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A B S T R A C T

We describe here a novel concept of a gantry for hadron therapy, based on the use of a toroidal field
configuration. The main features of this concept are that the gantry is not rotating, and is operated in
steady-state We propose that is built based on superconducting magnets, reaching field levels not achievable
using normal conducting iron-dominated magnets. The simplification resulting from the specific magnetic
configuration, and the scale reduction that can be achieved using high-field superconducting magnets, bear
a definite potential for significant reduction of dimensions and mass. In this paper we introduce the concept
of the toroidal gantry, discussing the features of beam transport in a toroidal field. We then provide general
considerations on the design of the coil, and analytical scaling of relevant indicators such as forces and stored
energy. Finally, we give an example of practical layouts for a proton gantry that can be used as a benchmark
for comparison with other designs.
. Introduction

Hadron therapy refers to a medical treatment technique that uses
adron beams (i.e. protons and ions), profiting from the Bragg peak
o deliver localized energy that suppresses cancerous cells, sparing the
eighboring healthy tissues from unwanted radiation. Hadron therapy
enters, and especially those based on ion beams, tend to be relatively
arge, complex and costly installations. This is why, in spite of the
otential benefits [1–5], the penetration of this medical technology is
till limited. Several initiatives, past, present and future, are dedicated
o reducing the size and cost of the accelerator [6,7], that is the first
ey element and cost driver of a hadron therapy center. Beam delivery,
hich is the focus of this paper, is the second key element of the

nstallation [8–10], and also a significant cost driver [11].
In general, the beam delivery itself can consist of one or more fixed

ransfer lines [12], or it can include a gantry, a transfer line mounted on
large mechanical structure that rotates around the patient and allows

adiation from multiple directions [13].
The magnets of a gantry are required to rotate with high precision,

hich results in massive mechanical structures. In addition, the field
roduced by the gantry magnets needs to be variable to some degree,
s the magnet bore size alone does not allow accepting the desired full
nergy range.

While gantries for protons are relatively widespread, gantries for
ons, requiring the largest magnets, remain a spectacular engineering
eat. Only two such gantries have been built and are operating to date.
he one hosted at the Heidelberg Ion Therapy (HIT) Center is based on

∗ Corresponding author.
E-mail address: Luca.Bottura@cern.ch (L. Bottura).

resistive magnets, and entails a structure of 14 meters in diameter, 22 m
in length, and more than 600 tons of weight [14]. A second gantry for
ions is in use at the Heavy Ion Medical Accelerator in Chiba (HIMAC),
based on Nb–Ti combined functions superconducting magnets, and has
an outer diameter of 9 m, a length of 13 m and a mass of approximately
300 tons [15].

The social and commercial opportunity, and the technological chal-
lenge have motivated a number of studies of different and optimized
solutions for ion gantries. Alternative transfer line designs have been
considered, to increase acceptance and avoid ramping the magnets
[16,17], or to reduce the lattice dimensions by using combined function
magnets [18–20]. Weight reduction has been pursued by using toroidal
magnets, exploiting the flux return properties to reduce the mass of a
rotating gantry [21]. A completely different configuration, consisting
of a structure that rotates the patient room around a rotating bending
magnet, was studied up to the conceptual design level [22]. In any
of these solutions, the concept entails a rotating transfer line and a
heavy mechanical structure. Finally, a relevant example in the context
of this manuscript is the Piotron, built at PSI in 1980, where tori of
superconducting coils were used to focus pions for therapy [23,24].

In this paper we present a new configuration for the beam delivery
system, based on a steady-state, axis-symmetric field configuration. The
basic idea is to use fixed toroidal magnets, producing the axis-symmetric
(or periodical axis-symmetric) field configuration that can bend beams
from several directions onto the patient location. In principle, neither
magnets nor patient need to be moved. In addition, the field of the
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magnets of this toroidal gantry is static. A single upstream vector magnet
provides the beam steering, which depends on the beam energy and
direction of irradiation.

The system we propose has several advantages. The first benefit is
that the mechanical structure of the steady and axis-symmetric config-
uration is much simpler and lighter than a rotating gantry. The magnet
is fixed in space and operates in steady state, so it is appropriate to
conceive the use of superconducting materials for the toroidal magnet,
generating significantly higher field than existing normal-conducting
solutions. This has the further potential of a very significant reduction
of the footprint. Last but not least, the steady state nature of the
gantry would allow simultaneous irradiations from different directions
at different energies, with the only limitation imposed by the ability of
the accelerator to deliver such beams, and the vector magnet to follow
the desired changes.

Below we detail the concept of such system, its basic properties,
configuration and possible alternatives. We start with the basic beam
transfer properties of toroidal fields, and then describe the concept
of the toroidal gantry system. We further develop on specific features
that are important to the implementation of the concept, such as coil
geometry, grading and axial symmetry. We finally give an example of
a compact design, based on requirements applicable to proton therapy.
The intention of this paper is to document the concept and identify
the main features and issues. We defer to later work the engineering
design of the system, including matters of beam dynamics [25] and
actual implementation in a therapy center.

2. Beams in ideal toroidal fields

To discuss the effect of toroidal field on beams we consider here
the ideal, axis-symmetric field generated by a thin toroidal current
winding. We define the symmetry axis of the torus to be the z direction.
The field inside the torus is directed along the angle 𝜃, and normal to
he radius R, measured from the axis of the toroid (standard cylindrical
oordinates convention is used). The ideal field has module given by:

𝜃 =
𝐵𝑟𝑒𝑓𝑅𝑟𝑒𝑓

𝑅
(1)

where 𝐵𝑟𝑒𝑓 and 𝑅𝑟𝑒𝑓 are constants determined by the location and
intensity of the current in the winding. 𝐵𝑟𝑒𝑓 is a reference field, at radius
𝑅𝑟𝑒𝑓 . The field is zero outside the toroidal winding.

We now consider a single particle traveling in the (R, z) plane, at
an arbitrary angle 𝜃, entering the region of toroidal field, and neglect
the presence of the toroidal winding. By pure intuitive considerations,
we see that the toroidal field (with correct polarity and strength) will
bend the particle towards its axis, irrespective of the angle 𝜃. The kick
seen by the particle will depend on the integrated field strength, i.e. the
field intensity and dimension of the toroidal winding. The effect of a
toroidal field is hence to focus single particles traversing the field region
towards the axis of symmetry.1

To develop further on this property, and provide a quantitative
demonstration, we take some simple limiting cases. We consider first
that the ideal toroidal field covers a rectangular region of space 𝑧min <
z < 𝑧max and R > 𝑅0, and limit the discussion to a particles of charge q
entering the toroidal field area with momentum p in the (R, z) plane.
The field is generated by a thin and immaterial sheet of current. The
particle trajectory can be tracked using the simple relation:

𝐵𝜃𝜌 =
𝑝
𝑞

(2)

here 𝜌 is the curvature radius in the (R, z) plane. The momentum is
efined using the relativistic relation:

= 𝐸0
√

𝛾2 − 1 (3)

1 Note that the focusing effect quoted here refers to the fact that the toroidal
field causes a convergence of the single particles towards the axis of the toroid.
Focusing in the sense of beam dynamics, and more in general matters of beam
optics in a toroidal field are described in a companion paper [25].
 s

2

Fig. 1. Effect of a thin toroidal field lens on particles with the same momentum,
traveling in the (R, z) plane, either parallel to each other (top), or originating at the
same vertex but diverging (bottom). The current sheet is represented by the rectangular
contour. Ideal toroidal field with 1/R dependency. The effect of the lens is a net
convergence (focusing) with a strong astigmatic error.

Fig. 2. Effect of a thick toroidal field lens on particles with the same momentum,
traveling in the (R, z) plane, parallel to each other. Ideal toroidal field with 1/R
ependency. The effect of the thick lens is a net convergence (focusing) with a much
educed astigmatic error.

here 𝐸0 is the rest energy of the particle (or ion) considered, and 𝛾 is
he relativistic factor:

= 1 +
𝐸𝐾
𝐸0

(4)

defined by the kinetic energy 𝐸𝐾 of the particle.
If the toroidal field magnet is short in z direction, i.e. what we

can call the equivalent of a thin toroidal lens, the focusing effect is
demonstrated in Fig. 1 for two possible situations: particles of identical
momentum, either traveling along the z-axis and parallel to each other,
or originating at a vertex located at the z-axis. The thin toroidal lens
has indeed the expected net convergent effect towards the 𝑧-axis, but
he 1/R dependence of the ideal toroidal field on the radius results in
strong astigmatism because the outer particles are bent less than the

nner ones.
Let us consider now a toroidal magnet with dimension comparable

o the variation of the particle orbit (i.e. a thick toroidal lens), and
e notice that the astigmatism is much reduced. This effect is shown

chematically in Fig. 2, where again the tracks correspond to particles
ith the same momentum. The reduced astigmatism is due to the fact

hat particles entering with large orbit (or large angle) travel a longer
ath in the field than particles entering at small orbit or angle, thus
esulting in additional focusing. Note that here no special effort is made
o achieve particle convergence in a single point, besides a choice of
nergy, field and coil dimensions that demonstrates the effect.

We then examine the case of particles of different momentum (or
ore in general p/q ratio) originating at the same vertex. This is shown

chematically in Fig. 3, where now tracks correspond to particles with
he same angle, and a variation of p/q by a factor two, i.e. relevant to
ur discussion. As expected, particles with higher rigidity are bent less.
owever, taking into account the observation above on the focusing
ffect of the length traveled in the field region, it is possible to find
ppropriate initial angles for each of the beams in the selected range

uch that the focal point on the z-axis is the same for all values of p/q.
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Fig. 3. Effect of a thick toroidal field lens on particles with different p/q, differing by
a factor 2, originating at the same vertex on the 𝑧-axis and with the same initial
direction. Ideal toroidal field with 1/R dependency. The particles converge on the
at different points on the z-axis depending on their p/q ratio, beams with higher
momentum traveling to farther distances.

Fig. 4. A possible compensation of the effect shown in Fig. 3. Particles with different
p/q, differing by the same factor 2 as in Fig. 3, and originating at the same vertex,
are given different initial directions so that they travel in the thick toroidal lens over
different path lengths. Ideal toroidal field with 1/R dependency. The net effect is to
converge the different particles in the same point on the z-axis.

Fig. 5. Same simulation as in Fig. 4, but taking a constant toroidal field in the coil
pace (field index 𝑛 = 0). The single particles converge as observed in Fig. 4, but the

in-field path of the low momentum particle is much longer.

This is finally demonstrated in Fig. 4, where the particles of different
p/q are kicked by different amounts at the common vertex, enter the
thick toroidal lens in different points, and converge to the same focal
point on the z-axis. The higher momentum particle is kicked by a larger
angle, and travels a longer path compared to the smaller momentum
particle, which is kicked by a smaller angle and travels a shorter path
in the field. Convergence to the single point was obtained by a trial-end-
error sequence of tracking, achieving any desired (numerical) accuracy
on the z-axis.

So far we have considered in our demonstration a toroidal field
with the natural 1/R dependency. As shown in Fig. 4 such arrangement
auses the particles of low momentum, kicked at a lower angle, to
xperience a larger field than particles with higher momentum. The
ath of the low momentum particle can be very short, and make
he system very sensitive to small errors. This can be improved by
ntroducing a radial field index n such that the toroidal field is given
y:

𝜃 =
𝐵𝑟𝑒𝑓𝑅𝑛

𝑟𝑒𝑓

𝑅𝑛 (5)

Eq. (5) is a modified form of Eq. (1), and indicates that the field
can deviate from the ideal 1/R dependency of the toroid with infinites-
imally thin winding considered so far. This can is achieved grading the
coil winding of the toroid, as we will explain later in Section 3.2.2.

A convenient choice of the field index is 𝑛 = 0, i.e. a constant
toroidal field in the space of the coils. The effect of this choice is shown
in Fig. 5, where we take the same conditions of Fig. 4, i.e. a factor 2 in
the p/q ratio of two particles, but the field is now constant. The length
traveled by the low energy particle is now more than doubled, making
3

Fig. 6. Effect of small angular kicks around a reference direction for particles with
equal p/q, and originating at the same vertex (top), or with identical angular kick but
originating at shifted vertex points (bottom). Constant toroidal field in the coil space
(field index 𝑛 = 0). The particles arrive at the z-axis with a longitudinal shift, as shown
in the detail. This effect can be used to paint a desired area with particles of a given
p/q.

the system considerably less critical to small adjustments in the kick
angle.

Finally, we demonstrate the effect of small deviations from the
reference direction, as well as changes in the location of longitudinal
magnetic center of the vector magnet. This is shown in Fig. 6, where
the upper momentum of Fig. 5 has been taken as a reference, and two
particles are traced with initial direction slightly differing from the
reference, or with a small shift of the vertex location along the z-axis.
The effect is a movement of the focal point, also by a small amount.
This indicates that location and direction of the particle at the vertex
must be precise to direct particles as desired on the toroid axis. At the
same time this feature can be exploited to paint a region around the
nominal focus of the toroidal field.

So far all analyses were assuming a particle traveling in the (R,
z) plane. Without entering in the details of 3D tracking, developed
elsewhere [25], we simply note that a particle with out-of-plane mo-
mentum will experience a centering force that depends on the curvature
of the field. This is similar to the effect of field curvature in a combined
function magnet.

In summary, a toroidal field of appropriate polarity can act as a
convergent lens for particles of different direction and momentum. The
focal point of the lens depends on the field strength and geometry,
affecting the length of the particle path in the toroidal field area. It
is in principle possible to focus particles of different p/q ratio in the
same point by actively directing them in different regions of the toroid.
Changing the initial direction of particles of identical p/q ratio, the
point where the axis is crossed moves. These are the properties that
are at the basis of our novel gantry configuration, described in the next
section. We will further develop features such as coil shaping, winding
grading, finite coils, and periodic angular spacing (parallel channels)
that are necessary to make the concept practical.

3. Concept of the gantry system

The concept of the system proposed is rendered in Fig. 7 [26], and
it consists of two main parts that realize the basic idea described in the
previous section:

• A vector magnet, receiving beam from the accelerator extraction
line, and providing a kick that depends on the energy of the beam
and the desired direction of beam delivery;

• One or more co-axial toroidal magnets (one magnet only is de-
picted in Fig. 7 as an example), that bend the beam by using a
combination of their shape and field variation with radius and
length.
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Fig. 7. Schematic representation of the components and functions in the toroidal gantry, with a beam trajectory, of a given energy, demonstrating the drift and bend. The vector
agnet is represented as a single unit that can kick in any direction, while the toroidal gantry consists in this case of a single toroidal magnet. The patient is located in the

field-)free bore of the toroidal magnet (courtesy of Daniel Dominguez, CERN Design and Visual Identity Service).
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he patient is placed in the axis of the toroid. Each part is described in
ore detail in the sections below. The main focus in this paper is on

he toroidal magnet, the true novelty of the concept.

.1. Vector magnet

The function of the vector magnet is to bend the extracted beam
in any direction by an angle that depends on the beam energy. For a
given energy, this corresponds to the ability to produce a cone of beam
trajectories originating at the location of the vector magnet.

To achieve this function, the vector magnet can be a single dipole
rotating around its axis with the ability to sweep the field strength.
Depending on the magnet design, the change in field strength required
to steer beams of different energy can be relatively fast. A rotation, on
the other hand, corresponding to a change in irradiation direction, will
be much slower. An alternative to achieve fast response in both func-
tions is to consider a two-axis vector magnet, producing a combination
of horizontal and vertical dipole with arbitrary direction. In this case
the two dipoles should change setting frequently, providing the ability
for rapid energy and direction changes, and eliminating the need for a
heavy rotating machinery. This feature makes the two-axis option more
elegant and interesting.

In addition to the momentum-dependent kick, the vector magnet
can act with deviations from the nominal kick to achieve the beam
spot scanning that is requested in hadron therapy. This is conceptually
identical to the ability to kick in an arbitrary direction described above,
albeit by a much smaller amount.

We are aware that the vector magnet poses by itself a significant
technology challenge. An ideal vector magnet should be short, to keep
the aperture at the exit small, but sufficiently strong to avoid a large
distance from the vertex to the toroid. This would result in relatively
large fields (e.g. in excess of 3 T), i.e. calling for a superconducting
solution. In this case the associated inductance and inevitable AC loss
would pose a limit to ramping speed, thus contradicting the desire
to achieve fast switching. Accuracy in the X-Y kick is of paramount
importance, to direct particles at the desired location. This should be
true both for the large steps that cover the desired range of momentum
(i.e. an approximate factor of three in the kick), as well as the small
sweeps used to paint the desired region (i.e. order of few percent in
the kick).
4

Without entering in the details of the design of a two-axis vector
magnet, we note that the functions described above do not need to
be realized with a single component. Indeed, the most convenient
realization of a vector magnet is a sequence of magnets with separate
functions (e.g. energy bend, angular bend, steerer for painting). In fact,
a combination of a resistive X-Y fast switching magnet followed by a
large aperture superconducting bend (a forward toroid) could provide
the best combination of features. Work on this part of the system is in
progress and will be reported separately.

3.2. Toroidal gantry

The gantry proper consists of a set of co-axial toroids, with identical
z-axis. Each toroidal magnet is made of N discrete coils, generating
the desired field. Only the space between two neighboring coils is
free for the beam passage, so that the coil geometry defines N beam
channels that have an equivalent bending function. The toroidal gantry
has hence the particularity that it can only deliver beams at discrete
angular locations. A study of the statistics of beam delivery directions in
actual treatment plans has shown that the majority of beam is delivered
only at a few angles [11]. Provided that the gantry has a sufficiently
large number of coils (e.g. 8 or more),restricting beam delivery only to
discrete angles is not a true limitation.

The N coils of each toroid do not need to be equally spaced in the 𝜃
ngle. In fact, as we will show later in Section 3.2.4, it is beneficial
o group coils in pairs, thus decreasing peak field in the coil for a
iven bending strength, as well as lowering the inductance and stored
agnetic energy of the system.

The shape of the area of magnetic field, and the dependency of field
n position, and in particular on the radius, is the result of the selected
oil geometry. In the absence of magnetic materials, not considered in
his paper, this is a linear dependency on the position of the conductors.
t is in particular interesting to grade the coil by spacing the winding
o to obtain the required field index n introduced earlier Eq. (5).
e expand more in detail on the coil shape and coil grading in the

ollowing sections.
Finally, we mentioned earlier that the gantry may consist of a

equence of co-axial toroids. Equivalent to what is done alternating
uadrupole gradients in a transfer line, we could imagine a sequence of
wo toroids, the first with negative field index n < 0, followed by one
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Fig. 8. Construction of the ideal profile of a toroidal field boundary that focuses
particles of different momentum to charge ratio p/q on a single focal point by making
use of different kick angles at the location of the vector magnet. The toroidal field
area is shaded in the picture. The dashed boundary can be computed using Eq. (10)
or Eq. (11).

with positive field index n > 0. The first would be the equivalent of a de-
focusing quadrupole, the second one would be a focusing quadrupole.
It should then be possible to design the single toroids for strength,
field index, length and position that achieve optimal field transfer.
Nonetheless, as we will show later, satisfactory results can be achieved
already with a single toroidal magnet. This is why the analysis and
discussion below is limited to the case of a single toroid, and we reserve
the idea of several toroids for future development.

3.2.1. Coil geometry
We address here the question of the optimal coil shape to achieve

perfect iso-centric conditions for particles of different momentum to
charge ratio. The toroidal magnet receives a particle bent to an arbi-
trary angle by the vector magnet placed at coordinates (0,-𝑧𝑉 ). We
wish to find the coil shape that focuses the particles in the origin
of the reference frame (0,0), with the additional constraint that the
particles must impinge with a constant angle 𝛼𝐵 . This situation is
shown schematically in Fig. 8. A particular case is obtained when the
impinging beam angle is normal to the 𝑧-axis (patient), i.e. 𝛼𝐵 = 90
degrees, as is customary in gantries built with rotating beamlines. This
is not a constraint in our case.

For the field profile, we make the assumption that the winding is
graded so to generate a constant field 𝐵𝜃 = 𝐵𝑟𝑒𝑓 (i.e. 𝑛 = 0 in Eq. (5),
see later discussion on grading) and that the coil boundary corresponds
to a hard edge, i.e. zero field outside the winding. These are rather ideal
conditions, but have the benefit to yield a closed analytic solution and
provide a good starting point for a magnet shape optimization based
on numerical analysis. Similar work done in the past to design toroidal
lenses, considering the ideal 1/R dependency of the field, required
numerical solution [27].

Based on the above assumptions, and with the notation indicated
in Fig. 8, it is possible to use simple geometric relations and trace the
particle trajectory backward, starting from the point (0,0) towards its
origin (0,−𝑧𝑉 ). The beam travels in a cone of angle 𝛼𝐵 first, until it
nters the toroidal field area at a radius 𝑅in. Once in the toroidal field,
he trajectory is a circumference with radius (see Eq. (2)):

𝐸 =
𝑝

𝑞𝐵𝑟𝑒𝑓
(6)

The circumference portion of the trajectory, corresponding to the
extension of the field area, needs to terminate at the location (𝑅𝑃 , 𝑧𝑃 )
where the tangent points to the vector magnet. The center of the bent
particle trajectory in the field area is given by:

𝑅𝐶 = 𝑅𝑖𝑛 − 𝜌𝐸𝑐𝑜𝑠
(

𝛼𝐵
)

(7)

𝑧𝐶 =
𝑅𝑖𝑛

𝑡𝑔
(

𝛼𝐵
) + 𝜌𝐸𝑠𝑖𝑛

(

𝛼𝐵
)

(8)

a

5

and the angle corresponding to the optimal direction of the particle 𝛼𝐸
can be computed as follows:

𝛼𝐸 = 𝑎𝑟𝑐𝑠𝑖𝑛

⎛

⎜

⎜

⎜

⎝

𝜌𝐸
(

𝑧𝑉 − 𝑧𝐶
)

+ 𝑅𝐶

√

𝑅2
𝑐 + 𝑧2𝑉 − 𝜌2𝐸

𝑅2
𝐶 +

(

𝑧𝑉 − 𝑧𝐶
)2

⎞

⎟

⎟

⎟

⎠

(9)

Given a range of momentum to charge (e.g. 1.2 Tm to 2.4 Tm for
protons), the toroidal field 𝐵𝑟𝑒𝑓 , the inner radius 𝑅𝑖𝑛, a desired incident
angle 𝛼𝐵 and the location of the vector magnet 𝑧𝑉 it is possible to use
the above equations parametrically to determine the curvature radius
𝜌𝐸 , the center of the particle trajectory (𝑅𝐶 , 𝑧𝐶 ) and the vector angle
𝛼𝐸 for each value of p/q. Having computed these quantities, it is finally
possible to reconstruct the locus of the points (𝑅𝑃 , 𝑧𝑃 ), i.e. the entry
profile of the field area, which, based on our assumptions, is identical
to the coil profile. This is given by:

𝑅𝑃 = 𝑅𝐶 + 𝜌𝐸𝑐𝑜𝑠
(

𝛼𝐸
)

(10)

𝑧𝑃 = −𝑧𝐶 − 𝜌𝐸𝑠𝑖𝑛
(

𝛼𝐸
)

(11)

Fig. 9 shows the vector angle and the ideal coil profile computed
for a proton gantry, with a field of 𝐵𝑟𝑒𝑓 = 3 T, an inner radius 𝑅𝑖𝑛
of 0.4 m, an incident angle 𝛼𝐵 of 90 degrees and a vector magnet
located at 𝑧𝑉 = 4 m, reasonably far away from the toroidal magnet to
limit the required strength and aperture, but still maintain a compact
installation. The bending radius for the maximum energy considered,
250 MeV, is 𝜌𝐸 = 0.8 m. The outer radius will be in the range of 1.2 m,
which is very compact. To be noted that the magnet bore, 0.8 m, has
been chosen intentionally small, in the range of that of MRI magnets,
to find the minimal possible dimension that can be achieved with one
such system. We are aware that this does not leave enough room to
insert the customary beam diagnostics and controls. Indeed, adding the
typical dimension of a radiation therapy nozzle would at least double
the magnet bore. It is however interesting to note at this point that work
is in progress to examine the possibility to integrate compact solid-state
beam range and position monitoring in the gantry dimension assumed
here [28].

Using the analytical results, and with the choice of parameters
above the coil contour is nearly straight, and the angle dependence on
the kinetic energy of the beam is also approximately linear. Though
not essential, these features offer the benefit of easy coil winding, and
simple operation. A final remark is that if the position of the vector
magnet is sufficiently far from the gantry, Eq. (9) can be simplified to
the trivial expression:

𝛼𝐸 ≈
𝑅𝑖𝑛 + 𝜌𝐸
𝑧𝑉 − 𝜌𝐸

(12)

These simple expressions give an ideal solution that can be used as
starting point for further optimization.

As reported in Fig. 9, the required kick for the highest momentum is
bout 30 degrees. The corresponding clear aperture for a vector magnet
ith a length of 1 m would then be 50 cm, i.e. very large. As discussed
arlier this shows that this element of the system requires innovative
olutions.

.2.2. Grading in radial direction
The field dependence on the radius, which we expect to be one of

he main characteristics affecting beam transport, can be adjusted by
rading the coil winding. The basic idea of grading is to extend the ra-
ial build of the coils, which so far were assumed to have infinitesimal
hickness. By spacing the conductors in the winding, we can distribute
he current density and modify the natural field dependence of the ideal
orus, Eq. (1), to achieve a desirable shape, e.g. Eq. (5). In the toroidal
antry configuration we can allow ourselves unconstrained grading in
he coil cross section, i.e. filling the whole space of a coil, without
ffecting the space available for the beam passage.
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Fig. 9. Ideal inboard coil winding profile (left) and optimal angle given by the vector magnet (right) to obtain iso-centric focusing of proton beams of different kinetic energy in
the range 70 MeV to 250 MeV, using the exact expression Eq. (9), and the approximation Eq. (12).
To show the principle of grading we take the ideal axis-symmetric
torus, with an inboard (small radius) and outboard (large radius) wind-
ings of finite thickness, providing the main part of the toroidal field.
The inboard leg extends from 𝑅 = 𝑅𝑖𝑛 (the inner magnet bore radius)
o 𝑅 = 𝑅0, and the outboard leg spans from 𝑅 = 𝑅1 to 𝑅 = 𝑅𝑜𝑢𝑡 (the
uter radius of the torus magnet). We assume for simplicity that the
wo legs have constant current density 𝐽𝑊 . The space between inboard
nd outboard legs (i.e. 𝑅0 < R < 𝑅1) contains windings with an average
urrent density J(R). This situation is shown schematically in Fig. 10.

Using induction circulation theorem:

𝐵𝜃 (𝑅) =
𝜇0𝐼 (𝑅)
2𝜋𝑅

(13)

we can find the field current distribution that produces a desired
field profile, such as Eq. (5). After some simple algebra, the complete
solution for the field and current density, including the ideal toroidal
field generated in the inboard and outboard legs, is:

𝐵𝑔𝑟𝑎𝑑𝑒𝑑
𝜃 (𝑅) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜇0𝐽𝑊
2

(

𝑅 −
𝑅2
𝑖𝑛
𝑅

)

𝑅𝑖𝑛 ≤ 𝑅 ≤ 𝑅0

𝐵𝑟𝑒𝑓𝑅𝑛
𝑟𝑒𝑓

𝑅𝑛 𝑅0 ≤ 𝑅 ≤ 𝑅1

𝐵𝑟𝑒𝑓𝑅𝑛
𝑟𝑒𝑓

𝑅𝑛
1𝑅

+ 𝜇0𝐽𝑊
2

(

𝑅 −
𝑅2
1
𝑅

)

𝑅1 ≤ 𝑅 ≤ 𝑅𝑜𝑢𝑡

(14)

𝐽 (𝑅) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐽𝑊 𝑅𝑖𝑛 ≤ 𝑅 ≤ 𝑅0

1−𝑛
𝜇0

𝐵𝑟𝑒𝑓𝑅𝑛
𝑟𝑒𝑓

𝑅𝑛+1 𝑅0 ≤ 𝑅 ≤ 𝑅1

−𝐽𝑊 𝑅1 ≤ 𝑅 ≤ 𝑅𝑜𝑢𝑡

(15)

We see from Eq. (14) that it is indeed possible to achieve any desired
field index by acting on the current distribution as from Eq. (15). As an
example, a choice of 𝑛 = 0, which corresponds to a constant field in the
magnet bore, is produced by a current density with a 1/R dependency
in the space between inboard and outboard legs. The corresponding
current density and field profile are plotted in Fig. 10. Another inter-
esting case is n=−1, which corresponds to a constant current density
in the space between inboard and outboard legs, and produces an
ideal radial field gradient, with field increasing proportionally to the
radius. Such field could be useful in a sequence of tori with alternating
radial gradients. Though the above solutions are only ideal, they give
guidelines on how to space conductors in a practical winding so to
adjust the field towards a desired optimum value.

3.2.3. Discrete coils — uniform spacing
In our analysis towards a realistic system we need to consider

that the toroidal magnet is built using discrete coils. Besides being
a practical solution for the construction of the magnet, the toroidal

magnet must be built with coils to ensure that there is a free space for

6

the beam passage. In a torus of discrete coils, the field deviates from
the ideal case considered so far. Specifically, for a set of discrete coils
the field is no longer axis-symmetric, though it remains periodic, and
its strength varies depending on the toroidal angle 𝜃.

To quantify this effect and derive guidelines on the number of coils
to be used in a practical system, we use the method developed in
[29], based on the calculation of the field generated by a torus of
filamentary and planar coils with large elongation. This situation is
shown schematically in Fig. 11 (left), which shows the intersection of
the inboard and outboard legs of N discrete filamentary coils with the
plane 𝑧 = 0. The extension of the coils along the z-axis is considered as
infinite. In a first instance the coils are considered as uniformly spaced
in angle. As shown in [29], the field generated by this configuration is
given by:

𝐵𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒
𝜃 (𝑅, 𝜃) =

𝜇0𝑁𝐼
2𝜋𝑅

[(

1 −
1 − 𝜌𝑖𝑛𝑐𝑜𝑠 (𝑛𝜃)

1 − 2𝜌𝑖𝑛𝑐𝑜𝑠 (𝑛𝜃) + 𝜌2𝑖𝑛

)

−
𝜌2𝑜𝑢𝑡 − 𝜌𝑜𝑢𝑡𝑐𝑜𝑠 (𝑛𝜃)

1 − 2𝜌𝑜𝑢𝑡𝑐𝑜𝑠 (𝑛𝜃) + 𝜌2𝑜𝑢𝑡

]

(16)

where we have used the following definitions:

𝜌𝑖𝑛 =
(

𝑅
𝑅𝑖𝑛

)𝑁
(17)

𝜌𝑜𝑢𝑡 =
(

𝑅
𝑅𝑜𝑢𝑡

)𝑁
(18)

We can compute the field given by Eq. (16) at various toroidal
angles, and in particular the angle corresponding to the coil plane
(i.e. 𝜃 = 𝜋/N in Fig. 11) and the angle corresponding to the plane in the
middle of two neighboring coils (i.e. 𝜃 = 0 in Fig. 11). An inner radius
of 𝑅𝑖𝑛 = 0.4 m and outer radius of 𝑅𝑜𝑢𝑡 = 1.6 m have been taken for this
evaluation, and the current has been computed to obtain in the ideal
case a reference field of 𝐵𝑟𝑒𝑓 = 3 T at a reference radius corresponding
to the average radius of the toroid, 𝑅𝑟𝑒𝑓 = 1 m. The toroidal field values
obtained by this method are compared in Fig. 12 to the ideal toroidal
field that corresponds to the axis-symmetric configuration and identical
total amperage, taking as a parameter the number of coils N. We see, as
expected, that the toroidal field in the coil plane is higher than the ideal
case, and in contrast the field in the plane cutting the space between
two coils is lower. Note that due to the filamentary assumption the field
diverges in the coil plane, when approaching the filament location. The
value of the ideal toroidal field is bracketed by the two values obtained
in the coil plane and the inter-coil midplane.

It is evident from the results reported in Fig. 12 that the peak
field in the coil is significantly higher than the desired field strength
in the beam passage, where we can take the reference radius as a
representative location. This is due not only to the radial dependence
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a

Fig. 10. Schematic current distribution and resulting field profile as a function of radius in an ideal torus with graded winding, showing the location and extension of the inboard
nd outboard winding legs. The case of a field index 𝑛 = 0 (constant field) is shown as an example.
Fig. 11. Schematic representation of the configuration used to compute the field produced by N discrete filamentary coils of large elongation (infinite extension in z), showing
the intersection of the filamentary inboard and outboard coil limbs with the 𝑧 = 0 plane (circles). Two configurations are shown: uniformly spaced coils in the angle q (left) and
non-uniformly spaced coils (right). The number of coils is 𝑁 = 8 in the example above, grouped in 𝑀 = 4 coil pairs for non-uniformly spaced coils.
Fig. 12. Comparison of toroidal field values computed in the two planes at 𝜃 = 0 (beam passage, blue line) and 𝜃 = 𝜋/N (coil, red line) using the discrete coils approximation of
Eq. (16). The ideal field dependence obtained from Eq. (1) is also reported for comparison (black line). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
of the ideal toroidal field, but also to the deviation from the ideal
profile due to the discrete coils. In order to quantify this effect, we can
define a field ratio f that measures the effectiveness of the discrete coil
7

configuration when compared to the ideal toroidal field profile:

𝑓 =
𝐵𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒
𝜃

(

𝑅0, 𝜋∕𝑁
)

( )

𝑅0 (19)

𝐵𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒
𝜃 𝑅𝑎𝑣𝑔 , 0 𝑅𝑎𝑣𝑔



L. Bottura, E. Felcini, G. De Rijk et al. Nuclear Inst. and Methods in Physics Research, A 983 (2020) 164588

w

a
t
a
d
r
a
o
e
b
T
i
e
t

3

n
F
o
p
p
s
t
p
b

E
t

a
f

Fig. 13. Field ratio f as defined in Eq. (19), measuring the amplification of the peak
field in the winding of discrete coils with respect to the ideal toroidal field profile,
plotted as a function of the total number of coils N. Different configurations are
reported, equally spaced discrete coils (s=1/2), as well as non-equally spaced coils

ith different spacing (s=1/3, s=1/4, and s=1/5).

The above ratio gives an estimate of how much the desired bending
field, i.e. in the beam plane and at the representative radial location
𝑅𝑎𝑣𝑔 , is amplified at the coil peak field location, i.e. in the coil plane and
at the inboard coil leg. To avoid the singularity in the field evaluation
of Eq. (19), the peak field is evaluated at the radial location 𝑅0 as
defined in Fig. 10, i.e. the maximum radial extension of the inboard
leg of the coil. Finally, note that we have constructed the ratio of
Eq. (19) to compensate for the 1/R dependence of the ideal toroidal
field (through the ratio of radii in the second fraction), so that to first
order we can assume that f does not depend on coil grading and the
associated deviation from the ideal 1/R dependence.

We can now use the definition Eq. (19) to evaluate the field ratio as
function of the number of coils N composing the torus, in Fig. 13. For

his evaluation we assume the same geometry used earlier, and we take
tentative coil thickness of 0.1 m (consistent with the proton gantry

esign described later), resulting in a value of 𝑅0 = 0.5 m. The field
atio is significantly larger than one when the torus is composed of only
few coils (i.e. below ten for our choice of parameters), and approaches
ne once the number of coils increases. Taking as an example the
xtreme case of a torus made of four coils, the peak field is evaluated to
e twice as high as would be obtained from the ideal field dependence.
he ideal dependence of the toroidal field on radius is 𝑅𝑟𝑒𝑓∕𝑅0, which

n our case is also a factor two (see values used above). So, in this
xtreme choice of parameters, the coil would experience a field four
imes higher than the reference field at 𝑅𝑟𝑒𝑓 .

.2.4. Discrete coils — non-uniform spacing
In principle, a torus can be assembled also as a set of periodic but

on-uniformly spaced coils. An example of this situation is shown in
ig. 11(right), where N coils are grouped in M pairs with a given angle
pening. The pairs are periodically spaced along the angle 𝜃, with a
eriod 𝜃𝑝 = 2𝜋/M. We quantify the coil spacing in a pair by using a
arameter s such that the angle between the coils in a pair is given by
𝜃𝑝 (see Fig. 11), with 0 < s ≤ 0.5. We expect the field to increase in

he space between two coils of a pair, which is where the beam will
ass. This configuration, made of N coils, results in 𝑀 = 𝑁/2 identical
eam channels.

The field produced by this configuration can be computed using
q. (16), considering two groups of M equally spaced coils, and adding
heir field contributions. Using this simple expedient, we can repeat the
8

nalysis performed above, in the case of uniformly spaced coils. The
ield profiles of a toroidal magnet with 𝑅𝑖𝑛 = 0.4 m, 𝑅𝑜𝑢𝑡 = 1.6 m and

3 T field at 𝑅𝑓𝑟𝑒𝑓 = 1 m are reported in Fig. 14, to be compared to the
analogous calculation reported in Fig. 12. For this sample evaluation
we have taken a coil spacing s = 1/5. We note that the coil grouping
in pairs has the expected effect of increasing both the field in the
space traversed by the beam, as well as the peak field. The effect is
more pronounced for a low number of coils, which is also expected. In
principle, this configuration produces hence a higher field than a toroid
of uniformly spaced coils.

To quantify the benefit, we have repeated the calculation of the
field factor defined in Eq. (19) for the above geometry, and various
values of the coil spacing s. The results are shown in Fig. 13 already
discussed earlier. We note that the field factor decreases significantly
at decreasing s when the number of coils is small, i.e. below 10 for
our choice of torus geometry. The gain is appreciable, e.g. for four
coils the peak field is reduced from twice larger than in the ideal
torus, for equally spaced coils, to only 20% larger if a spacing of s =
1/5 is taken. At the same time, when the number of coils increases,
we see that there is no benefit in the configuration with non-uniform
spaced coils. The reason is that although the field in the beam space is
higher for non-uniform spacing, the peak field is also increased by the
proximity of the coils at the inboard leg. For a large number of coils,
in any case, the field approaches very closely that of the ideal toroid,
i.e. f ≈ 1. We remark finally that the bore radius of the toroid 𝑅𝑖𝑛 also
has a strong impact on these results, where the benefit of non-uniform
spacing increases for tori of increasing dimension, since the azimuthal
coil distance at 𝑅𝑜𝑢𝑡 relative to that at 𝑅𝑖𝑛 differs relatively less if the
radius of the toroid is large.

3.2.5. Force and energy scaling
As a last element in this summary of the cardinal properties of a

toroidal magnet, it is interesting to report basic estimates for the forces
acting on the coil, and the stored energy. We limit our discussion to the
case of an ideal circular torus, and we use the results of [29], suitably
rearranged.

The only net force that the coil experiences is in radial direction,
and is given by:

𝐹𝑅 = −
2𝜋2𝑅2

𝑟𝑒𝑓𝐵
2
𝑟𝑒𝑓

𝜇0𝑁

(

1 − 1
√

1 − 𝛾2

)

(20)

which is a centering force (note the negative sign). The coil also
experiences internal forces that have zero resultant but produce internal
stress in the coil. The force in z direction on the upper half of the coil,
representative of the level of internal forces, is given by:

𝐹𝑧 =
𝜋𝑅2

𝑟𝑒𝑓𝐵
2
𝑟𝑒𝑓

𝜇0𝑁
𝑙𝑛

(

1 + 𝛾
1 − 𝛾

)

(21)

Above we have defined 𝛾 as the ratio of the minor to major ratio,
obtained as follows:

𝛾 =
𝑅𝑜𝑢𝑡 − 𝑅𝑖𝑛
𝑅𝑜𝑢𝑡 + 𝑅𝑖𝑛

(22)

From Eqs. (20) and (21) the forces per coil of a torus of given aspect
ratio are proportional to the square of the desired toroidal field 𝐵𝑟𝑒𝑓 ,
and the square of the reference radius 𝑅𝑟𝑒𝑓 . Considering a coil of given
geometry and bending power (i.e. at fixed 𝐵𝑟𝑒𝑓 ) from the scaling above
we see that it is hence advantageous to have the toroid as small as
possible.

To compute the stored energy we use the expression of the induc-
tance of an ideal circular torus [29]:

𝐿 = 𝜇0𝑁
2𝑅𝑖𝑛 + 𝑅𝑜𝑢𝑡

2

(

1 −
√

1 − 𝛾2
)

(23)

and obtain:

𝐸 = 1𝐿𝐼2 = 4𝜋2
𝑅2
𝑟𝑒𝑓𝐵

2
𝑟𝑒𝑓 𝑅𝑖𝑛 + 𝑅𝑜𝑢𝑡

(

1 −
√

1 − 𝛾2
)

(24)

2 2𝜇0 2



L. Bottura, E. Felcini, G. De Rijk et al. Nuclear Inst. and Methods in Physics Research, A 983 (2020) 164588

a
p
s
s
s
l

𝐶

Fig. 14. Comparison of toroidal field values computed in the two planes at 𝜃 = 0 (beam passage, blue line) and 𝜃 = s 𝜋/M (coil, red line) for a configuration consisting of
non-uniformly spaced N coils grouped in M pairs, with s = 1/5. The ideal field dependence obtained from Eq. (1) is also reported for comparison (black line). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. Ideal toroidal field coil shape used as initial guess for the optimization of
the coil geometry, and sample demonstration of iso-centric focusing obtained tracking
proton beams of different kinetic energy of 70 MeV (top) and 250 MeV (bottom). The
field is assumed to be constant (graded windings) in the coil area.

In this case the stored energy of a torus of given aspect ratio
increases with the square of the reference field 𝐵𝑟𝑒𝑓 , and with the
approximate third power of the radius 𝑅𝑟𝑒𝑓 . Here again, we see the
dvantage of keeping the radius of the torus as small as possible, com-
atibly with field and geometry requirements. Given the approximate
caling law established in [30] for the cost of a superconducting magnet
ystem, and in particular its proportionality to the square root of the
tored energy, we expect that the cost of the toroidal gantry will scale
ike:

≈
√

𝐸 ∝ 𝐵𝑟𝑒𝑓𝑅
3
2
𝑟𝑒𝑓 (25)

According to Eq. (25), the radial dimension of the toroidal magnet
has a stronger influence than the field, supporting analytically the
intuitive desire to optimize the magnet design for the smallest possible
radius compatibly with the operating margin of the superconducting
coil.

While useful in providing general trends, it is clear that the above
scaling, based on a much simplified geometry, will tend to fail when
considering real magnet features. One specific feature is that in the
energy and cost scaling above we see no dependency on the number of
coils, which is inherent to the assumption of an ideal toroid. Scoping
studies have shown that this is no longer true when considering toroids

of very large dimension, built with discrete coils non-equally spaced,

9

Table 1
Main parameters of the proton gantry described in the text.

Energy range [MeV] 70. . . 250
Number of coils [–] 16
Torus inner diameter [m] 0.8
Torus outer diameter [m] 3.3
Torus length [m] 1.8
Effective field [T] ∼3
Peak field [T] 8.2
Stored magnetic energy [MJ] 34
Magnet mass [tons] 12

Fig. 16. Optimized coil geometry for a proton gantry.

grouped to provide discrete beam channels as discussed earlier [31]. In
this case the cost becomes proportional to the number of coils (i.e. the
number of beam delivery directions), while the dependency from the
radius becomes very weak. This is a different design point with respect
to the compact concept described here, which we do not explore further
in this paper.

4. Toroidal magnet design example

Drawing from the considerations in the previous section, and as-
suming the same parameters used so far, we show here the design



L. Bottura, E. Felcini, G. De Rijk et al. Nuclear Inst. and Methods in Physics Research, A 983 (2020) 164588
Fig. 17. Front (beam side, left) and back (patient side, right) view of the complete toroidal magnet for a proton gantry, with inner bore diameter of 0.8 m. Outer dimension is a
diameter of 3.3 m, including the concept of support structure.
of a toroidal magnet with the desired characteristics of a gantry. The
example is for a proton beam with energy range of 70 MeV to 250 MeV.
The same design principle applies to any p/q ratio, and specifically to a
carbon ion gantry provided the combination of size and magnetic field
is scaled by the ratio of rigidity (approximately 2.7).

The coil shape and grading are determined by a numerical optimiza-
tion of the conductor positions, based on a magneto-static calculation
and particle tracking, to achieve isocentric conditions in the whole
range of energy considered [25,32]. As a starting point for this op-
timization we take the ideal contour of the toroidal coil leg at the
entrance of the beam as computed in Fig. 9, i.e. for a constant toroidal
field (field index 𝑛 = 0). The complete coil contour is then obtained
extending the beam entrance profile to the inner radius, and adding an
arbitrary return leg, shaped to reduce the field volume (simple straight
lines). This schematic ideal coil shape is reported in Fig. 15, where we
also demonstrate that the two beams at the extreme of the beam energy
range considered, i.e. 70 MeV and 250 MeV, behave as expected.

To obtain the actual design of the toroidal magnet we then built
discrete, graded coils of finite dimensions, initially shaped as in Fig. 15.
For this study we have taken a total of 𝑁 = 16 coils, each coil
consisting of 5 grades. The selection on the number of coils was
based on the considerations of field homogeneity and peak field (see
discussion above), while the choice of the number of grades was driven
by computational time. The coil geometry was parametrized for the
numerical optimization, inserting feasible bending radii, and the curved
region required by Eqs. (9) and (10) was substituted by a straight part
for simplicity (this is close enough to the profile shown in Fig. 9). The
optimization was then run to obtain suitable spacing among grades, and
achieve the desired beam bending properties with the lowest peak field
on the winding.

The result of this exercise is shown in Fig. 16, representing the
geometry of a single coil, and Fig. 17, reporting schematically the full
torus of 16 coils, including the concept of support structure. The final
result of the optimization is a field shape that deviates from the ideal
field index 𝑛 = 0 assumed at the start, which is necessary as the winding
is discrete and finite in dimension.

The main features of the magnetic system are summarized in Ta-
ble 1. The 5 grades of the optimized coil have of equal number of
turns, and we foresee to wind the coil as a double pancake. Once
assembled the torus has an outer diameter of 3.3 m and a length of
1.8 m. The peak field on the conductor is 8.2 T, i.e. suitable for Nb–
Ti. The magnet, together with the mechanical structure, has a mass
10
of 12 tons, and stores an energy of 34 MJ. These are very modest
parameters if compared to the typical mass of conventional gantries.
As we remarked earlier, this is mainly the result of the choice of a
small magnet bore (0.8 m), as typical of MRI magnets. One such gantry
system would be feasible only with significant advances in beam range
and position monitoring [Bot-2020]. It is nonetheless an interesting
exercise to provide the lower limit of dimension and mass of the toroid
as a benchmark for the selection of different design parameters. Further
details as to the engineering performance of this design can be found
in [32].

5. Conclusions and perspectives

The concept of a toroidal magnet discussed in this paper appears to
offer an interesting alternative to the present state-of-the-art design of
gantries for hadron therapy. The magnet has a large acceptance, and
does not need to turn, eliminating in principle the need for massive
structures and high-precision mechanics. Furthermore, the static and
axis-symmetric configuration is well suited to the use of a supercon-
ducting winding, with the potential of considerable reduction in size.
Provided the magnet technology can be kept simple, which requires a
detailed optimization and engineering design, it can be envisaged to
significantly reduce the size of gantries, possibly to the scale of a few
meters linear dimension and masses of the order of ten tons (protons)
to a few tens of tons (ions).

A number of key issues need to be addressed to advance the concept
described in this paper to the next level of engineering design. High
priority is required for the formalization of beam transport through
toroidal fields of various index and curvature, possibly using analyt-
ical methods and approximations that could guide the design of the
optimal field configuration. In relation to the above point, an analytical
expansion of the magnetic field generated by a coil with given geometry
will be required to produce an optimum magnet design, along the lines
described in [33].

All aspects of superconducting magnet design also need to be con-
sidered in detail, i.e. material and conductor selection, operating tem-
perature and margin, operating current and voltage, circuit topology,
quench detection and protection strategy. The simple mechanical con-
cept needs to be translated into the design of a supporting structure
that withstands nominal and off-nominal load conditions (e.g. quench
or magnet failure), and is compatible with the required beam line
geometry. Finally, vacuum, cryogenics and beam monitoring aspects
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need to be addressed and integrated in the design. The concept needs
to be validated in a demonstration set-up, and we are realizing a scaled-
down version of a single-coil, to be tested, possibly in a magnetic mirror
configuration, which will provide a proof of technological feasibility.

Finally, the second element of the beam delivery of this toroidal
gantry, the vector magnet, needs to be developed beyond the simplified
concept of a point source. In this paper, we have only listed options and
issues, which we plan to address in the future and arrive to a feasible
magnet configuration.
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