
stringent ones set by the LEP experiments more than two decades 
ago. The precision of these results is mainly limited by statistical 
uncertainties.
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Methods
Neural network classifiers. Several binary NN classifiers are trained for  
both the eτ and μτ channels to discriminate signal from the three major 
backgrounds: W + jets, Z → ττ and Z → ℓℓ. They are referred to as NNWjets,  
NNZττ and NNZℓℓ, respectively.

The NNs are trained using simulated events selected with the same criteria 
as those used in the SR, except that the cuts on mvis(ℓ, τ) and the NN output are 
omitted, and real τhad-vis candidates from Z → ℓτ and Z → ττ are required to pass 
less stringent identification criteria so as to increase the training sample size. For 
the Z → ℓℓ process, only events where the τhad-vis candidate is a misidentified light 
lepton are used. For the W + jets process, jets misidentified as τhad-vis are modelled 
by simulations. Different NNs are trained separately for eτ and μτ events as well as 
for events with 1P or 3P τhad-vis candidates. To increase the signal sample size, the 
Z → eτ and Z → μτ samples are combined and used for training in both channels, 
assuming equivalent event topology when exchanging e and μ. Owing to the low 
expected yield of Z → ℓℓ events with 3P τhad-vis candidates, no classifier is trained to 
discriminate them from background.

A mixture of low-level and high-level kinematic variables are used as input to 
the NNs. The low-level variables include the four-momenta of the reconstructed 
ℓ (refs. 18,19), τhad-vis candidate23,24 and Emiss

T

 (refs. 26,27). To remove known spatial 
symmetries for optimal training, the low-level variables are transformed in a 
way that preserves the Lorentz invariance before they are fed into the NNs. The 
transformation consists of the following steps: first, the ℓ–τhad-vis–E

miss

T

 system is 
boosted in a direction in the plane transverse to the beam line such that the total 
transverse momentum of the system is zero; the system is then rotated about 
the z axis such that the direction of Emiss

T

 is aligned with the x axis; if the τhad-vis 
candidate’s momentum has a negative z component, the entire system is rotated 
about the new x axis by 180°. After the transformation, only six independent 
non-vanishing components are left (the τhad-vis candidate is assumed to have zero 
rest mass), which are the inputs to the NNs.

The high-level variables include Δα, which is a kinematic discriminant 
defined7 as

Δα =
m

2

Z

− m

2

τ

2p(ℓ) × p(τ

had−vis

)
−

p

T

(ℓ)

p

T

(τ

had−vis

)
(2)

where mZ and mτ are the nominal masses of the Z boson and τ lepton, respectively, 
and p denotes four-momentum. It is specifically defined to test the assumptions 
that the missing momentum of the event is collinear with the τhad-vis candidate, and 
that the τ and light leptons in the event are decay products of an on-shell Z boson. 
For a signal event, where these assumptions are approximately true, it is expected 
that Δα ≈ 0. Meanwhile, for an SM background event, the value is expected to 
deviate from zero in general. The other high-level variables are the invariant mass 
of the ℓ − τhad-vis system, the collinear mass mcoll(ℓ, τ) and the invariant mass of the 
light lepton and the track associated with the τhad-vis candidate (only used by the 
Z → ℓℓ classifier).

The training and optimization of the NN classifiers are performed using the 
open-source software package KERAS49. All of the NNs used in the analysis share 
the same architecture. Each NN consists of an input layer, two hidden layers of 20 
nodes each, and an output layer with a single node. Each layer is fully connected 
to the neighbouring layers. Low-level and high-level variables are treated in the 
same way in the input layer. The hidden-layer nodes use rectified linear activation 
functions, while the output node uses a sigmoid activation function. The NNs are 
trained using the Adam algorithm50 to optimize the binary cross entropy. All the 
NNs are trained with a batch size of 256 and 200 epochs. The number of hidden 
layers, the number of nodes per layer, the training batch size and the learning 
rate parameter of the optimizer are simultaneously chosen by maximizing the 
area under the expected receiver operating characteristic curve. The optimization 
is done with a grid scan. No regularization or dropout is added, and no sign of 
overtraining is observed. For other configurations and hyperparameters that have 
not been mentioned, the default settings in KERAS 1.1.0 are used.

Each NN classifier outputs a score between 0 and 1 for each event, where a 
higher score indicates that the event is more signal-like. The output scores from 
the different classifiers are combined into the final discriminant (combined NN 
output) using the formula

Combined NN output = 1 −

√

∑

b

w

b

× (1 − NN

b

output)2
∑

b

w

b

(3)

where b = Wjets, Zττ, Zℓℓ and wb are constant parameters. Output scores for 
events with 1P τhad-vis candidates and those with 3P τhad-vis candidates are combined 
separately. The summation is over Wjets, Zττ and Zℓℓ for events with 1P τhad-vis 
candidates, and only over Wjets and Zττ for events with 3P τhad-vis candidates.

By construction, the combined NN output ranges between 0 and 1, where 0 
represents the most background-like (and 1 the most signal-like) event possible. 
The choice of values of wb affects the expected sensitivity of the analysis because 
they change how events from the different background processes are distributed 
along the range of combined NN output values, and thus impact the ability of  

the binned maximum-likelihood fit to determine the background contributions. 
The values of wb are chosen with a grid scan to minimize the expected upper limit 
on the branching fraction in the absence of a signal. The chosen values have the 
ratio wZττ:wWjets:wZℓℓ = 1.0:1.5:0.33. As could be expected, the optimized weights 
loosely reflect the impact of the uncertainties in the corresponding backgrounds on 
the determination of the signal branching fraction.

Maximum-likelihood fit. Binned maximum-likelihood fits are implemented using 
the statistical analysis packages ROOFIT51, ROOSTATS52 and HISTFITTER53. 
The expected binned distributions of the combined NN output in the SR and 
the collinear mass in the CRZττ are fit to data to extract evidence of signal 
events. Fitting the data in the CRZττ and in part of the SR with low combined 
NN output values (where no signal is expected) benefits the overall sensitivity to 
the signal, because it reduces the uncertainties of the background model in the 
high combined NN output value region, where most of the signal is expected. 
Owing to the differences in background composition, acceptance and efficiencies, 
regions with 1P and 3P τhad-vis candidates are fit separately but simultaneously. 
The probabilities of compatibility between the data and the background-only or 
background-plus-signal hypotheses are assessed using the modified frequentist 
CLS method48, and exclusion upper limits on B(Z → ℓτ) are set by the inversion of 
these hypothesis tests.

The background-plus-signal model has four unconstrained parameters before 
the fit. Two of the parameters determine the overall yields of events with 1P and 
3P fakes separately. A third parameter determines σZ times the overall acceptance 
and reconstruction efficiency of events with a true ℓτhad-vis final state. It is applied to 
the normalizations of both the signal and Z → ττ events to ensure that the same σZ 
times acceptance is estimated for both processes. The last unconstrained parameter 
is the parameter of interest μsig, which controls the normalization of signal events. 
Given the similarity between the signal and Z → ττ → ℓτhad-vis + 3ν final states and 
that both processes are estimated with the same σZ and acceptance and efficiency 
corrections, this choice of parameterization reduces the impact on the determined 
B(Z → ℓτ) from detector effects and uncertainties in predicting σZ. The parameter 
of interest represents

μ

sig

=
B(Z → ℓτ)

B
pre-fit

(Z → ℓτ)
(4)

where B
pre-fit

(Z → ℓτ) is an arbitrary branching fraction to which the signal 
prediction is normalized. Although the physical branching fraction must be 
positive, the parameter of interest in the fit is not constrained to be positive.

Systematic uncertainties are represented by nuisance parameters (NPs) with 
Gaussian constraints in the likelihood function. The impact of uncertainties on 
both the shape and normalization of the predicted distributions are taken into 
account. Uncertainties in the energy calibration and resolution as well as in the 
trigger, reconstruction, identification and isolation efficiencies of jets, electrons, 
muons, τhad-vis and Emiss

T

 are considered. Theoretical uncertainties in the production 
cross-sections affect only the predictions of the minor backgrounds, because 
the Z → ττ and signal yields are determined in the maximum-likelihood fit to 
data and the Z → ℓℓ yield is determined by the measured value of σZ. Statistical 
uncertainties in the determination of the fake factors are also considered. They are 
modelled by one NP per pT bin in which the fake factors are measured. As noted in 
the section ‘Constraints on B(Z → ℓτ)’ the dominant uncertainties in the analysis 
are the statistical uncertainties in determining how many events have fakes and the 
systematic uncertainties in the reconstructed τhad-vis energy.

For the μτ channel, the likelihood functions of the presented measurement 
and of the measurement in ref. 17 are combined. As the two measurements are 
statistically uncorrelated and the predictions are based on different methods, 
NPs in the individual likelihood functions are considered uncorrelated in the 
combination. The method of combination is the same as in ref. 13.

Data availability
The experimental data that support the findings of this study are available in 
HEPData with the identifier https://www.hepdata.net/record/96390. The ATLAS 
software is available at the following link: https://gitlab.cern.ch/atlas/athena.
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Extended Data Fig. 1 | Schematic representation of a typical event selected in the Sr. The topology as seen in the plane transverse to the beam line is 

shown. (a) A signal Z → ℓτ event. (b) A Z → ττ event. (c) A W + jets event. The green arrows represent reconstructed light leptons (ℓ). The blue triangles 

represent the τhad-vis candidates. The light blue dashed lines represent neutrinos that escape detection and are reconstructed as (part of) the missing 

transverse momentum of the event.
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Extended Data Fig. 2 | Distributions of m
T

(τ
had−vis

, E

miss

T

) versus m
T

(μ, E

miss

T

) of events selected in the Sr. (a) Simulated Z → μτ events. (b) Simulated 

Z → ττ events. (c) Events measured in data in regions where quark- or gluon-initiated jets are misidentified as τhad-vis candidates (events with jet → τhad-vis 

fakes, see ‘Signal and background predictions’ section) in the μτ final state. The colour map represents the fraction of events in each bin.
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