
Computer Physics Communications 258 (2021) 107581

f
(
s
d
N
d
t

2

b
a

C
T

b

h
0

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Data Samplingmethods in theALICEO2 distributed processing system✩

Piotr Konopka a,b,∗, Barthélémy von Haller b

a Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al.
Mickiewicza 30, 30-059 Krakow, Poland
b European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland

a r t i c l e i n f o

Article history:
Received 6 May 2020
Received in revised form 17 July 2020
Accepted 26 August 2020
Available online 12 September 2020

Keywords:
CERN
ALICE
O2

Data Sampling
Message-based system
Distributed processing system
Data quality control
Pseudo-random number generators

a b s t r a c t

The ALICE experiment at the CERN LHC focuses on studying the quark-gluon plasma produced by
heavy-ion collisions. Starting from 2021, it will see its input data throughput increase a hundredfold,
up to 3.5 TB/s. To cope with such a large amount of data, a new online-offline computing system,
called O2, will be deployed. It will synchronously compress the data stream by a factor of 35 down to
100 GB/s before storing it permanently.

One of the key software components of the system will be the data Quality Control (QC). This
framework and infrastructure is responsible for all aspects related to the analysis software aimed at
identifying possible issues with the data itself, and indirectly with the underlying processing done both
synchronously and asynchronously. Since analyzing the full stream of data online would exceed the
available computational resources, a reliable and efficient sampling will be needed. It should provide
a few percent of data selected randomly in a statistically sound manner with a minimal impact on the
main dataflow. Extra requirements include e.g. the option to choose data corresponding to the same
collisions over a group of computing nodes.

In this paper the design of the O2 Data Sampling software is presented. In particular, the
requirements for pseudo-random number generators to be used for sampling decisions are highlighted,
as well as the results of the benchmarks performed to evaluate different possibilities. Finally, a large
scale test of the O2 Data Sampling is reported.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. The ALICE experiment

ALICE (A Large Ion Collider Experiment) [1] is one of the
our major particle detectors at the CERN Large Hadron Collider
LHC). It is designed to study the quark-gluon plasma by ob-
erving fundamental and composite particles appearing in the
ebris produced by heavy-ion and proton collisions. Starting from
ovember 2009, the ALICE experiment has successfully recorded
ata, which allowed several measurements of the properties of
hat primordial state of matter.

. The ALICE upgrade

During the years 2019–2020 CERN is taking an operation
reak, called the Long Shutdown 2 (LS2) [2], during which the
ccelerator complex and associated experiments are refurbished

✩ The review of this paper was arranged by Prof. David W. Walker.
∗ Corresponding author at: Faculty of Electrical Engineering, Automatics,
omputer Science and Biomedical Engineering, AGH University of Science and
echnology, al. Mickiewicza 30, 30-059 Krakow, Poland.

E-mail addresses: piotr.jan.konopka@cern.ch (P. Konopka),
arthelemy.von.haller@cern.ch (B. von Haller).
ttps://doi.org/10.1016/j.cpc.2020.107581
010-4655/© 2020 The Author(s). Published by Elsevier B.V. This is an open access a
and upgraded. The ALICE experiment will, among many activi-
ties, replace entirely the key tracking sub-detectors in order to
achieve higher resolution and increase the amount of data they
produce [3].

The necessity to move away from hardware triggering will
make a crucial difference from the data acquisition point of view.
The physics topics that will be covered by ALICE after the LS2
are characterized by a very small signal-to-noise ratio, which will
result in triggering techniques being inefficient or even inappli-
cable. To the same consequences leads a need to cope with an
increased heavy-ion collision rate of 50 kHz, which will require
the ALICE’s Time Projection Chamber to send data in a continuous
mode to avoid dead time generated by triggers and event pile-up.
It is estimated that the full upgraded detector will generate a data
stream of up to 3.5 TB/s, which is a number 100 times higher than
the highest values achieved in the last data taking period.

To cope with the given requirements a new online-offline
computing system, called O2, is being deployed [4]. The software
relies on message-based architecture, consisting of multiple pro-
cesses exchanging data via message queues with the zero-copy
approach. The computing farm is estimated to consist of around
1000–2000 servers arranged into two major groups. The First
Level Processors (FLPs) will perform detector-specific tasks, while
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2020.107581
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107581&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:piotr.jan.konopka@cern.ch
mailto:barthelemy.von.haller@cern.ch
https://doi.org/10.1016/j.cpc.2020.107581
http://creativecommons.org/licenses/by/4.0/


P. Konopka and B. von Haller Computer Physics Communications 258 (2021) 107581

t
t
h
F
s
t
b
t
c

c
b
a
c
a

3

t
w
i
i
p
b
e
d

he Event Processing Nodes (EPNs) will take care of data aggrega-
ion from all FLPs for a given time-period. The architecture will be
ighly heterogeneous. The Common Readout Units (CRUs) with
PGAs (Field-programmable gate array) will receive data from the
ub-detectors on optic links, optionally compress it and directly
ransfer to the FLPs’ memory [5]. Each FLP is expected to host
etween one and three of these FPGA cards. Whenever suitable,
he processing tasks on the EPNs will be delegated to graphics
ards.
During the online processing, the raw data will be filtered,

ompressed and reconstructed, while not keeping the original
it-stream. Given the risk associated with losing precious data,
n immediate data Quality Control (QC) is crucial to assess the
orrectness of the detectors’ operations, their calibration as well
s the data processing itself [6].

. Quality Control in the O2 system

The online data Quality Control will be performed by more
han 100 QC Tasks running each in parallel on many nodes, which
ill spy on various data types generated in consecutive process-

ng stages. These will be user algorithms unified under a common
nterface and executed by the framework. The algorithms will
roduce Monitor Objects out of data, which are expected to
e mostly histograms of varied dimensions. QC Tasks will run
ither on the main processing machines or on dedicated servers,
epending on their computational cost.
In the O2 system partial data will be distributed among mul-

tiple nodes. When QC Tasks will be run on the main processing
machines in parallel, they will produce incomplete results, which
will be collected and combined by Mergers. In case that a parallel
QC Task shall be distributed among 750 EPNs (the maximum
expected number), one Merger will have to sustain a flow of 750
objects updated each minute.

Complete Monitor Objects will constitute a base for Qualities
– Null, Bad, Medium or Good marks with optional metadata.
These will be produced by user-written Checks, executed by the
framework.

Post-processing software will further transform a portion of
Monitor Objects in order to obtain correlations between various
observables and trend them in time. The results will also be
evaluated and assigned a Quality, in this case relying partially on
machine learning methods.

A database will permanently store Monitor Objects and Quali-
ties, discarding only some intermediate versions generated during
data-taking runs. Shifters and experts will examine these in a
general Quality Control GUI or dedicated applications based on
the same web-based framework.

4. Data sampling requirements

Moving the full data stream to QC Tasks, as well as analyzing
it, will require excessive CPU, memory and bandwidth resources.
Therefore, whenever possible, the QC Tasks will perform the
quality assessment based on a fraction of the events which might
be selected randomly or by matching certain criteria. Data of
different structure and generated on several processing stages
will need to be evaluated. In rare cases, the main data stream
should be blocked, to make sure that there are no messages
dropped on the way to a task.

The task of sampling and providing the data to QC tasks as well
as other potential clients will be performed by the Data Sampling
software, which is the topic of this paper.
2

Fig. 1. The message-passing process topology.

Fig. 2. A Dispatcher’s inner logic example.

5. Data sampling design

Fig. 1 presents an example of the message-passing process
topology which incorporates a main processing chain, Quality
Control infrastructure and Dispatchers. The latter are the enti-
ties responsible for sampling and forwarding data. The design
foresees one or more parallel Dispatchers, which subscribe to
messages produced by the main processing workflow, receiving
them in a round-robin schedule. Selected messages are passed
accordingly to local and remote clients.

The characteristics of desired data are defined in the Data
Sampling Policies (Fig. 2). Messages are matched to Policies by
comparing their headers. The rules of passing data forward can be
specified as a set of Data Sampling Conditions, which can perform
for example:

• Random sampling
• Filtering messages matching certain payload size range
• Filtering a number of consecutive messages in a given inter-

val
• Any custom filtering, defined by inheriting the Data Sam-

pling Condition class

A Dispatcher can be reconfigured at run-time — Data Sampling
Policies can be switched on and off, and the list of Data Sampling
Conditions can be modified. Together with a passed message
payload, the Dispatcher pushes an additional header at the top
of the header stack. It encapsulates potentially useful information
i.e. sampling decision time, total numbers of matching messages
seen and passed.

The features provided by the design allow for an advanced
data selection, which should help to avoid transporting unneces-
sary messages, therefore minimizing the amount of required CPU,

memory resources and bandwidth. Especially, one can consider



P. Konopka and B. von Haller Computer Physics Communications 258 (2021) 107581

m
o
w

6

6

i
i
s
m
b
s
2

t
s
n
t

oving from the traditional approach of evaluating frequency
f certain events in a histogram to a more lightweight method,
hich involves filtering and counting only unwanted ones.

. Statistical soundness of random sampling

.1. Rationale and approaches for sampling data

In many cases analyzing only a portion of the full data stream
s completely sufficient, provided that the samples are chosen
n a statistically sound manner and a desired percent of data
amples is successfully passed to clients. Selecting every 100th
essage might be indeed simple and efficient performance-wise,
ut at the same time it might introduce unwanted biases if
ampled data stream contains any patterns, for example every
5th payload being much larger.
As the first level of processing in the new ALICE data acquisi-

ion system will be sub-detector-dependent, parts of data corre-
ponding to the same events will be spread over a large group of
odes, though identified with a common identifier, later referred
o as TimesliceID. It introduces an additional level of difficulty
to provide data to QC tasks, which need samples from multiple
machines, especially given that the correct order of arriving mes-
sages is not guaranteed. Choosing pseudo-randomly a fraction of
related messages would require either having a centrally-driven
decision-making mechanism or having each Dispatcher operate
independently, while taking the same decisions.

The first alternative might be problematic to implement. Dis-
tributing and storing decisions beforehand for all possible Timesli-
ceIDs would require extensive amounts of memory (around 18 EB
for 64-bit TimesliceID). On the other hand, requesting and receiv-
ing sampling decisions in real-time from a central node would
introduce a significant overhead. A ping measurement showed
an average round-trip time of 145 µs in a setup of two servers
with Intel Ethernet CNA X520 cards connected with each other
via a Dell Force10 S4810 ultra-low-latency switch. Because of
that, this approach would not fit the expected message rates of
tens of thousands messages per second on each computing node.
Waiting for sampling decisions synchronously would significantly
slow down the performance, while receiving the answers asyn-
chronously would require additional buffering of messages, in-
creasing RAM usage. Also, a central decision-making node would
constitute a single point of failure and its load would rise pro-
portionally to the number of requests, making this solution more
difficult to scale.

To follow the decentralized approach, one would need to use
a pseudo-random number generator (PRNG), which can return
a value given a seed and an input number (respectively: a data
acquisition run number and a TimesliceID in this case). Its result
should be deterministic, independent from computer architecture
and, while not being completely random, it should satisfy the
statistical soundness requirements. As most PRNGs are intended
to produce either ones or zeros with equal probability or equally
distributed numbers in a range of [0, 1], additional operation has
to be performed in order to receive positive decisions with a
desired probability (Eq. (1)). A random number rand is compared
with a threshold, which is a product of the fraction parameter and
the highest possible random number randmax. Having a greater or
equal comparison for negative decisions prevents any messages
to be dispatched when fraction = 0 is set.

Decision =

{
1 rand < fraction · randmax

0 rand ≥ fraction · randmax
(1)
3

6.2. Evaluated sampling methods

Several pseudo-random number generation methods, which
could fulfill the presented needs, have been considered. The re-
search was narrowed to those which have a ready-to-use, open-
source, implementation in C++. The following methods have been
evaluated:

• PCG (Permuted Congruential Generator) [7] which has a
jump ahead or backwards feature. This allows the user to
retrieve a pseudo-random number corresponding to any
TimesliceID by iterating the state forward or backward. The
cost of jumping is in order of O(log k), where k is the length
of the jump. In particular, the pcg32_fast variation was
tested.

• PRNGs available in the ROOT framework [8] unified under
a common interface, i.e. TRandom, TRandom1, TRandom2,
TRandom3, TRandomMT64, TRandomRanlux48, TRandom-
MixMax17, TRandomMixMax. Since none of them provided
a possibility to move through the state freely, a workaround
has been applied. Before requesting a new random value, a
PRNG was reinitialized with a product of seed and Times-
liceID. However, this approach was expected to decrease
performance and potentially impair the randomness’ quality
— the scale of these effects had to be evaluated.

• Two simple hash functions, one of them based on the
splitmix64 generator [9], found on the website [10]. Sim-
ilarly to the workaround for ROOT PRNGs, the input value
was being multiplied by a seed. The second algorithm took
use of the hash_combine function from the boost library
[11], which can produce a hashed value out of two argument
numbers.

6.3. Sampling methods tests

The presented PRNGs had to be examined in an environment
representing the use-case of the Data Sampling software. The
dieharder test suite [12] has been chosen to evaluate the gener-
ated numbers which were used for comparison with a threshold
value (Eq. (1)). All tests in the package are executed in a similar
fashion (described in detail in [13]). The benchmarks are run
multiple times, each one resulting in a single statistic, which is
transformed into a p-value. By default, 100 p-values are produced,
however, this number is configurable. In case that tested binary
sequences are truly random, the resulting p-values should be
uniformly distributed in the range of [0, 1], which is checked
using the Kolmogorov–Smirnov test. This way, obtaining a large
portion of seemingly acceptable, but closely packed p-values is
treated as not likely to be random (e.g. three tests resulting in
p-values 0.271, 0.272, 0.275). The philosophy of dieharder tests
assumes that one can never confirm a PRNG randomness, but
only disprove it. Moreover, a good generator might occasionally
fail the tests by accidentally producing an unlikely bit sequence,
therefore, one should not take one result as decisive. The default
number 100 of p-values in one test run makes a compromise be-
tween the test duration and accuracy, but it should be increased
in case of receiving ambiguous results.

In comparison with just the dieharder suite, the PRNGs
included in the ROOT framework were at disadvantage, since
they produced floating-point numbers between 1 and 0, which
cannot be completely random bitwise due to notation method,
even after scaling it to maximum integer values. At the same
time, the dieharder tests are designed to examine the equal
probability of 0s and 1s. For these reasons, aside from using
the test suite, additional evaluation methods have been pro-
posed, which are explicitly designed to analyze bitstreams with
non-equal probabilities of seeing 1 or 0.



P. Konopka and B. von Haller Computer Physics Communications 258 (2021) 107581

c
T
l
d
m
r
s
p

χ

Fig. 3. The χ2 test (A).

Fig. 4. The Runs test (B).

Fig. 5. The FFT test (C).

The first test (A) is supposed to be the easiest to pass. It
involves counting the number of 1’s in a sequence of N decisions,
omputing a χ2 value (Eq. (2)) (Fig. 3) and a p-value with the
Math::Prob function in the ROOT package. Following the phi-
osophy of the dieharder suite, the test is ran 100 times and the
istribution of p-values is checked to be uniform using the Kol-
ogorov Test. The result should indicate whether a given method

eturns the specified amount of positive decisions while being
tatistically sound. However, it cannot possibly detect repeating
atterns of 1’s and 0’s.

2
= 2

(N · fraction − trues)2

N · fraction
(2)

The second benchmark (B) is supposed to address situations
when 1’s are distributed among the bitstream with ‘suspiciously’
repetitious arrangement (Fig. 4). The distances between consec-
utive 1’s in a sequence of N decisions are stored in a histogram.
They are compared with the predicted negative binomial distri-
bution (Eq. (3)), which for this case takes the form of Eq. (4). The
χ2 is obtained with the TH1::ChiSquaremethod against the ex-
pected distribution Eq. (4). To obtain the p-value, TMath::Prob
is used. Again, the test is performed 100 times and the distribu-
tion of resulting p-values is checked to be uniform.

f (k; r, p) ≡ Pr(X = k) =

(
k + r − 1

k

)
pk(1 − p)r (3)

f (k; 1, 1 − f ) = (1 − f )kf (4)

This test might still be passed by a properly designed se-
quences of bits. Thus, to complement it, the sequence of distances
between following 1’s was additionally analyzed in frequency
domain, using Fast Fourier Transform (C) (Fig. 5). It is expected to
uncover some repetitive patterns in the form of uneven frequen-
cies distribution. The main benchmark result is a sum of stan-
dard deviations of frequencies’ powers (excluding the constant),
calculated for 100 test runs.
4

The statistics toolbox provided in the ROOT framework has
been used to implement the tests. For validation, the benchmarks
have been run against the Linux /dev/urandom source.

Aside from the randomness benchmarks, also the performance
of each method has been evaluated using a server with Intel(R)
Xeon(R) CPU E5-2640 v3 @ 2.60 GHz.

6.4. Tests results

Table 1 presents the tests results.
The dieharder suite tests consumed raw numbers generated

by each method. For the reasons mentioned earlier (floating-
point numbers generators being in disadvantage), its results were
treated only as a suggestion rather than definitive confirmation
or disqualification of a method. In the case of PRNGs provided by
ROOT framework, it is crucial to state that the negative results do
not indicate a bad quality of these generators as they were abused
by setting their seed each time before drawing a new number.
This fact hindered their computational performance as well.

For the first and second custom randomness tests, achiev-
ing a p-value higher than 0.005 and smaller than 0.995 was
put as a requirement. It corresponds to the probability of 1%
that tested bit sequences would be incorrectly perceived as too
bad or suspiciously good while actually being random, which
was an acceptable risk in this context. In the dieharder suite
exceeding these thresholds indicates a weak test result, while
achieving values out of the range of [0.0005, 0.9995] is treated
as a test failure. The sum of standard deviations returned by the
third test was supposed to be close to the result obtained for
the /dev/urandom generator. The three benchmarks were ran
assuming fraction = 0.01.

The results show that the family of TRandom generators can-
not be successfully used in the described application. Setting
the seed hinders the performance and possibly the randomness
as well. The methods which have very large state (MixMax)
suffered the most, being unable to provide enough data to the
benchmarks in a sufficient time. The two methods which took
advantage of hash functions produced surprisingly satisfying re-
sults. Their simplicity ensured an excellent performance, while
providing a good quality of randomness. The PCG generator has
passed each benchmark and it has proved to be lightweight in
terms of computational resources needs. The result of 2.95 ns
per call was achieved for evaluating incremental timesliceIDs.
For more realistically distributed values it requires additional 5–
20 ns, which is still expected to be negligible in comparison to
more computationally demanding parts of the code.

PCG has been chosen for the application, as its good quality is
also confirmed by other studies [14,15]. At the same time, in case
there is a need for performance improvement, the possibility to
switch to the first hash function is still available.

7. Comprehensive data sampling benchmarks

Having chosen the random sampling method, a global perfor-
mance benchmark was carried out. Its aim was to measure the
maximum amount of messages which can be passed forward by
Dispatcher in various conditions. Fig. 6 presents the topology of
processes taking part in the test. A configurable number of data
producers publishes messages at the highest possible rate. They
are received and forwarded by one or more parallel Dispatchers.
All of the messages are sent to the receiver, which is only used as
an endpoint of the topology. Each configuration was ran 5 times
for 5 min to observe variations of the results, which could occur
due to e.g. changing affiliation between processes and CPU cores.
Moreover, as the performance of Dispatcher is largely influenced



P. Konopka and B. von Haller Computer Physics Communications 258 (2021) 107581

b
m
t
o
I

o
W
4
h
p
p
o
f
n
D

a
t
t
p
o

Table 1
The test results of random sampling methods for N = 107 and fraction = 0.01.
PRNG Test

dieharder ns/call A (KS test p-value) B (KS test p-value) C (σ ) (lower is better)

Hash function 1 PASSED 2.66 0.0101 0.2809 1552
Hash function 2 A dozen FAILED 2.07 0.5806 0.3667 1551
PCG PASSED 2.95* 0.2106 0.8127 1552
TRandom All FAILED 7.97 0.0000 0.0000 6067
TRandom1 All FAILED 300.2 0.0000 0.0000 2665
TRandom2 A half FAILED 30.60 0.1545 0.0000 1554
TRandom3 PASSED 1378 0.0243 0.6994 1552
TRandomMT64 PASSED 2360 0.0541 0.9671 1552
TRandomRanlux48 Almost All FAILED 118.1 0.0000 0.0000 2418
TRandomMixMax17 Too slow 22224 0.0101 0.5806 1551
TRandomMixMax Too slow 4487360 Too slow Too slow Too slow
/dev/urandom PASSED 923.0 0.0366 0.2105 1552
T
e

i
r
t
c
p
o
p
l

8

Q
o
p
r
s

p
w
d
h

a
s
c
u
t

Fig. 6. The performance benchmark’s process topology.

Fig. 7. Dispatcher’s performance depending on the number of data producers.

y the desired fraction of messages passed forward, the bench-
ark required repeating it for two extreme values (100% and 0%)

o develop a better understanding of the performance range. All
f the presented results were achieved on a machine with Dual
ntel(R) Xeon(R) CPU E5-2640 v3 @ 2.60 GHz and 128 GB RAM.

The goal of the first test was to understand how the number
f message producers influences the performance of Dispatchers.
hen very small (payload of 256 B) messages are distributed,
producers are needed to saturate Dispatcher and reach the

ighest message passing rate of ∼59000 per second, while for 8
roducers the peak performance of ∼100000 messages rejected
er second was reached (Fig. 7). For larger payload sizes, the
verhead of copying memory takes a bigger toll (Fig. 8). As a room
or improvement, the decrease of received messages for larger
umbers of producers might be mitigated by designating multiple
ispatchers to separate channel groups.
The relationship between the amount of processed messages

nd the payload size is presented in Fig. 9. The plot confirms
hat transferring data with too fine granularity hinders the overall
hroughput — the performance over 2 GB/s was achieved for
ayload sizes between 256 kB and 1 GB, with the highest value
f 3480 MB/s with 256 kB payloads. The performance of raw
 o

5

Fig. 8. Dispatcher’s performance depending on the number of data producers.

message passing (1 B sized payloads) reaches ∼58000 messages/s
when dispatched and over ∼114000 messages/s when ignored.
his translates to around 8.7 µs required to receive and reject
ach message.
A possible way to increase the number of processed messages

s to spawn parallel Dispatchers which can receive data in the
ound-robin order. This method, of course, is not anticipated
o reduce the total CPU and memory resources required, but it
onstitute an additional approach of improving the Data Sampling
erformance. Fig. 10 does not show any improvements for cases
f dispatching very small messages. However, using parallel Dis-
atchers can increase the total number of sampled messages for
arger payload sizes, as indicated in Fig. 11.

. Summary

The Data Sampling software plays a significant role in the data
uality Control of the O2 system. Its efficiency will have an impact
n how much data can be analyzed without disturbing the main
rocessing flow. It is intended to help reducing the bandwidth
equirements, especially by providing several methods of data
election and keeping sampling statistics.
The random sampling methods were thoroughly evaluated to

rovide statistically sound representation of data to the QC Tasks
hile keeping the performance overhead minimal. A set of ran-
omness benchmarks, which can be applied to similar use-cases,
ave been presented.
Global performance tests of the Data Sampling software have

lso been carried out in order to achieve a thorough under-
tanding of its performance and how it is influenced by different
onfigurations. The authors hope that this research will prove
seful to fellow designers and developers of message-based sys-
ems, as the results are expected to map to analogous topologies
f processes.



P. Konopka and B. von Haller Computer Physics Communications 258 (2021) 107581

d

d

D

c
t

Fig. 9. Dispatcher’s performance depending on message payload size.
Fig. 10. Dispatcher’s performance depending on the number of parallel
ispatchers (payload size of 256 B).

Fig. 11. Dispatcher’s performance depending on the number of parallel
ispatchers (payload size of 2 MB).

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.
6

Funding

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

References

[1] ALICE Collaboration, J. Instrum. 3 (2008) S08002, http://dx.doi.org/10.1088/
1748-0221/3/08/S08002.

[2] M. Bernardini, K. Foraz, CERN Yellow Rep. 2 (00) (2016) 290, URL https:
//e-publishing.cern.ch/index.php/CYR/article/view/159.

[3] The ALICE Collaboration, J. Phys. G: Nucl. Part. Phys. 41 (8) (2014) 087001,
URL http://stacks.iop.org/0954-3899/41/i=8/a=087001.

[4] The ALICE Collaboration, Technical Design Report for the Upgrade of the
Online–Offline Computing System, Tech. Rep. CERN-LHCC-2015-006, CERN,
2015.

[5] J. Mitra, S. Khan, S. Mukherjee, R. Paul, J. Instrum. 11 (03) (2016) C03021,
http://dx.doi.org/10.1088/1748-0221/11/03/c03021.

[6] B. von Haller, P. Lesiak, J. Otwinowski, The ALICE Collaboration, J. Phys.
Conf. Ser. 898 (3) (2017) 032001, URL http://stacks.iop.org/1742-6596/898/
i=3/a=032001.

[7] M.E. O’Neill, PCG: A Family of Simple Fast Space-Efficient Statisti-
cally Good Algorithms for Random Number Generation, Tech. Rep.
HMC-CS-2014-0905, Harvey Mudd College, Claremont, CA, 2014.

[8] R. Brun, F. Rademakers, ROOT - an object oriented data analysis framework,
1996, pp. 81–86, URL http://root.cern.ch/.

[9] S. Vigna, A fixed-increment version of Java 8’s Splittable Random generator,
URL http://xorshift.di.unimi.it/splitmix64.c.

[10] Lear, T. Mueller, What integer hash function are good that accepts
an integer hash key? Stack Overflow, URL https://stackoverflow.com/
questions/664014/what-integer-hash-function-are-good-that-accepts-an-
integer-hash-key/12996028#12996028.

[11] D. James, Combining hash values, URL https://www.boost.org/doc/libs/1_
70_0/doc/html/hash/combine.html.

[12] R.G. Brown, D. Eddelbuettel, D. Bauer, Dieharder: A random number test
suite, URL http://webhome.phy.duke.edu/~rgb/General/dieharder.php.

[13] R.G. Brown, dieharder(1) - Linux man page, URL https://linux.die.net/man/
1/dieharder.

[14] J. Lockhart, K. Rawashdeh, C. Purdy, Verification of random number
generators for embedded machine learning, 2018, pp. 411–416, http://dx.
doi.org/10.1109/NAECON.2018.8556780.

[15] D. Lemire, Testing non-cryptographic random number generators: my
results, URL https://lemire.me/blog/2017/08/22/testing-non-cryptographic-
random-number-generators-my-results/.

http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
https://e-publishing.cern.ch/index.php/CYR/article/view/159
https://e-publishing.cern.ch/index.php/CYR/article/view/159
https://e-publishing.cern.ch/index.php/CYR/article/view/159
http://stacks.iop.org/0954-3899/41/i=8/a=087001
http://refhub.elsevier.com/S0010-4655(20)30279-4/sb4
http://refhub.elsevier.com/S0010-4655(20)30279-4/sb4
http://refhub.elsevier.com/S0010-4655(20)30279-4/sb4
http://refhub.elsevier.com/S0010-4655(20)30279-4/sb4
http://refhub.elsevier.com/S0010-4655(20)30279-4/sb4
http://dx.doi.org/10.1088/1748-0221/11/03/c03021
http://stacks.iop.org/1742-6596/898/i=3/a=032001
http://stacks.iop.org/1742-6596/898/i=3/a=032001
http://stacks.iop.org/1742-6596/898/i=3/a=032001
http://refhub.elsevier.com/S0010-4655(20)30279-4/sb7
http://refhub.elsevier.com/S0010-4655(20)30279-4/sb7
http://refhub.elsevier.com/S0010-4655(20)30279-4/sb7
http://refhub.elsevier.com/S0010-4655(20)30279-4/sb7
http://refhub.elsevier.com/S0010-4655(20)30279-4/sb7
http://root.cern.ch/
http://xorshift.di.unimi.it/splitmix64.c
https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key/12996028#12996028
https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key/12996028#12996028
https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key/12996028#12996028
https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key/12996028#12996028
https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key/12996028#12996028
https://www.boost.org/doc/libs/1_70_0/doc/html/hash/combine.html
https://www.boost.org/doc/libs/1_70_0/doc/html/hash/combine.html
https://www.boost.org/doc/libs/1_70_0/doc/html/hash/combine.html
http://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://linux.die.net/man/1/dieharder
https://linux.die.net/man/1/dieharder
https://linux.die.net/man/1/dieharder
http://dx.doi.org/10.1109/NAECON.2018.8556780
http://dx.doi.org/10.1109/NAECON.2018.8556780
http://dx.doi.org/10.1109/NAECON.2018.8556780
https://lemire.me/blog/2017/08/22/testing-non-cryptographic-random-number-generators-my-results/
https://lemire.me/blog/2017/08/22/testing-non-cryptographic-random-number-generators-my-results/
https://lemire.me/blog/2017/08/22/testing-non-cryptographic-random-number-generators-my-results/

	Data Sampling methods in the ALICE O2 distributed processing system
	The ALICE experiment
	The ALICE upgrade
	Quality Control in the O2 system
	Data sampling requirements
	Data sampling design
	Statistical soundness of random sampling
	Rationale and approaches for sampling data
	Evaluated sampling methods
	Sampling methods tests
	Tests results

	Comprehensive data sampling benchmarks
	Summary
	Declaration of competing interest
	
	References


