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A B S T R A C T   

In the framework of maintenance activities in particle accelerators, such as upgrades and dismantling, a large 
number of activated equipment are removed from the accelerator complex and require characterization in view 
of their disposal as radioactive waste. In particular, cables can be of different types. This feature induces vari
ations of the efficiency calibration curves due to the variation of the material composition, source distribution 
and density. Hence, quantifying the activities of the gamma-emitting radionuclides can be quite challenging for 
mixed cables. In this article, we propose a new qualification methodology, based on gamma spectrometry, in 
order to assess the activity results uncertainties of gamma-emitting radionuclides. This new methodology is 
developed to define the envelop efficiency calibration curves and allows for the establishment of more accurate 
activity values with their corresponding uncertainties.   

1. Introduction and context 

The purpose of the project “ELICA” (ELImination of very low-level 
waste (VLLW) CAbles) is to establish the elimination pathway of 
VLLW cables towards the French repository. In the past, the elimination 
process targeted containers filled with cables that were sorted depend
ing on the type of wire (aluminium or copper), and mass fractions of 
wire and insulation. The operations aimed at sorting require identifi
cation, handling and additional storage of cables which can be time and 
space consuming. In order to reduce the complexity of the process, the 
cable sorting operation has been eliminated allowing mixing the various 
cable types. A new characterization methodology was implemented in 
2019, which allowed for the generation of waste packages with a 
mixture of aluminium and copper cables. Typical radionuclides 
encountered in the waste analysis are Co-60, Na-22, Ti-44 for instance. 

The aim of the present document is to update and qualify new 
gamma spectrometry efficiency calibration curves for packages filled 
with mixed cables. It details the influence of the geometry parameters 
(such as the material composition, density and hotspots) on the values of 
the efficiency calibration uncertainties related to the ELICA project. This 
methodology is also applicable to other waste elimination campaigns 
projects. Therefore, it contributes to define the foundations of gamma 
spectrometry efficiency calibrations in a more rigorous and technically 
sound uncertainty analysis. The main component of the efficiency 

calibration uncertainties originates from the parameter uncertainties of 
the geometry model. They have to be considered for gamma spectrom
etry measurements in order to accurately estimate the activity values. 
Any deviations between the “as calibrated” geometry and the “as 
measured” geometry contribute to the total uncertainty. 

In section 2 of this document we provide the waste typology and 
characteristics. In section 3 we describe the measurement setup and the 
software tools used to estimate the efficiency calibration uncertainties. 
In section 4, we describe the qualification process we used in order to 
estimate efficiency calibration uncertainties. We then perform the un
certainty quantification in section 5. Finally, in section 6, we recom
mend a set of uncertainties to associate to each gamma spectrometry 
activity result. 

2. Radioactive waste description 

Within the frame of the ELICA elimination process there are five 
families of cables, each with different mass fractions of copper, 
aluminium and insulation (i.e., Polyvinyl chloride) (Fig. 1). These five 
families are now mixed within the same waste package. 

On the one hand, we can estimate the relative amount of each family 
based on the feedback of previous cable eliminations (760 m3 of cables 
eliminated by doing single-family packages). On the other hand, we 
measured the mass fractions of copper, aluminium and insulation in 
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cables originating from the five families. From these two sets of data, we 
can build the typical ELICA typology of waste. The final result is sum
marized in Table 1, which presents the expected mass fractions for the 
three materials found in the five cable families and the associated un
certainties given at 1σ. The correlations between mass fractions are all 
negative (from − 0.8 to − 0.2). Hence, we decided in the next to neglect it 
in order to reduce uncertainty propagation framework. As correlations 
are negative, our proposed method remains conservative. Fig. 2 illus
trates the final “products” of 1) the sorting process in the pilot project 
and 2) the current process that allows mixing cable families in the waste 
package. 

In order to perform the uncertainty calculations, one needs to 
describe the geometry parameters that generate the efficiency calibra
tion curves. In particular, the critical parameters in terms of un
certainties are: 

- The material composition: Since the ELICA campaign currently al
lows for mixing cables, one needs to assess the impact of the varia
tion of material composition (as described in Table 1) on the activity 
results.  

- The material density: The efficiency calibration uncertainties need to 
take into account the mass variation ranges of the ELICA waste 
packages. Since the waste packages are now mixed with materials 
having different densities, from insulation to copper, their masses 
could vary considerably. The feedback from the pilot project shows 
that the net weight of the cable waste packages ranges from 600 kg to 
2500 kg. The mass variation impacts the variation of apparent den
sity, which in turn affects the gamma attenuation within the matrix.  

- Hotspots or heterogeneous source distribution: Each waste package 
is likely to have one or several hotspots with different sizes and 
source concentrations. This is a parameter which cannot be opera
tionally controlled and identified. Therefore, it is required to be 
taken into account in the uncertainty analysis. 

3. Gamma spectrometry setup 

3.1. ISOCS & LabSOCS 

ISOCS (In Situ Counting Object System) and LabSOCS (Laboratory 
Sourceless Calibration Software) from Mirion technologies (Canberra) 
are used for creating efficiency calibrations (Venkataraman et al., 2003) 
(Menaaet. al., 2011). In the software, the user selects the characterized 
detector from a list of available detectors, and indicates the sample ge
ometry (i.e. the location and physical properties of the item being 
measured and the location and distribution of the source). The software 
does not require any additional information relating to the detector it
self, this information is automatically extracted from a detector char
acterization file that is generated through the manufacturer’s 
characterization process. An example of the ISOCS model is shown in 
Fig. 3. The detectors at CERN undergo a commissioning phase following 

the standard (Standard Test Proced, 1109). 

3.2. ISOCS Uncertainty Estimator - IUE 

To create an ISOCS calibration file, one needs to know the physical 
parameters of the object, such as dimensions and composition of the 
waste package and sample. Some of those parameters are well known 
and do not vary appreciably; e.g., the container is always known to be 
type 304 stainless steel. Other parameters are not-well-known, e.g., the 
hotspots or the material composition of the content. As the geometry 
parameters are not well-known, strong assumptions are needed to be 
taken regarding their variation ranges using the best knowledge. 
Moreover, we have observed, from previous studies, that these param
eters contribute to the efficiency uncertainty budget (Frosio et al., 
2020a). 

A tool named ISOCS Uncertainty Estimator (IUE) (Bosko et al., 2011) 
(Spillane et al., 2010)(Bronson, 1997) has been developed by Mirion 
Technologies (Canberra) to improve the quality and traceability of the 
gamma spectrometry uncertainty estimation by generating perturbed 
model efficiencies. IUE samples the geometry parameters within the 
input ranges to generate an efficiency calibration starting from the 
reference set of parameters. In a sense, it perturbs the reference model 
by varying the parameters around the reference values. It is worth 
noting that the interval can be continuous for continuous parameters 
(such density, filling height, …) or discrete (such as material type). 

The user first runs the ISOCS software in the usual manner to 
compute the reference efficiency for the sample being measured. For 
each not-well-known parameter, the user is required to provide an es
timate of the parameters’ variation intervals; e.g., by measuring a group 
of containers or consulting the manufacturing specifications for the 
containers or just by making educated guesses (also called expert elici
tation). The parameters that can be varied include dimensional param
eters (diameter, distance, thickness, density, etc.), as well as material 
composition of each item of the model. For each not-well-known 
parameter the user provides upper and lower limits (e.g., maximum 
and minimum density) and a distribution form that the parameters are 
assumed to follow within those limits. An example of IUE interface is 

Fig. 1. Samples of the five families of ELICA cables.  

Table 1 
Expected mass fractions of sampling a cable from the packages for 
each material and corresponding standard deviation.  

Material Expected mass fractions (%) 

Copper 44.0 ± 5.3 
Aluminium 4.5 ± 1.4 
Insulation 51.5 ± 8.6  

Fig. 2. Picture of a waste package from the pilot process (cables sorted by 
family, left) and from the current process (mixed cables, right). 

Fig. 3. ISOCS 3D model of the reference geometry.  
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provided in Fig. 4. 

3.3. Geometry uncertainty reduction utility - GURU 

The output of IUE is a collection of models efficiencies and param
eters in four separate files: “.GIS,.ECC,.UGS, and. UEC”. We developed a 
Data Analyzer framework named “GURU” (Frosio et al., n.d.), which 
compares the output of IUE for a set of gamma spectrometry measure
ments performed in different positions on the same object. GURU has 
two modules. One module, named spectroMatcher, that allows finding a 
“best geometry model” based on multi-count and multi-line consistency 
techniques. This module is not used in the present paper. The second 
module, named DataAnalyzer allows correlating the geometry model 
parameters to the efficiency calibration curves. The previously 
mentioned group of models are combined within the GURU framework. 
Then, it computes the absolute and relative sensitivities of efficiency 
calibration curves compared to the reference geometry model. 

3.4. Detectors characteristics 

The gamma spectrometry measurements are performed in a dedi
cated laboratory. It is equipped with two High Purity Germanium de
tectors (Falcon 5000 HPGe)1 on each side of the room as shown in Fig. 5. 
Each detector undergoes an on-site commissioning and a quality assur
ance program to verify continuous quality and reliability during the 
detector’s use and operation. Our Quality-Assurance program is inspired 
from the ISO/IEC 170252. A system background subtraction of each 
gamma spectroscopy analysis is performed via GENIE 2000 software. 
The distance between package and detector is measured by a BISCH 
laser range finder 3with an uncertainty of ± 2 mm. 

3.5. Reference efficiency calibration geometry 

The present study focuses on waste packages filled with radioactive 
waste consisting of cables. The physical and chemical characteristics for 
this reference waste package are shown in Table 2 and the corre
sponding ISOCS/LabSOCS geometry model is shown in Fig. 3. 

To create the reference ISOCS calibration curve, one needs to know 
the physical parameters, such as the dimensions of the waste package, 
the radioactive waste and the composition. The model based on these 
reference parameters will be denoted as reference model in the rest of 
this document. The waste package shown in Fig. 2 is simulated using the 
ISOCS/LabSOCS 3D geometry composer with the “Complex Box” tem
plate, of which the parameters are described in Fig. 6. 

The detector-to-waste package distance is set to 750 mm. The ma
terial density is derived from the waste package net weight after sub
tracting the empty waste package weight. In the reference model, the 
density is set to 0.683 g/cm3. The density of 0.683 g/cm3 could appear 
low for copper cables. It has to be understood by the reader that it is an 
apparent density that takes into account the presence of air and material 
with less density than copper. 

4. Qualification process 

Qualification is a process used to evaluate the capacity of a model to 
predict physical quantities (in our case, the efficiency of the gamma 
spectrometry measurement) within a set of assumptions. The aim is to 
quantify random errors and biases of a simplified, reference model. It is 
generally achieved by comparing this simplified reference model with 

an optimized experimental model considered as the “best model”, which 
represents the best knowledge we can have regarding a system. 

In this study we do not have one single “best model”, because the 
apparent density of waste packages varies depending on the exact 
mixture of cables, which leads to a variety of possible geometry models. 
We therefore decided to investigate the efficiency values variation of the 
various geometry models. The various geometry models are constructed 
in order to estimate the efficiency uncertainties. The input parameters 
are perturbed considering the assumed geometry parameters un
certainties. The efficiency calibration curves of these perturbed models 
are collected and their variations are analyzed. Finally, we consider as 
the best model the “envelop model”, i.e. the geometry model that pro
vides lower limits for efficiency at a confidence level of 95%. It should be 
noted that a lower value of efficiency leads to a higher predicted value of 
activity. 

Hereafter a description of the semantics used within the document 
and corresponding mathematical equations (Fig. 7) will be shown. 

In the rest of this document, the bias (M 1995 and Evaluation of m, 
2008) B of a reference model corresponds to the difference between the 
expected value of the reference model and the mean value of the various 
geometry models. The standard deviation (σ) quantifies the random 
error around the mean value of the various geometry models (ratio with 
the reference model). Both, bias and standard deviation, are expressed in 
relative terms throughout the following discussion. 

The relation between the value of the envelop model εp(E) and the 
value of the reference model ε0(E) is described in Equation (1) by means 
of a correction factor CF, where CF = B + kσ. 

We here define the envelop value εEnv(E) as the lower value 
comparing the value of the envelop model εp(E) and the value of the 
reference model ε0(E). Indeed, if the mean value of the various geometry 
models is higher than the expected value of the reference model, then 
the correction factor CF can be positive. In this case, the envelop value 
εEnv(E) is set to be equal to the value of the reference model ε0(E). 

εEnv(E)= εp(E)= ε0(E) (1+CF) if CF < 0  

εEnv(E)= ε0(E) if CF > 0 (1) 

Equation (1): Relation between the envelop value, the expected 
value of the envelop model and the expected value of the reference 
model. 

In the rest of this document, we aim at identifying the systematic and 
random errors in order to take them into account during routine gamma 
spectrometry analyses of ELICA waste. Based on the waste typology 
(measurements in waste package, masses range, activity heterogeneity, 
material), it is possible to group the sets of waste in order to associate a 
reasonably small uncertainty with the activity results. This uncertainty 
will have to be considered and applied to the activity results when using 
the reference model. 

Once the uncertainties on the efficiency calibration curve are 
defined, one needs to include them in the uncertainties of the activity 
results. One method consists of updating the uncertainties directly into 
ISOCS/LabSOCS software before calculating the efficiency curves. This 
is the process we consider in this document. Alternatively, one could 
also include those uncertainties directly in the final activity results. 

5. Efficiency calibration variation 

This section aims at estimating the calibration efficiency un
certainties (Frosio et al., 2020a) that are due to the following geometry 
variation parameters:  

- Material composition  
- Waste density,  
- Activity heterogeneity (or activity distribution within the waste 

package). 

1 http://www.canberra.com/fr/produits/hp_radioprotection/falcon-5000. 
asp.  

2 ISO/IEC 17025 General requirements for the competence of testing and 
calibration laboratories.  

3 https://www.bosch-professional.com/ch/fr/products/glm-30-0601072502. 
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In order to study the effect of the variation of the material compo
sition, densities and possible matrix heterogeneities, IUE computations 
are performed. 1000 efficiency calibration curves are randomly gener
ated, by separately perturbing density and heterogeneity parameters of 

the geometry model according to their estimated probability distribu
tion. Regarding the material composition, 100 models are generated to 
simulate probable mixtures of cable families. 

5.1. Influence of the material composition 

5.1.1. Material sampling: compositional data fitting with a dirichlet 
distribution 

Material composition is here considered as a set of statistical vari
ables. In order to study the efficiency response variation, we perform a 
random sampling of 100 material compositions propagated into IUE. 
The material compositions of the waste packages present two 

Fig. 4. Typical IUE data input screen. Parameters are entered in the top window to describe the amount and type of variation for the model. The bottom window 
details the complex box template geometry parameters. 

Fig. 5. Gamma spectrometry performed in a dedicated area. The white marks 
on the floor represent the location of the waste package. 

Table 2 
Physical and chemical characteristics of the reference ISOCS model.  

Container height, length, width 
(mm) 

960 × 1320 x 1030 

Container thickness (mm) 1.5 
Radioactive waste dimensions 

(mm) 
900 × 1320 x 1030 

Empty container mass (kg) 190 
Chemical composition of the waste 

package 
304 Stainless steel: 100.00% 

Chemical composition of the 
radioactive waste 

Copper 44.00%, Aluminium 4.50%, PVC 
51.50% (see Table 1)  
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constraints:  

- They are continuous, positive, and multivariate data,  
- Their sum must be equal to 1.0. 

A mathematical framework exists in the literature to represent such 
kind of data. It is named “Compositional data” (Rodrigueset al. et al., 
2011) and is usually described via the Dirichlet distribution (Hijazi and 
Jernigan, 2009)(Aitchison, 2003). 

Our strategy is to model the generic ELICA material composition (cf 
section 2) based on the Dirichlet distribution. Due to the constraint on 
the variable (mass fractions of the material compositions) sum to be 
equal to 1, it is convenient to define these variables on the standard 
simplex. The n-simplex is a Euclidian space of n+1 linearly independent 
points. Geometrically, it is the generalization of the triangle to n di
mensions. The standard simplex ς is formed of the n+1 standard unit 
vectors and is defined in Equation (2). 

ς =

{

x ∈ ℝn+1
+ ,

∑

i
xi = 1, xi ≥ 0, i = 1..n + 1

}

(2) 

Equation (2): Definition of the standard simplex. 
In this study, we consider the Dirichlet distribution of order 3, 

denoted Dir(α). The distribution is parametrized by the vector of positive 
real numbers α = (α1, α2, α3). The Dirichlet distribution is the multi
variate version of the beta distribution, in the same way that the 
multinomial distribution (its conjugate prior) is the multivariate version 
of the binomial distribution. For this reason, when the order of the 
Dirichlet distribution is 2, it becomes a beta distribution. 

The moments of first and second orders for a Dirichlet variable X =

(X1,X2,X3) are expressed in Equation (3), where α0 =
∑3

k=1αk. 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E[Xi] =
αi

α0

Var[Xi] =
αi(α0 − αi)

α2
0(α0 + 1)

Cov
[
Xi,Xj

]
=

− αiαj

α2
0(α0 + 1)

(3) 

Equation (3): Expression of the mean, variance and covariance, for a 
Dirichlet distribution. 

In particular, Equation (3) shows that the expectation of the marginal 
(beta distributions) is the fraction of its parameter with respect to the 
total sum of the marginal parameters. 

The αi values affect the shape of the Dirichlet distribution over the 
following:  

- The higher value of αi, the more dense is the distribution. Hence, a 
greater amount of the total mass is assigned to its marginal. On the 
opposite, when αi<1, the distribution is more sparse and the corre
sponding xi values are pushed to the extremities of the graph.  

- If all αi are equal, the distribution is symmetric, in the meaning it is 
evenly distributed.  

- If α1 = α2 = α3 = 1, then the xi values are uniformly distributed. 

Due to the high variation of shapes of the distribution, with α values 
variations, the Dirichlet distribution is often used for Bayesian inference, 
as conjugate prior. 

The estimation of the α parameter of the Dirichlet distribution is here 
performed by the Method of Moments (MM) which is reasonably simple 
while yielding consistent estimators. We consider k moments of first 
order and k moments of second order. As we need to solve the equation 
system for k unknowns, we construct an equation system containing:  

- k-1 equations from the first order moments,  
- One equation from the second order moments. 

We then derive the associated system of equations (Equation (4)) and 
its solution (Narayanan, 1992) (Equation (5)). This method identifies 
the parameter which best fits the set of observed data (summarized in 
Table 1). As a result, in the rest of this document, the considered α 
parameter is given in Equation (6). 
⎧
⎪⎪⎨

⎪⎪⎩

∀i = 1..k − 1, E[Xi] =
αi

α0

E
[
X2

k

]
= Var[Xi] =

αk(αk + 1)
α0(α0 + 1)

(4) 

Equation (4): Equation system to express the α parameter of the 
Dirichlet distribution 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀i = 1..k − 1, αi =

[
E[X1] −

(
Var[X1] + E2[X1]

)]
E[Xi]

Var[X1]

αk =

[
E[X1] −

(
Var[X1] + E2[X1]

)]
(

1 −
∑k− 1

i=1
E[Xi]

)

Var[X1]

(5) 

Equation (5): Solution of the equation system (method of moments). 

α=

⎛

⎝17.36
⏟̅̅ ⏞⏞̅̅ ⏟
Insulation

, 14.80
⏟̅̅ ⏞⏞̅̅ ⏟
Copper

, 1.52
⏟̅⏞⏞̅⏟

Aluminum

⎞

⎠ (6) 

Equation (6). The parameter α of the Dirichlet distribution. 
An illustration is available in Fig. 8. The left figure represents a 

random process for 20 000 mass fractions sampled in the Dir(17.36,
14.80, 1.52). We produce a set of 100 compositions in this distribution 

(right part of Fig. 8). These mass fractions are used in the next section 
5.1.2 in order to assess efficiency calibration uncertainties due to the 
material variation. We can see in Fig. 8 that the variation domain of the 
composition is limited to the right part of the ternary diagram, due to the 
low quantities of aluminium encountered in the cable families. 

Considering the 100 compositions, the copper, aluminium, and 
insulation mass fraction histograms are plotted in Fig. 9. One can see 
that the corresponding means are consistent with the experimental 

Fig. 6. Efficiency calibration geometry parameters for the reference model 
using the Complex Box template. 

Fig. 7. Schematic representation of the parameters involved in the qualifica
tion process. 
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values shown in Table 1. Regarding the standard deviation, some slight 
differences can be noticed. A minor overestimation of the standard de
viation is observed, due to the Dirichlet fitting process (e.g. 7.9% for 
copper instead of the measured 5.3%). Hence, the efficiency calibration 
uncertainties originating from material composition will be slightly 
overestimated. The main message is that the 100 random samples are 
representative of the measured values, when modelled by the Dir(17.36,
14.80, 1.52) distribution. 

5.1.2. Efficiency uncertainty results 
The reference model is based on the average composition detailed in 

Table 1. In order to assess the efficiency calibration variations for mixed 
cables, 100 models are generated (Fig. 8) and simulated with ISOCS. In 
these models, only the material composition is varied. 

Fig. 10 shows the relative difference of the efficiency curves of the 
perturbed models compared to the reference model, described in 
Equation (7), where εi(E) is the full peak efficiency value at energy E for 
the model i, and ε0(E) is the reference full peak efficiency value at energy 
E in the model i. 

R(E, %)=
εi(E)
ε0(E)

− 1 (7) 

Equation (7): Relative difference of the efficiency values of the per
turbed models compared to the reference model. 

At 45 keV, the influence of the material composition is the highest. In 
other words, overestimating the copper content causes the over
estimation of the efficiency values using the uniform model by a 
maximum of 32.44% (hence, underestimate the activity values). On the 
opposite, increasing the aluminium content in the waste package (or 
minimizing the copper fraction), causes the underestimation of the ef
ficiency using the uniform model by a maximum of 41.37% (which leads 
to higher activity values). 

These results are interesting to consider for low gamma emitter such 
as the actinide radionuclides or for measuring background with Th-232. 

For the purpose of the ELICA study, the radionuclides of interest have 
gamma rays with energies above 120 keV (Co-57 ray at 122 keV) or 
above 1 MeV for the key radionuclides such as Co-60 and Sc-44. Hence, 
the variation of the elemental composition does not present an impor
tant contribution to the total uncertainty budget. On the other side, this 
study shows that the uncertainties that are due to the elemental 
composition could be important for waste characterizations that contain 
actinides and transuranic nuclides with gamma ray energies below 120 
keV. 

The activity uncertainty value that is due to the material composition 
includes two components: 

1) The bias between reference and the perturbed model for the sys
tematic terms,  

2) The random uncertainties considered at 1σ. The uncertainty values 
are summarized in Table 3. 

Fig. 8. Ternary diagrams of mass fractions (copper, insulation, aluminium) in the ELICA waste composition. Left figure is an illustration of the domain area of the 
Dirichlet distribution. Right figure presents the 100 compositions considered in this document for assessing efficiency calibration uncertainties originating from 
material composition. 

Fig. 9. Distributions of the copper, aluminium, and insulation mass fractions in the 100 material compositions sampled in the Dirichlet distribution. From left to 
right: aluminium, copper and insulation. 

Fig. 10. The relative efficiency difference compared to the reference model 
from 45 keV to 3000 keV. 
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In Table 3, we also compare the materials used during the pilot 
project of ELICA (50% copper with 50% insulation and 50% aluminium 
with 50% insulation) to the current reference model. 

5.2. Impact of the density variations 

The density and the mass of the waste packages are correlated by the 
waste package’s volume which is fixed during the whole analysis. 
Therefore, for operational reasons (mass measurement is more practical 
than density) we consider in this section the impact of the mass varia
tions of the waste package on the efficiency calibration values. In order 
to assess this impact, we perform a sensitivity study. Furthermore, in 
order to improve the uncertainty estimation, the sensitivity analysis is 
done for 20 different material compositions. 

An illustration of the efficiency variation as a function of the mass is 
available in Fig. 11. 

The sensitivity coefficients S(E, %) are expressed as the relative ef
ficiency calibration difference at a specific energy E per relative mass 
difference (Equation (8)), where X represents the average over the i 
perturbed models, εi(E) is the efficiency calibration at energy E for 
model i and mi is the corresponding waste mass in model i. 

S(E, %)=

(
εi+1(E)
εi(E)

− 1
)/(

mi+1

mi
− 1
)

(8) 

Equation (8): Sensitivity coefficient of the efficiency calibration to 
the mass. 

The average and standard deviation values for the sensitivity coef
ficient at energies ranging from 45 keV to 3 MeV are shown in Table 4. 

The average relative sensitivity is stable as a function of energy. Its 
value ranges from − 0.9% at 45 keV to − 0.7% at 3 MeV (per unit percent 
variation of the mass). The corresponding standard deviation, however 
increases from 0.06% at 45 keV to 0.15% at 3 MeV. As the sensitivity 
coefficient is negative, a positive variation of mass induces a negative 
variation of the efficiency. Consequently, a positive variation of mass 
induces a positive variation of activity result. Hence, this has to be 
considered in order to avoid underestimation of the activity values. In 
the next, for simplification of the results, we consider a sensitivity co
efficient value of − 1%/% (or − 1% variation in efficiency for each +1% 
variation of density) in order to remove the energy dependence. 

The objective is to construct efficiency calibrations for different mass 
ranges that will be operationally used according to the measured mass of 

the package. This set of curves will be considered in the measurement 
process. The package will be weighted and the curve corresponding to 
the package mass will be used (see section 6). We target a maximum 
uncertainty of 10% on the efficiency value, from the mass variation. The 
feedback from ELICA pilot project set a minimum filled waste package 
mass at 600 kg. Thus, the total number of curves between 600 kg and 
5000 kg (maximum) is set at 15. Table 5 shows the list for each range of 
mass and their total relative sensitivity. 

5.3. The hotspot uncertainty or the activity heterogeneity impact 

Activation mechanisms highly depend on the location in the accel
erators. As we are mixing different cables, they can have different 
activation profiles. Hence, the waste package can present activity dis
tribution heterogeneities as seen for VLLW magnets in (Frosio et al., 
2020b). The following section focuses on the impact of such heteroge
neities in the spatial distribution of radionuclides within the waste 
package. 

5.3.1. Model description and characteristics for the hotspot variations 
In what follows, we vary the activity distribution by varying the 

following hotspot parameters: dimensions, source relative concentration 
and locations within the waste package. The waste package size remains 
identical as listed in Table 2. The hotspot parameters are described in 
Table 6. The reference model consists of a centered hotspot with a 
relative concentration 1 compared to the rest of the waste matrix. 

We constructed a set of 1000 perturbed geometry models by varying 
the dimensions, locations, relative concentrations and the number of the 
hotspots. The hotspots can be located in the whole waste package with 
physical dimensions varying from 33 × 22.5 × 27.75 cm3 (25% of the 
maximum waste dimension) to 132 × 90 × 103 cm3. The relative 

Table 3 
Efficiency uncertainties due to the material composition variation. Values in 
percentage (CF coefficient) at 1σ.  

Energy 
(keV) 

Bias 
(%) 

Standard 
deviation (%) 

Relative difference 
R(50% Cu 50% 
PVC)  

Relative difference 
R(50%Al 50% 
PVC)  

45 − 7.39 13.09 − 14.79 259.52 
50 − 6.58 12.79 − 13.02 237.35 
60 − 4.94 11.90 − 10.01 189.55 
70 − 5.14 10.48 − 7.70 146.13 
80 − 5.77 8.99 − 5.61 112.27 
90 − 6.53 7.59 − 3.86 86.99 
100 − 7.00 6.38 − 2.33 68.42 
110 − 7.27 5.34 − 3.52 48.55 
120 − 7.32 4.48 − 2.67 38.63 
150 − 7.33 2.59 − 1.45 20.39 
200 − 6.72 0.96 − 0.60 8.15 
300 − 6.38 0.23 − 0.48 0.98 
400 − 6.28 0.43 − 0.56 − 0.97 
600 − 5.74 0.55 − 0.78 − 2.17 
800 − 5.15 0.61 − 0.96 − 2.60 
1000 − 4.72 0.64 − 1.11 − 2.79 
1500 − 4.37 0.58 − 1.28 − 2.79 
2000 − 4.23 0.45 − 1.50 − 2.47 
2500 − 4.16 0.31 − 1.78 − 2.06 
3000 − 4.09 0.19 − 2.03 − 1.60  

Fig. 11. Efficiency calibration at different energies as a function of the 
waste mass. 

Table 4 
Average and standard deviation values of the sensitivities (defined in Equation 
(8)) for different energy ranges up to 3 MeV.  

Energy range 45 keV–70 
keV 

80 keV–120 
keV 

150 keV–200 
keV 

3 
MeV 

Relative 

Sensitivity 

Average − 0.9 − 0.9 − 0.9 − 0.7 
Standard 

deviation 
0.06 0.07 0.08 0.15  
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concentration and the number of random hotspots can vary from 1 to 5 
times compared to the rest of the waste package. The characteristics of 
the IUE settings are shown in Fig. 12. 

5.3.2. Efficiency uncertainty results 
The first 1000 IUE calculations are established using a mass of 1000 

kg. Once the IUE calculations are performed, we use GURU (see section 
3) to increase the initial 1000 models 8 times, by varying the hotspot 
relative concentrations. This step allows for overcoming the IUE limi
tation of varying this parameter. 

The first results, in Fig. 13, show the relative efficiency with one 
germanium detector. As expected, the influence of the unknown activity 
distribution is non negligible. It represents a new challenge in defining a 
reasonable penalizing geometry. 

These results show the uncertainty applied for one detector in the 
presence of hotspots within the waste package. However, operationally, 
each waste package is measured on each side as seen in section 3. 

In order to assess the activity ratio of the two detectors, we consider 
our feedback using four ELICA waste packages that were already 
measured and analyzed using the gamma spectrometry technique. The 
waste packages with the highest masses are selected as they induce 
higher uncertainties on the activity values when perturbing the hotspots 
parameters (i.e. waste package masses around 2650 kg). 

In case hotspots would be an important issue, performing a tomo
graphic scan of the waste to solve the inverse problem and then recon
struct the hotspots characteristics could be considered (Dumazertet al., 
2020)(Carrelet al., 2014). 

Tables 7 and 8 give the activity ratio measured for each waste 
package. We see that the contrast between two opposite faces is always 
below 3, confirming the choice of the hotspots concentration variation 
interval from the rest of the waste matrix. Moreover, the identified ra
dionuclides allow for covering the whole energy range of the efficiency 
calibration (from 122 keV to 1.7 MeV). The efficiency uncertainties are 
summarized in Table 9. 

6. Recommended Calibration efficiency curves using total 
uncertainty estimation 

After studying each uncertainty source due to each parameter vari
ation, we can now include a systematic error (bias) and a random un
certainty for each defined mass range described in Table 5. Table 10 and 
Table 11 summarize these results as a function of energy. The total bias 
represents the sum of the individual biases while the total uncertainty is 
evaluated by the quadratic sum of the individual uncertainties origi
nating from sections 5.1, 5.2 and 5.3. 

In order to take into account the uncertainties described in this 
document, a set of 15 efficiency calibration curves is generated, ac
cording to the 15 discretization of masses of the waste package (section 
5.2). Each efficiency curve is modelled with ISOCS considering the 
reference model:  

- Uniform source distribution within the waste package,  
- Expected material composition (see Table 1),  
- Reference mass (see Table 5). 

From each of the 15 efficiency calibration curve files generated, we 
modify the efficiency calibration and associated relative uncertainty at 1 
sigma. The Bias is applied to the efficiency values ε0(E) of the reference 
models (see Equation (9)). Then, the efficiency corrected from the bias is 
replaced (denoted here εμ(E) as it represents the expectation model). 

εμ(E)= ε0(E)(1+B) (9) 

Equation (9): Correction of efficiency in the efficiency calibration 
curve file to take into account the bias. 

In Equation (1), we establish the uncertainty (denoted kσ) as 
normalized by the reference model. Then, we express this uncertainty 
normalized to the expectation model (denoted μ in Fig. 7). This 
requirement comes from the efficiency calibration curve file. The effi
ciency uncertainty has to be linked to the efficiency value in this file. As 
we correct it from the bias and express the expected efficiency, we need 
to express the corrected uncertainty (denoted σμ) as a percentage of the 
bias-corrected, expected efficiency. We then derive Equation (10). 

kσμ = k
ε0(E)
εμ(E)

σ = k
σ

(1 + B)
, k= 1 (10) 

Equation (10): Correction of efficiency in the efficiency calibration 
curve file to take into account the uncertainty (expressed at 1 sigma). 

We sum this uncertainty kσμ quadratically with the intrinsic effi
ciency uncertainty described to replace the one of the efficiency cali
bration curve file. 

7. Conclusion 

This study demonstrates a novel qualification methodology to esti
mate the gamma activity results of the ELICA waste packages based on 
the gamma spectrometry technique. The ELICA waste package is char
acterized by the variability of the material density, material composi
tion, and activity heterogeneity. 

For the material composition, the relative efficiency uncertainty 
varies from 4.5% at 120 keV to 0.6% at 1 MeV. In addition, the bias is 
also relatively small, decreasing from − 7.3% at 120 keV to less than 
− 5.0% at 1 MeV because the perturbed models vary around the centered 

Table 5 
Efficiency calibration curves for different mass ranges and associated maximum 
error (considered as uncertainty at 2σ in the next of the document). Note the bias 
for the density variation is null since the reference model is centered for the 
various mass ranges.  

Curve 
number 

Reference 
mass (kg) 

Range of mass 
(kg) 

Maximum error on the efficiency 
(or uncertainty at 2 sigma) (%) 

1 650 600–700 8.3% 
2 750 700–800 7.1% 
3 850 800–900 6.3% 
4 950 900–1000 5.6% 
5 1100 1000–1200 10.0% 
6 1300 1200–1400 8.3% 
7 1500 1400–1600 7.1% 
8 1700 1600–1800 6.3% 
9 1900 1800–2000 5.6% 
10 2200 2000–2400 10.0% 
11 2600 2400–2800 8.3% 
12 3000 2800–3200 7.1% 
13 3500 3200–3800 9.4% 
14 4100 3800–4400 7.9% 
15 4700 4400–5000 6.8%  

Table 6 
Hotspot characteristics in the ISOCS “Complex box” template for the reference model.  

Details on the hotspot in the reference model 

Parameter reference 6.1a (mm) 6.2 (mm) 6.3 (mm) 6.4 (mm) 6.5 (mm) 6.6 (mm) Material Rel. Conc. Number of hotspots 
Value 330 225 257.5 495 337.5 386.3 reference 1.0 1  

a See Fig. 4 for correspondences between numbers and geometry parameter. For instance, 6.1, 6.2 and 6.3 refer to the hotspot dimensions while 6.4, 6.5 and 6.6 refer 
to the hotspot location. 
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reference model. For the purpose of the ELICA study, the radionuclides 
of interest have gamma rays with energies above 120 keV (Co-57 ray at 
122 keV) or above 1 MeV for the key radionuclides such as Co-60 and Sc- 
44. Hence, the variation of the elemental composition does not present 
an important contribution to the total uncertainty budget. On the other 
side, this study shows that the uncertainties that are due to the elemental 
composition could be important for waste characterizations that include 
actinides and transuranic nuclides with gamma ray energies below 120 
keV. 

The results show also that the activity heterogeneity has a more 
significant impact on the correction factors. The efficiency standard 
deviation ranges from 21% at 45 keV to 18% at 1 MeV. Moreover, the 
corresponding bias is also higher with values going respectively from 
− 39% to − 20% at 1 MeV. The higher bias originates from the addition of 
hotspots which are not present in the reference model. 

The final contributor to the correction factor is the density variation. 

Since the objective is to construct efficiency calibrations for different 
mass ranges that will be operationally used according to the measured 
mass of the waste packages, we target a maximum error of 10% on the 
efficiency value, due to the mass variation. For this purpose, 15 effi
ciency calibration curves are generated depending on the mass range of 
the package. 

The impact of all the parameters, on the activity results, is studied 
and a set of systematic and random errors is produced for all waste 
packages for each corresponding masse range. A set of correction factors 
are also recommended to define an upper limit of the efficiency values at 
95% confidence level (2σ). 

The uncertainty analysis shows that using one detector for spec
trometry measurements induces high efficiency uncertainties due to the 
activity heterogeneity of the waste package. For instance, the effi
ciencies of the perturbed models differ from the reference model by 
about 25% at 1 MeV. 

Table 7 
Activity ratios of the two sides per gamma lines of each waste package for 
around 1000 kg waste packages.  

Radionuclides Energy line (keV) P8-422 P8-462 P8-469 P8-494 

Na-22 1274 1.01  0.97 0.93 
Mn-54 834 1.26    
Co-57 122 1.45    
Co-58 810 1.52    
Co-60 1173 1.13 1.08 1.28 1.02 

1332 1.18 1.00 1.13 0.66 
Sb-124 602 2.81 0.45   

1690 2.71     

Table 8 
Activity ratios of the two sides per gamma lines of each waste package for the 
2650 kg waste packages.  

Radionuclides Energy line (keV) GK-949 GK-953 

Na-22 1274 0.97 0.71 
Mn-54 834 1.56 0.76 
Co-57 122 1.37 0.80 
Co-58 810 1.81 0.80 
Co-60 1173 1.15 0.87 

1332 1.20 0.87 
Zn-65 1115 1.23 0.85  

Table 9 
Efficiency uncertainties coming from heterogeneities within the waste package 
matrix (1σ).  

Energy (keV) Bias (%) Standard deviation (%) 

45 − 38.93 13.91 
50 − 38.42 14.15 
60 − 37.28 14.67 
70 − 36.07 15.15 
80 − 34.83 15.60 
90 − 33.63 16.03 
100 − 32.55 16.37 
110 − 31.63 16.61 
120 − 30.83 16.80 
150 − 29.03 17.14 
200 − 27.22 17.40 
300 − 25.27 17.57 
400 − 24.03 17.62 
600 − 22.21 17.65 
800 − 20.84 17.58 
1000 − 19.68 17.50 
1173 − 18.80 17.41 
1332 − 18.11 17.31 
1500 − 17.47 17.20 
2000 − 15.90 16.90 
2500 − 14.73 16.64 
3000 − 13.86 16.41  

Fig. 13. Relative efficiency value compared to the reference model for one 
detector measurement. 

Fig. 12. IUE settings for the hotspot calculation for the 1000 kg configuration.  
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The method described in this paper can easily be used for other waste 
types in other laboratories worldwide. 
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Table 10 
Summary of systematic error bias as a function of energy for efficiency 
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