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Abstract

In this paper we describe RooFitUnfold, an extension of the RooFit statistical
software package to treat unfolding problems, and which includes most of the unfolding
methods that commonly used in particle physics. The package provides a common
interface to these algorithms as well as common uniform methods to evaluate their
performance in terms of bias, variance and coverage. In this paper we exploit this
common interface of RooFitUnfold to compare the performance of unfolding with the
Richardson-Lucy, Iterative Dynamically Stabilized, Tikhonov, Gaussian Process, Bin-
by-bin and inversion methods on several example problems.

1 Introduction

In High Energy Physics (HEP) and in many other fields one often measures distributions of
quantities such as particle energies or other characteristics of observed events. Because the
experimental apparatus (the “detector”) inevitably has a limited resolution, the measured
(or “reconstructed”) value of the quantity in question will differ in general from its true
value. This results in a distortion or smearing of the measured distribution relative to
what would be obtained if the detector had perfect resolution. The statistical procedure of
estimating the true distribution from the directly measured one is usually called unfolding in
HEP, or deconvolution in many other fields. Unfolding algorithms and their implementation
in software have been widely discussed in HEP (see, e.g., Refs. [5, 23, 6, 11, 19, 2, 3]).

In this paper we describe an extension of the statistical software RooFit [22] to treat
unfolding problems called RooFitUnfold. The unfolding algorithms implemented in the
package and studied here include: the Richardson-Lucy algorithm [17, 14, 7], Iterative Dy-
namically Stabilized [15] and Tikhonov [21, 10, 20] unfolding, as well as unregularised and
bin-by-bin unfolding. RooFitUnfold provides a common interface to the algorithms and to
methods for evaluating their performance.

In Sec. 2 we provide a mathematical description of the unfolding problem and discuss
various concepts that enter into the algorithms that are studied. Section 3 then presents
the specific algorithms implemented in RooFitUnfold and also describes how a number of
important quantities of interest (bias, variance, coverage probability) are found using the
software. In Sec. 4 we illustrate use of the different algorithms by means of several examples
that compare properties of the unfolded distributions. Conclusions are given in Sec. 5.
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2 Mathematics of the unfolding problem

A brief description is provided here of the mathematics behind the unfolding algorithms
studied in this paper. A definition of the unfolding problem is presented in Sec. 2.1 and
some methods for its solution are described in Sec. 2.2. These methods require one to choose
the degree of smoothness imposed on the solution, as discussed in Sec. 2.3.

2.1 Definition of the unfolding problem

The unfolding problem is formulated here largely following the notation and terminology of
Ref. [5] (Ch. 11). Consider a counting experiment where a histogram of some variable x
is used to construct a histogram. Let ~µ = (µ1, . . . , µM ) be the expected number of events
in M bins that would be found if the variable x could be measured exactly for each event.
We will call this the “true histogram”, and the goal of unfolding is to estimate these M
parameters. We will use hats to denote the estimators, i.e., ~̂µ = (µ̂1, . . . , µ̂M ).

Alternatively one may wish to estimate the probabilities

pi =
µi
µtot

, (1)

where µtot =
∑M
i=1 µi is the total expected number of events. Below we will focus on the

case where the goal is to estimate the M components of the true histogram ~µ.
Suppose that for each event the measured value of the variable x differs in general from

the true value by some random amount owing to the limited resolution of the detector. Let us
suppose that the measured values are used to construct a histogram ~n = (n1, . . . , nN ), whose
bins may in general differ in their boundaries and total number N relative to the M bins of
the true histogram. These data values follow some probability distribution, often taken to be
Poisson or approximately Gaussian, and have expectation values ~ν = E[~n] = (ν1, . . . , νN ).
We will refer to ~n as the data histogram (or simply “the data”) and ~ν as the “expected data
histogram”.

The expected data histogram ~ν has a form that differs from what would be obtained
with perfect resolution since events with a true value of the variable x in a given bin may
be measured in a different one. This migration of events may be expressed as (see, e.g.,
Ref. [5])

νi =

M∑
j=1

Rijµj , (2)

where i = 1, . . . , N and the response matrix,

Rij = P (measured value in bin i|true value in bin j) , (3)

gives the conditional probability for an event to be reconstructed in bin i of the data his-
togram given that its true was in bin j of the true histogram. The response matrix can be
determined using simulated events combined with Monte Carlo modelling of the detector’s
response. It is to first approximation dependent only on the properties of the measurement
device, but it can depend at some level on the physics model used to generate the simulated
events. For purposes of the studies presented in this paper we will suppose that the response
matrix is known with negligible error, and we focus here on the uncertainties that result as
a consequence of the unfolding procedure itself.

The effect of migration between bins is to smear out peaks or fine structure in ~µ resulting
in a flatter histogram for ~ν. The goal of unfolding is to estimate the true histogram, i.e.,
the parameters ~µ = (µ1, . . . , µM ) using the data values ~n = (n1, . . . , nN ) combined with the
knowledge of the detector’s response through the matrix R. The data are described with a
given probability model that determines the likelihood function L(~µ) = P (~n|~µ). Often the
ni are modelled as independent and Poisson distributed, so that the likelihood is
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L(~µ) =

N∏
i=1

νni
i

ni!
e−νi , (4)

where νi =
∑M
j=1Rijµj . Alternatively, the observed number of events may be modelled as

following a Gaussian distribution with mean νi and standard deviation σni
. In this case the

log-likelihood is (up to an additive constant) a sum of squares,

lnL(~µ) = −1

2

N∑
i=1

(ni − νi)2

σ2
ni

. (5)

If the N ×M response matrix R is in fact square, i.e., equal numbers of bins for both ~µ and
~ν, and if it is nonsingular, then ~µ = R−1~ν. In this case one can take the estimators for ~µ to
be

~̂µ = R−1~n . (6)

This follows (see, e.g., Ref. [5]) from the likelihoods above for which the maximum-likelihood
estimators for the νi are ν̂i = ni.

The most important properties of the estimators that we investigate here are the bias
(difference between estimator’s expectation and parameter’s true values),

bi = E[µ̂i]− µi , (7)

and the covariance matrix cov[µ̂i, µ̂j ], in particular its diagonal elements (the variances)
V [µ̂i] (also written σ2

µ̂i
). In the Poisson case with a square nonsingular response matrix,

the maximum-likelihood estimators have zero bias and their covariance equals the minimum
variance bound (see, e.g., Ref. [5]). Nevertheless the variances are extremely large and in this
sense the unfolding problem is said to be ill-posed [9]. In unfolding one therefore attempts
to reduce the variance through some form of regularisation, and this necessarily introduces
some bias.

2.2 Solutions to the unfolding problem

To suppress the large variance of the maximum-likelihood estimator one chooses a ~̂µ that
does not correspond to the maximum of the log-likelihood lnLmax, but rather one considers
a region of ~µ-space where lnL(~µ) is within some threshold below lnLmax, and out of these
the distribution is chosen that is smoothest by some measure. This can be achieved by
maximising not lnL(~µ) but rather a linear combination of it and a regularisation function

S(~µ), which represents the smoothness of the histogram ~µ. That is, the estimators ~̂µ are
determined by the maximum of

ϕ(~µ) = lnL(~µ) + τS(~µ) , (8)

where the regularisation parameter τ determines the balance between the two terms. Equiva-
lently one can take the regularisation parameter to multiply lnL(~µ), as done, e.g., in Ref. [5].

The regularisation function S(~µ) can be chosen in a number of ways (see, e.g., Refs. [5,
23]). Two of the algorithms studied here (TUnfold and SVD; see Sec. 3.1) use Tikhonov
regularisation [21] based on the mean squared second derivative of the unfolded distribution.
For discrete bins ~µ, the Tikhonov regularisation function can be expressed as (see, e.g., [5])

S(~µ) = −
M−2∑
i=1

(−µi + 2µi+1 − µi+2)2. (9)

If the regularisation parameter τ is set to zero one obtains the maximum-likelihood estima-
tors (the “unregularised solution”, cf. Sec. 3.1.7), which have zero (or small) bias but very
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large statistical variance. In the limit of large τ the resulting ~̂µ is the maximally smooth
distribution corresponding to the maximum of S(~µ). This is independent of the data and
thus has zero statistical variance, but results in a large bias.

Other algorithms to construct regularised estimators do not involve maximisation of a
function such as the ϕ(~µ) in Eq. (8). For example, the Richardson-Lucy [14, 17] iterative
method, e.g., as implemented by D’Agostini [7] (see Sec. 3.1.1), a trial solution is succes-
sively updated. The number of updates plays the role of the regularisation parameter, such
that zero iterations gives the maximally smooth trial solution and for a large number the
estimators tend towards those of maximum likelihood. In the method based on Gaussian
Processes (GP) by Bozson et al. [4] (see Sec. 3.1.5) the regularisation is set through the
kernel function of the GP. For essentially all unfolding methods the analyst must choose,
explicitly or otherwise, some parameter that regulates the degree of smoothness imposed on
the solution and thus determines the trade-off between bias and variance in the estimators
~̂µ.

2.3 Determining the regularisation parameter

Regularised unfolding thus requires a choice of algorithm by, for example, selecting a regu-
larisation function S(~µ), as well as some prescription for setting the degree of regularisation,
e.g., through the parameter τ for Eq. (8) or the number of iterations used in the Lucy-
Richardson algorithm. The regularisation parameter determines the trade-off between bias
and statistical variance in the estimators ~̂µ that result. A quantity that represents this
trade-off is the mean squared error (sum of bias squared and variance) averaged over the
bins,

MSE =
1

M

M∑
i=1

(
V [µ̂i] + b2i

)
. (10)

Minimising the (bin-averaged) MSE as defined above is one of the criteria investigated here
for setting the regularisation parameter.

Another criterion that can be employed to set the degree of regularisation is based on the
coverage probability of confidence intervals constructed for each bin of the true histogram, as
proposed in Ref. [11]. These can be taken as extending between plus and minus one standard
deviation about the estimator, i.e., [µ̂i − σµ̂i , µ̂i + σµ̂i ]. Such an interval will contain the
true value µi with a specified coverage probability and we take the average of these,

Pcov =
1

M

M∑
i=1

P (µ̂i − σµ̂i
< µi < µ̂i + σµ̂i

|~µ) , (11)

as a criterion that can be used to choose the regularisation parameter. For the unregularised
estimators (τ → 0), Pcov tends towards the nominal coverage for a confidence interval of
plus-or-minus one standard deviation about the maximum-likelihood estimator (assuming it
is Gaussian distributed), i.e., Pnom = 68.3%. As the amount of regularisation is increased,
the standard deviations σµ̂i

decrease, and thus the coverage probability also decreases. The
recipe used in this paper is to select the regularisation parameter (τ or the number of
iterations) such that Pcov = Pnom − ε with the threshold ε = 0.01.
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3 The RooFitUnfold framework

The RooFitUnfold framework provides a unified software environment in which various
unfolding algorithms used in HEP are implemented. The framework currently implements
all of the algorithms available in the RooUnfold package [1], in addition to the Gaussian
Process unfolding method. The unique proposition of the RooFitUnfold framework is that
it generalises the description of input distributions for unfolding problems as RooFit [22]
probability models, whereas RooUnfold and most standalone unfolding implementation only
accept histograms as input distribution.

The use of binned probability models as input extends the functionality of unfolding pro-
cedures to problems where uncertainties other than statistical uncertainties are important
and must be propagated to the unfolded distribution. Such uncertainties can be generi-
cally expressed in terms of nuisance parameters that affect the binned physics distribution
that is intended to be unfolded. Common uncertainties in HEP that are captured in nui-
sance parameters include uncertainties from simulation statistics and systematic uncertain-
ties originating from theory and detector modelling. In this paper we will not make use
of RooFitUnfold’s ability to propagate nuisance parameters, but will exploit its unified im-
plementation for the evaluation of the bias and variance of unfolding methods, allowing a
comparison of the unfolding algorithms on equal footing.

Presently, RooFitUnfold has no specific technical handling of empty bins and low-
statistics bins at the framework level, but will warn the user of (potentially) problematic
input ingredients if the response matrix is not invertible, or if this inversion results in nu-
merical stability problems. The choice of binning is considered to be responsibility of the
user.

Section 3.1 will provide a brief overview of the unfolding methods implemented, Sec-
tion 3.2 explains the role of MC simulation in determining unfolding ingredients, and Sec-
tion 3.3 details the exact procedure that are used for the estimation of bias and variance of
these methods in RooFitUnfold, which will be used in the results presented in Section 4/.

3.1 Overview of unfolding methods

In this overview a brief description of each method is given, with references to the general
unfolding methodology presented in Sec. 2 where appropriate. Further details on each
algorithm can be found in the references cited.

3.1.1 Richardson-Lucy (Iterative Bayes)

The RooUnfoldBayes algorithm uses the iterative method described by D’Agostini in [7].
Starting from equal probabilities in all bins, the solution is updated using a rule based on
Bayes’ theorem. In other fields this algorithm is known as Richardson-Lucy deconvolution
[17, 14] and is typical of truncated expectation maximisation algorithms [8]. The regu-
larisation strength corresponds to the number of iterations performed, with the solution
approaching the maximum-likelihood estimator as the number of iterations increases.

3.1.2 Singular Value Decomposition (SVD)

The routine RooUnfoldSvd provides an interface to the TSVDUnfold class implemented in
ROOT by Tackmann [20], which uses the Tikhonov unfolding method [21] in the manner
described by Höcker and Kartvelishvili [10]. The data are modelled as Gaussian distributed
resulting in a log-likelihood given by a sum of squares as in Eq. (5). Singular Value De-
composition is used to express the detector response as a linear series of coefficients. The
regularisation parameter, equivalent to τ in Eq. (8), can be related to the singular values of
the response matrix.
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3.1.3 TUnfold

RooUnfoldTUnfold provides an interface to the TUnfold method implemented by Schmitt
[18]. TUnfold uses Tikhonov regularisation and the log-likelihood is taken to have the sum-
of-squares form of Eq. (5). TUnfold can automatically determine an optimal regularisation
parameter by scanning the ‘L-curve’ [13].

3.1.4 Iterative Dynamically Stabilized (IDS)

The iterative, dynamically stabilized (IDS) unfolding method [15], is an iterative unfolding
method that has a regularisation method based on the statistical significance of the difference
between observed and simulated data. RooUnfoldIds uses a reweighting procedure that aims
to stabilise the unfolding procedure against feature of the data that are not present in the
model.

3.1.5 Gaussian Process (GP)

The unfolding method of Bozson et al. [4], as implemented in RooUnfoldGP, constructs
the estimator for the true histogram as the mode of a posterior probability obtained using
Bayesian regression. For Gaussian-distributed data the estimator for the true histogram is
equivalent to the mean function of a Gaussian Process (GP) conditioned on the maximum
likelihood estimator. The kernel function of the GP introduces regularisation, which has a
natural interpretation as the covariance of the underlying distribution. This approach allows
for the regularisation to be varied along the distribution.

3.1.6 Bin-by-bin

The bin-by-bin method implemented in RooUnfoldBinByBin defines estimators of the form
µ̂i = Cini, where the ‘correction factors’ are computed for each bin using a Monte Carlo
simulation of the true events and the detector’s response as Ci = µMC

i /νMC
i . Further details

and drawbacks of this method are discussed in Ref. [5].

3.1.7 Matrix Inversion

For the case of equal bins in the true and measured histograms (M = N) and assuming a
nonsingular response matrix R one can construct the unregularised estimators of Eq. (6).
RooUnfoldInvert performs inversion of the response matrix with singular value decompo-
sition (TDecompSVD). The estimators have larger variances than from any regularised
method but zero conceptual bias. This solution can be useful, e.g., if there is relatively
little migration of events between bins so that the response matrix is almost diagonal. Even
if in the case of greater migration and thus larger statistical variances, the unregularised
solution can be used together with the full covariance matrix of the estimators to carry out
a meaningful statistical test of a hypothetical true distribution.

3.2 Determining unfolding ingredients with Monte Carlo simula-
tion

Simulated data from Monte Carlo (MC) models are used in RooFitUnfold to determine
the response matrix R defined in Eq. (3), which is needed for all of the unfolding methods
except the bin-by-bin method of Sec. 3.1.6. In addition, MC data are used to obtain model
predictions for the true histogram ~µ and the expected data histogram ~ν.

In a full Monte Carlo simulation in HEP one generates events each characterised by
a true value of the variable in question xtrue according to a given physical theory such
as the Standard Model. The response of the detector is then also simulated resulting in a
measured value xmeas. Suitably normalised histograms of the xtrue and xmeas values are used
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to determine the model’s predictions for the true and expected data histograms ~µ and ~ν. It
is often the case that the MC samples are sufficiently large that we may neglect statistical
uncertainties in these quantities.

The MC simulated events are also used in RooFitUnfold to determine the response matrix
R. In practice the simulated events are used first to find the transfer matrix Nij defined as
the number of events found with xmeas in bin i and xtrue in bin j. The response matrix is
then

Rij =
Nij∑N
k=1Nkj

. (12)

A sufficiently large sample of simulated data and appropriate choice of binning is important
to ensure that the response matrix determined in this way is sufficiently smooth and not
overly influenced by statistical fluctuations.

3.3 Bias, variance and coverage estimation procedures

The calculation of the bias and variance of the estimators is based on a given choice for the
true distribution ~µ, and in general these quantities can depend on this choice. For a given
~µ one computes the expected observed histogram ~ν = R~µ, and a simulated data sample ~n
is generated with the ni independent and Poisson distributed having mean values νi. We
refer to this as a “toy” MC data set, ~nk, where k = 1, . . . ,K. In the studies shown below
we have used K = 1000. Each dataset ~nk is unfolded with the chosen method to acquire
the estimates ~̂µk. The variance for bin i is then calculated as

σ2
µ̂i

=
1

K − 1

K∑
k

(
(µ̂i)k −

1

K

∑
k

(µ̂i)k

)
(13)

Using the same datasets the bias for bin i is calculated as

bi =
1

K

K∑
k

(µ̂i)k − µi . (14)

Under the assumption that the µ̂i are Gaussian distributed, the coverage probability Pcov

of the intervals [µ̂i − σµ̂i
, µ̂i + σµ̂i

], defined in Eq (11), can be calculated in closed form [12]
using σµi

and bi as

Pcov = Φ
( bi
σµ̂i

+ 1
)
− Φ

( bi
σµ̂i

− 1
)
, (15)

where Φ is the Standard Gaussian cumulative distribution function.

4 Comparison of methods

In this section we present a comparison of the performance of the unfolding methods de-
scribed in Section 3.1. While realistic physics models and detector response functions in
HEP rely on elaborate MC simulation packages that simulate both the physics and detector
response from first principles, we opt in this study for simple and analytically expressed
physics functions and resolution models. These analytical models represent a more portable
benchmark than the elaborate simulation models, while still introducing a realistic level
of complexity. Sections 4.1 and Sections 4.2 present results on an example model that is
representative of unfolding problems commonly encountered in HEP, and is evaluated in sit-
uations where the response matrix sampled from the same or a different model, respectively,
as the expected data. Section 4.3 will further explore the onset of bias for scenarios in which
model of the expected data and the response matrix disagree, using a distortable bimodal
distribution that is smeared with a Gaussian resolution model.
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4.1 Study on smeared exponential distribution - SM

We define as benchmark model an exponential decay distribution, smeared with a resolution
function that is loosely inspired on a calorimeter response:

f(x|α) = fphysics(xtrue|α) ∗ fdetector(xtrue, x)

= (α · exp(−α · xtrue)) ∗Gauss (x− xtrue, 7.5, 0.5 ·
√
xtrue + 2.5) ,

where the ∗ symbol represents the convolution operator. We define two models variants,
labeled SM (‘Standard Model’) and BSM (‘Beyond the Standard Model’), that correspond
to an exponential distribution with a slope α of 0.035 and 0.05 respectively. The true and
expected distributions ~µ and ~ν corresponding to this model are defined by 20 uniformly sized
bins in the range [100, 200]. The true distributions and data for SM and BSM, populated
with 10000 and 14000 events respectively, are shown in Fig. 1, along with the SM transfer
matrix.

100 110 120 130 140 150 160 170 180 190 200
0

500

1000

1500

2000

2500
SM Truth

BSM Truth

SM Data

BSM Data

100 110 120 130 140 150 160 170 180 190 200
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170

180
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0

50
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300

Figure 1: Left: The true distributions for the SM and BSM models and the corresponding
smeared datasets. Right: the transfer matrix for the SM model, which is populated by the
same events as the SM true distribution shown.

We first perform a standard unfolding benchmark using only the SM model: we compare
for all methods the unfolded distributions of the SM data, obtained using the response
matrix populated with data sampled from the same SM model, to the SM true distribution.
In the top row of Fig. 2 the unfolded data is shown for every algorithm, along with the SM
true distribution. Each panel also separately visualises the variance and bias of the unfolded
distribution for each bin, calculated with the procedure described in Section 3.3 as well as
corresponding coverage calculated with Eq. 15. In the visualisation of the bias for each bin,
the statistical error σµ̂ is also shown to help guide the interpretation of observed fluctuations
in the unfolded data. For each algorithm with a tuneable regularisation strength (Iterative
Bayes, IDS, TSVD, TUnfold) two unfolding solutions are shown. These correspond to a
regularisation strength that

1. unconditionally minimises the bin-averaged MSE , or

2. additionally requires the that the bin-averaged estimate of the coverage of the unfolded
data reaches the target coverage of 68.3% within 1%.

The bottom row of Fig. 2 shows the average MSE and average coverage, i.e. the optimisation
criteria used, as function of the regularisation strength parameter∗ Vertical lines indicate

∗NB: Although all plots are shown in the same format, the practical realisation and range of the regu-
larisation strength parameter is different for each algorithm.
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the chosen regularisation strengths that correspond to two solutions shown in the top pane.
For the Gaussian Process and Bin-by-Bin algorithms, which have no tuneable regularisation
parameter, as well as for the unregularised Matrix Inversion method only a single solution
is shown.

We observe that all tuneable methods (Iterative Bayes, IDS, TVSD, TUnfold) can repro-
duce the target distribution well, with an average bias consistent with zero in all bins. How-
ever, the solutions corresponding to the unconditionally minimised bin-averaged MSE sub-
stantially undercover for all four algorithms. Imposing the condition of correct bin-averaged
coverage in the tuning largely rectifies this situation and results in a nearly uniformly correct
bin-by-bin coverage, with only handful of bins undercovering by a few percent.

The Gaussian Process algorithm, which internally tunes its regularisation strength, per-
forms well in regions far away from the lower observable boundary (x > 120) with uniformly
good coverage and no significant bias. In the regime close to the boundary there is signif-
icant bias and undercoverage, which may be caused by boundary leakage effects related to
the default choice of kernel function and might be mitigated with a different choice of kernel
function. The unregularised Matrix Inversion method exhibits perfect coverage, but has a
variance that is many orders of magnitude larger than that of any of the other algorithms,
whereas the performance of the Bin-by-Bin method in terms of bias, variance and significant
undercoverage is comparable to that of the tuneable methods.

4.2 Study on smeared exponential distribution - BSM

Next, we test the unfolding algorithms in a more challenging scenario that more closely
reflect the reality of unfolding problems in HEP: the observed data, corresponding to an
unknown distribution (the BSM model) has to be unfolded using a response matrix ob-
tained for a known model (the SM distribution). The benchmark in this test is how well
the SM-unfolded BSM distribution compares to the BSM true distribution. The use of the
SM response matrix is a challenge for regularised methods in particular, since a too strong
regularisation will bias the unfolded BSM distribution towards the SM distribution. Fig. 3
shows the results of this study, following precisely the same format as that of Fig. 2, and
demonstrates that the four tuneable unfolding methods (Iterative Bayes, IDS, TVSD, TUn-
fold) can also reproduce the target distribution reasonably well in this more challenging
benchmark. However, in a handful of bins the bias is notably increased w.r.t the first study.
The observed coverage of these four methods is qualitatively similar to that of the first study:
unconditional optimisation of the regularisation strength on the bin-averaged MSE leads to
substantial undercoverage, which can again be largely and uniformly recovered through the
imposition of a requirement on correct bin-averaged coverage in the regularisation tuning,
albeit with a bit more variability in bin-by-bin coverage. For the Gaussian Process unfold-
ing method the main difference with the SM benchmark result is the striking increase in
variance for the low statistics bins in the region x > 120. A similarly striking increase in
variance is also observed for the Matrix Inversion method, whereas the degradation of the
performance of the Bin-by-Bin method is comparable to that of the tuneable algorithms.
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4.3 Bimodal example

We use a bimodal distribution to further investigate unfolding biases in situations where the
response matrix and the data are not sampled from the same model. The bimodal model
for this study is the the sum of two Crystal Ball [16] functions, which is smeared by a simple
Gaussian resolution model

f(x|α) = fphysics(xtrue|α) ∗ fdetector(xtrue, x)

= (0.5 · fCB(xtrue|µ = 2.4, σ = 0.48, α, n = 1) +

0.5 · fCB(xtrue|µ = 5.6, σ = 0.48, α, n = 1))

∗ Gauss(x− xtrue, 0, 0.4)

where the Crystal Ball probability density function fCB(x|µ, σ, α, n) has a Gaussian core
with mean µ and width σ, and a power law tail with power n below a threshold α that
is expressed units of the Gaussian width σ. Thus, for α = ∞ a Crystal Ball function is
identical to a Gaussian distribution, whereas e.g. for n = 1 it follows a Gaussian distribution
for x > −1σ and a power law distribution x ≤ −1σ. In the definition of the Crystal Ball
function the normalisation factor for the power law tail is chosen such that the function
is continuous and differentiable over the transition point. The true and expected data
distributions ~µ and ~ν corresponding to this model are defined by 20 uniformly sized bins in
the range [−4, 4] and are populated with 10000 events. Fig. 4 shows the true distribution of
the bimodal model for a range α values.

α = 0.5 α = 1 α = 1.5

4− 3− 2− 1− 0 1 2 3 4
x

0

200

400

600

800

1000

1200

1400

1600E
ve

nt
s

Bimodal

 = 0.5αCrystal Ball 

4− 3− 2− 1− 0 1 2 3 4
x

0

200

400

600

800

1000

1200

1400

1600E
ve

nt
s

Bimodal

 = 1αCrystal Ball 

4− 3− 2− 1− 0 1 2 3 4
x

0

200

400

600

800

1000

1200

1400

1600E
ve

nt
s

Bimodal

 = 1.5αCrystal Ball 

α = 2.0 α = 2.5 α = 3.0

4− 3− 2− 1− 0 1 2 3 4
x

0

200

400

600

800

1000

1200

1400

1600E
ve

nt
s

Bimodal

 = 2αCrystal Ball 

4− 3− 2− 1− 0 1 2 3 4
x

0

200

400

600

800

1000

1200

1400

1600E
ve

nt
s

Bimodal

 = 2.5αCrystal Ball 

4− 3− 2− 1− 0 1 2 3 4
x

0

200

400

600

800

1000

1200

1400

1600E
ve

nt
s

Bimodal

 = 3αCrystal Ball 

Figure 4: Visualization of the true distribution of the bimodal model for various values of
the distortion parameter α.

Fig. 5 shows the bin-averaged unfolding bias of the tuneable algorithms (Iterative Bayes,
IDS, SVD, TUnfold) for data sampled from the bimodal distribution with α = [0.5, 1, 1.5, 2, 2.5, 3]
and unfolded with a response matrix with α = ∞, with the regularisation strength always
tuned to the unconditionally minimised MSE. Fig. 5 shows that the SVD, Iterative Bayes
and IDS methods exhibit a strong unfolding bias that increases with the distortion for val-
ues of α < 2.5. In contrast, the bin-averaged bias of TUnfold is almost independent on the
model distortion, which may be explained by the fact that TUnfold regularises on smooth-
ness, rather than the true distribution. As a result, TUnfold has the smallest bin-averaged
bias for the strongest distortions (α = 0.5, 1, 1.5), whereas SVD, Iterative Bayes and IDS
have the (almost identical) best performance at low distortion (α = 2.5, 3).
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Figure 5: Comparison of the estimated bin-averaged bias of the tuneable unfolding algo-
rithms when unfolding the distorted bimodal model with a response matrix obtained from
the undistorted model. Results are shown for various distortion strengths, which increase in
distortion with decreasing values of α (See Fig. 4). In this study, the regularisation strength
for each algorithm has been unconditionally optimised on the MSE.

Fig. 6 shows the same comparison as Fig. 5, but with the average coverage condition
imposed the regularisation optimisation. The dependence of average bias on the distortion
is qualitatively the same for all methods, with TUnfold again being the least sensitive to
distortions. In terms of absolute performance, TUnfold gives the smallest average bias
for (α = 0.5, 1, 1.5, 2.0) for medium to high distortion, where IDS outperforms for small
distortions (α = 2.5, 3.0).

Fig. 6 shows the performance of non-tuneable and non-regularised methods (Gaussian
Process, Matrix Inversion, Bin-by-bin). The Gaussian Process and Matrix inversion meth-
ods demonstrate to be relative robust against distortion, with a minimal dependence of
the average bias on the distortion parameter α, whereas the Bin-by-bin method shows a
dependence that is comparable to that of the tuneable regularised methods. The robust-
ness of the Gaussian Process method is a feature of its regularisation method, which relies
only on smoothing, just like TUnfold. In terms of absolute performance, Matrix Inversion
and Gaussian Process are on par with TUnfold for medium to large distortion scenarios
(α = 0.5, 1, 1.5, 2), while Gaussian Process unfolding is the clear winner for the low distor-
tion α = 3 scenario, likely due to the strongly Gaussian nature of the undistorted bimodal
model.

5 Summary and conclusions

We have used the RooFitUnfold package, which provides a common framework to evaluate
and use different unfolding algorithms, to evaluate the performance of seven unfolding algo-
rithms used in HEP in terms of bias and coverage. The ability of RooFitUnfold to tune the
regularisation strength of regularised unfolding methods with a common set of optimisation
strategies has facilitated the comparative studies presented in the paper.

For the methods with a tuneable regularisation strength we observed that an optimi-
sation of that strength solely on the smallest MSE does not automatically result in good
coverage. For the studied example distributions we observed that the inclusion of a bin-
averaged coverage criteria in the regularisation strength optimisation resulted in uniformly
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Figure 6: Comparison of the estimated bin-averaged bias of the tuneable unfolding algo-
rithms when unfolding the distorted bimodal model with a response matrix obtained from
the undistorted model. Results are shown for various distortion strengths, which increase in
distortion with decreasing values of α (See Fig. 4). In this study, the regularisation strength
for each algorithm has been optimised on the MSE with the condition that coverage is
achieved with 1% of the target value

good coverage for all bins for the methods with a tuneable regularisation strength. While
the unfolding bias always depends on the assumed true distribution, we observed for the
bimodal example that this dependence was strongest for methods that regularise using the
assumed true distribution.
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Figure 7: Comparison of the estimated bin-averaged bias of non-tuneable and non-
regularised methods when unfolding the distorted bimodal model with a response matrix
obtained from the undistorted model. Results are shown for various distortion strengths,
which increase in distortion with decreasing values of α (See Fig. 4).
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