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In this paper, we investigate the stability of the particle trajectories in Fixed Field alternating
gradient Accelerators (FFA) in the presence of field errors: The emphasis is on the scaling radial
sector FFA type: a collaboration work is on-going in view of better understanding the properties
of the 150 MeV scaling FFA at KURRI in Japan, and progress towards high intensity operation.
Analysis of certain types of field imperfections revealed some interesting features about this machine
that explain some of the experimental results and generalize the concept of a scaling FFA to a non-
scaling one for which the tune variations obey a well defined law. A compensation scheme of tune
variations in imperfect scaling FFAs is presented. This is the cornerstone of a novel concept of a
non-linear non-scaling radial sector fixed tune FFA that we present and discuss in details in the last
part of this paper.

I. INTRODUCTION

Scaling Fixed Field alternating gradient Accelerator
(FFA) is a concept that was invented in the 1950s al-
most independently in the US, Japan and USSR [1–3].
Several electron machines were built in the US. However,
it was not until the 1990s that the interest for FFAs was
revived in Japan. Several machines were built among
which a 150 MeV proton machine at Kyoto University
Research Reactor Institute (KURRI). One main feature
of this machine is its potential for high power applica-
tions, hence its use as a proton driver for an Accelera-
tor Driven Sub-critical Reactor (ADSR) [4] at KURRI.
A large dynamic acceptance can be achieved since the
crossing of the betatron resonances is avoided in this
concept. This is achieved by introducing a large field
increase with the radius resulting in the beam experi-
encing the same focusing throughout the acceleration,
therefore keeping the tunes constant. The magnetic field
profile allowing this writes in cylindrical coordinates in
the form B = B0(R/R0)kF (θ) where B is the vertical
component of the magnetic field in the median plane, R
is the radial coordinate with respect to the center of the
ring, B0 the reference field at R = R0, F (θ) the flutter
function describing the azimuthal variations of the field
and k is the average field index of the magnets, some-
times also referred to as the scaling factor, defined by
k = R/B.∂B/∂R and designed to be a constant value ev-
erywhere in the ring. One shall insist here that this form
of the magnetic field is a sufficient but non-necessary con-
dition in order to obtain a fixed tune FFA. In the scaling
FFA concept, the orbit excursion is uniquely determined
by the field index and the flutter function. Given that all
built machines in the past opted for a phase advance per
cell below 180◦, the orbit shift is therefore large, of the
order of 1 meter which makes the magnet larger than typ-
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ical synchrotron magnets. Besides, due to the complexity
of the field profile and flutter of the magnets, field im-
perfections can be problematic and difficult to cure since
the orbits move outwards from the centre of the machine
with increasing energies. This can lead to the crossing of
several betatron resonances at low speed and to beam de-
terioration in consequence. For instance, this is a strong
contribution to the overall low beam transmission in the
KURRI FFA [5, 6].

In the original work of Symon [1], it was established
that if the average field index is kept constant and the
closed orbits are geometrically similar in a way that will
become clearer later on in this paper, then the number
of betatron oscillations can be approximated by:


ν2x ≈ k + 1

ν2y ≈ −k + F2
(
1 + 2 tan2(ξ)

) (1)

where F is the magnetic flutter and ξ is the spiral angle
of the magnets. Nevertheless, due to field imperfections,
it is particularly challenging to design and manufacture
a magnet which produces exactly the desired magnetic
field. For instance, the measured as well as the simulated
fields of the 150 MeV FFA at KURRI are shown in fig 1
where one can observe a non negligible tune variations.

In what folllows, we will derive the linearized Hills
equations of motion in cylindrical coordinates in order
to take into account the field imperfections and define
the domain of validity of the above approximation. One
objective of this paper is to establish general expressions
of the ring tunes that take into account the non-scaling
of the orbits due to field imperfections and compare with
the measured as well as the simulated values. This will be
a crucial result in order to establish a correction scheme
to minimize the tune variations in imperfect radial scal-
ing FFA.
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FIG. 1. Betatron tunes from 11 to 100 MeV (left to right).
The details of the measurement as well as the methods and
tools that were used to characterize the 150 MeV KURRI
FFA are discussed in [6].

II. GEOMETRY OF THE CLOSED ORBIT

In cylindrical coordinates as shown in fig 2, it can be
shown that any closed orbit satisfies the following equa-
tion:

tan(φ) = −dR/dθ
R

= − Ṙ
R

(2)

where φ(θ) is the angle between the extended ra-
dial line and the normal to the equilibrium orbit,

i.e. φ = (−̂→uR,−→ux).
φ is a natural parameter to describe the scalloping of
the closed orbit (note that φ = −T for the element “po-
larmes” in the tracking code zgoubi [7]): if φ(θ) = 0 for
all θ, then the closed orbit is a circle. In order for R
to be a well defined function of the azimuthal angle, the
particle cannot be moving radially outwards. This sets
the following condition on φ: |φ| < π/2.
Differentiating again with respect to the azimuthal angle,
one obtains:

R̈ = −Ṙ tan(φ)−Rφ̇
[
1 + tan2(φ)

]
(3)

Now, one can express the signed curvature of the closed
orbit as a function of the radius:

1

ρ
=
R2 + 2

(
Ṙ
)2
−RR̈[

R2 +
(
Ṙ
)2]3/2 =

1

R

(
1 + φ̇

)
cos(φ) (4)

where one uses the convention that the particle motion
is clockwise with increasing θ and that the curvature is
positive if the momentum vector turns clockwise with in-
creasing θ.
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FIG. 2. Geometric properties of the closed orbit. The point O
is the center of the ring and the particle motion is clockwise.

Thus, when defining the particle closed orbit in cylindri-
cal coordinates, the particle radius R changes with the
azimuthal angle. Such a dependence is described by the
angle φ(θ) which is also defined as the angle between the
tangent to the circle of radius R(θ) and the particle mo-
mentum vector at the azimuthal angle θ. It results that
the position of the particle on the closed orbit is specified
by the variables (R(θ), θ, z(θ)).
Note that in a drift space where the particle trajectory
is a straight line, Eq. (4) holds and one can easily show

that φ̇ = −1 by observing that the vector −→ux remains un-
changed along a straight line. In addition, (1+ φ̇) > 0 for
positive curvature, which implies that the vertical com-
ponent of the magnetic field points upwards for positive
charged particles.

A. Arclength in cylindrical and generalized
azimuthal coordinates

To describe the transverse beam dynamics in parti-
cle accelerators, very often the first approach consists
in searching for the closed orbit corresponding to a spe-
cific energy and writing the linearized Hill’s equation of
motion describing the betatron oscillations around that
orbit. In the seminal MURA paper of 1956, Symon intro-
duced the concept of generalized azimuthal coordinates
in which each orbit is specified by its equivalent radius
R defined in the following way:

C = 2πR (5)

where C is the closed orbit length for a specific energy.
In addition, a generalized azimuthal coordinate is defined
which is related to the distance measured along the orbit,
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i.e. to the curvilinear abscissa s in the following way:

s = Rϑ (6)

In the formalism to be developed in the following sec-
tion, one will write the linearized equations of motion in
cylindrical coordinates which is particularly useful when
calculating a correction scheme of magnetic field imper-
fections. For this reason, we will express the increment
ds in s as a function of the increment dθ in θ along a
closed orbit.
The increment of the arclength in cylindrical coordinates
is given by:

ds =
(
dR2 +R2dθ2 + dz2

)1/2
= R

1 +

(
Ṙ

R

)2

+

(
ż

R

)2
1/2

dθ (7)

Neglecting the changes in the vertical direction (the ideal
orbit usually lies in the median plane of the accelerator),
then one obtains by making use of Eq. (2):

ds

dθ
=

R(θ)

cos(φ)
(8)

d2s

dθ2
=

Ṙ

cos(φ)
+
Rφ̇ tan(φ)

cos(φ)
(9)

Note that Eq. (8) can be also established by applying
the sinus law in the triangle OPN in fig 2 and taking the
limit dθ → 0. Equating the change of the arclength in
both coordinates yields:

ds = Rdϑ =
R

cos(φ)
dθ (10)

so that one can establish the transformation from the
generalized azimuthal coordinate to the cylindrical az-
imuthal coordinate:

dϑ =
R

R
1

cos(φ)
dθ (11)

and

ϑ =
1

R

∫ θ

0

R(u)

cos(φ)
du (12)

where one assumed that both quantities coincide
at θ = 0. In particular, this shows that, even for a ra-
dial sector FFA, the generalized azimuthal angle ϑ and
the polar angle θ are not identical.
In addition R can be defined in cylindrical coordinates
as follows:

R =
C
2π

=
1

2π

∫ 2π

0

R

cos(φ)
dθ (13)

which shows that R will be larger than the mean radius
〈R〉 of the closed orbit.

Now, by making use of Eqs. (4) and (10), one can com-
pute the average value of the curvature function for a
given closed orbit in the following way:

1

2π

∫ 2πR

0

ds

ρ
=

1

2π

∫ 2π

0

R(θ)

ρ(θ)

1

cos(φ)
dθ

=
1

2π

∫ 2π

0

(
1 + φ̇

)
dθ = 1 (14)

as expected, since the sum of all deflecting angles of the
closed orbit shall equal 2π.

III. TRANSVERSE EQUATIONS OF MOTION
IN CYLINDRICAL COORDINATES

The transverse equations for the linear betatron os-
cillations around the closed orbit write in the following
way [8]:

d2x

ds2
+

1− n
ρ2

x = 0 (15)

d2y

ds2
+
n

ρ2
y = 0 (16)

where x and y are the transverse deviations of the particle
in the horizontal and vertical direction respectively. Since
the field map in a fixed field accelerator is usually defined
in cylindrical coordinates (R, θ) with respect to the center
of the ring, it is natural to write the particle equations
of motion in such a frame. Differentiating with respect
to the azimuthal angle θ, one obtains:

dx

dθ
=
dx

ds

ds

dθ
(17)

d2x

dθ2
=
d2x

ds2

(
ds

dθ

)2

+
dx

ds

d2s

dθ2
(18)

where the transverse coordinate is a function of θ only.
Now, injecting Eqs. (17) and (18) into the Hill’s equa-
tions (15) and (16) yields:

ẍ− s̈

ṡ
ẋ+

ṡ2

ρ2
(1− n)x = 0 (19)

ÿ − s̈

ṡ
ẏ +

ṡ2

ρ2
ny = 0 (20)

where the (̇) represents the differentiation with respect
to the azimuthal variable. The above equations can be
written in the standard form:

ü+ p(θ)u̇+ q(θ)u = 0 (21)

This is a 2nd order linear differential equation with vari-
able coefficients, for which, in general, a closed form so-
lution is not known. The first order derivative is removed
by making the Liouville-Green transformation:

u(θ) = v(θ). exp

(
−1

2

∫ θ

θ0

p(h)dh

)
(22)
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which yields:

v̈ +

(
q(θ)− 1

2

dp

dθ
− p2

4

)
v = 0 (23)

Now, back to Eqs. (19) and (20). The above formalism
applies by simply replacing p(θ) = −s̈/ṡ which yields:

u(θ) =

√
ds/dθ√
ds/dθ

θ0

v(θ) = C

√
R(θ)

cos(φ)
v(θ) (24)

and the differential equations for the linear betatron os-
cillations around the equilibrium orbit are given by:

v̈x,y + [qx,y(θ) + f(θ)] vx,y = 0

qx(θ) =
ṡ2

ρ2
(1− n) =

(
1 + φ̇

)2
(1− n)

qy(θ) =
ṡ2

ρ2
n =

(
1 + φ̇

)2
n

p(θ) = − s̈
ṡ

=
(

1− φ̇
)

tan(φ)

f(θ) = − ṗ
2
− p2

4

(25)

In the next section, one shall seek the expression of the
field index in cylindrical coordinates.

A. Field variations

1. Field index

Using the chain rule for partial differentiation, one ob-
tains:

n = − ρ
B

∂B

∂x
= − ρ

B

[
∂B

∂R

∂R

∂x
+
∂B

∂θ

∂θ

∂x

]
(26)

where B is the magnetic field seen by the particle.
Applying the sinus law in the triangles PJK and POJ as
illustrated in fig 3, one can establish [? ]:

∂R

∂x
= cos(φ) (27)

∂θ

∂x
=

sin(φ)

R
(28)

Substituting Eqs. (4), (27) and (28) into Eq. (26), one

obtains:

n = −R
B

∂B

∂R

1

1 + φ̇
− 1

B

∂B

∂θ

tan(φ)

1 + φ̇
(29)

Now, the median plane magnetic field can be written in
cylindrical coordinates in the general form:

B(R, θ) = Bm(R)F (R, θ) (30)
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FIG. 3. Geometric properties of the particle motion around
the closed orbit.

where Bm(R) is the average magnetic field at a given
radius which is R-dependent and F (R, θ) is the flutter
function describing the azimuthal field variations along a
fixed radius and satisfying

1

2π

∫ 2π

0

F (R, θ) dθ = 1 (31)

Taking the partial derivatives of the field in cylin-
drical coordinates yields:

1

B

∂B

∂R
=

1

Bm(R)

∂Bm
∂R

+
1

F (R, θ)

∂F (R, θ)

∂R
(32)

1

B

∂B

∂θ
=

1

F (R, θ)

∂F (R, θ)

∂θ
(33)

Finally, the field index can be expressed as follows:

n =− R

Bm

∂Bm
∂R

1

1 + φ̇
− R

F

∂F

∂R

1

1 + φ̇

− 1

F

∂F

∂θ

tan(φ)

1 + φ̇
(34)

and the character of the betatron oscillations is deter-
mined by Eqs. (25) which transform into:



5

qx(θ) =
(

1 + φ̇
)2

+
(

1 + φ̇
) R

Bm

∂Bm
∂R

+
(

1 + φ̇
) R
F

∂F

∂R
+
(

1 + φ̇
)

tan(φ)
1

F

∂F

∂θ
(35)

qy(θ) = −
(

1 + φ̇
) R

Bm

∂Bm
∂R

−
(

1 + φ̇
) R
F

∂F

∂R
−
(

1 + φ̇
)

tan(φ)
1

F

∂F

∂θ
(36)

f(θ) =
φ̈

2
tan(φ) +

φ̇2 − 1

4
tan2(φ) +

φ̇

2

(
φ̇− 1

)
(37)

Note the analogy between Eq. (36) and Eq. (5.12) in
Symon’s paper [1] where all the derivations are based on
generalized azimuthal coordinates: the first term repre-
sents the defocusing due to the average field index of the
magnets. The spiral focusing comes predominantly from
the second term as is discussed in the appendix. The
third term is usually small except near the edge of the
magnet hence it accounts for the edge focusing effect (of-
ten called Thomas focusing). Finally, the additional term
in Eq. (35) comes from the horizontal restoring force.
Note in addition that the flutter function F (θ) can van-
ish in the straight sections thus yielding a singularity in
the above equations. However, one can observe that the
sign of the curvature function is related to the sign of the
flutter function. Therefore, one shall seek a relationship
between these two quantities.

2. Flutter function

First, let’s compute the average magnetic field over a
closed orbit R corresponding to a particle momentum p:

〈B〉co =
1

2πR

∫ 2πR

0

p

q

ds

ρ(s)
=

p

qR
(38)

where 〈〉co refers to the average taken over the curvilinear
abscissa. It results that

Bρ =
p

q
= 〈B〉coR (39)

For the case of a radial sector FFA, the flutter function
is independent of the radius, and one can write the ex-
pression of the magnetic field seen by the particle as a
function of the azimuthal angle:

B(R(θ), θ) = Bm(R(θ))F (θ) (40)

Now, equating the expression of the magnetic rigid-
ity in both representations and making use of
Eqs. (4), (11), (39), one finally obtains:

F (θ) =
〈B〉co

Bm(R(θ))

R
R(θ)

(
1 + φ̇

)
cos(φ)

=
〈B〉co

Bm(R(θ))

dθ

dϑ

(
1 + φ̇

)
(41)

Thus, when assuming that the closed orbit does not de-
part much from a fixed radius orbit i.e. φ� 1, which is

-2
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Flutter function F

1 + Φ
.

FIG. 4. Comparison of the flutter function at the KURRI
FFA injection energy with its approximate expression (42).

generally the case for Azimuthally Varying Field (AVF)
cyclotrons, one can write:

F (θ) ≈ 1 + φ̇ (42)

Nevertheless, the above approximation becomes less and
less valid when the orbit scalloping becomes important
and when the radial increase of the field becomes large.
For instance, for the KURRI FFA, the above formula
is tested at injection energy where the orbit scalloping
∆R/ 〈R〉 is about 2%, and one can observe in fig 4 a non
negligible difference between the two expressions. Such a
difference is also due to the fact that the flutter function
evolves slowly with the radius.

IV. NUMBER OF BETATRON OSCILLATIONS
FROM THE SECOND ORDER DIFFERENTIAL

EQUATION

As was established by Teng [9], if one defines
Kx,y(θ) as the forcing term of the Hill’s equation
(Kx,y(θ) = qx,y(θ) + f(θ)), then the number of betatron
oscillations can be approximated by:

ν2x ≈ 〈Kx〉+
〈
K̃x

2
〉

+ 3 〈Kx〉
〈˜̃
Kx

2〉
+

〈
Kx
˜̃
Kx

2〉
(43)

where the symbol 〈〉 represents the average taken over the
azimuthal coordinate and the tilde ˜ is the integrating
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operator defined by:

g̃(θ) =

∫
[g(θ)− 〈g〉] dθ

˜̃g(θ) =

∫
[g̃(θ)− 〈g̃〉] dθ

For each closed orbit, there is a different set of linearized
equations for the betatron oscillations, i.e. different pairs
(Kx(θ),Ky(θ)) so that the betatron wave numbers are
susceptible to change with the energy.
For a radial sector FFA, when the closed orbit scallop-
ing and the field gradients are moderate, the Alternating
Gradient (AG) effect can be neglected. in other words
the tunes can be well approximated by the first order
term in Eq. (43) which is simply the average of the forc-
ing term of the second order linear differential equation
(25). Nevertheless, when the k-value increases substan-
tially, such an approximation no longer holds and one
needs to account for the higher order terms which are
due to the AG forces that produce a substantial scallop-
ing of the orbits alongside a stronger focusing. This is
accounted for by the tilde functions.
In what follows, the different terms of the Hill’s equation
expressed in cylindrical coordinates will be discussed and
the emphasis made on their contribution to the number of
betatron oscillations. Several formula will be established
in the limit where the orbit scalloping is neglected. To
conclude, one will make a comparison between the track-
ing results and the analytical estimates for various values
of the FD ratio and the average field index of the mag-
nets.

A. Focusing due to the average field index

If the averaged field (over the azimuth) increases with
the radius, this will yield an overall focusing (resp. de-
focusing) force in the horizontal (resp. vertical) plane.
Such a contribution is defined by:

qindx (θ) =
(

1 + φ̇
) R

Bm

∂Bm
∂R

=
(

1 + φ̇
)
k (44)

Next, two concepts will be discussed based on the expres-
sion of the average magnetic field.

1. Cyclotron

In order to keep the isochronism in a cyclotron, the
average magnetic field strength changes according to the
law:

Bm(R) = B0γ(R) =
B0√

1−
(
R

R∞

)2
(45)

where R∞ is a constant. It results that:〈
qindx

〉
= k = γ2 − 1 (46)

which shows that, in general, the average field index con-
tributes weakly to the horizontal focusing in cyclotrons.
Such a weak contribution is advantageous in the verti-
cal plane since it can be overcome by means of Thomas
and/or spiral focusing.

2. Scaling FFA

Assuming that k is constant everywhere in the ring,
i.e. for a perfect scaling FFA, it results that:〈

qindx

〉
= k = const (47)

Since the k-value can be large, k = 7.6 for the KURRI
scaling FFA, it is obvious that the higher order terms in
Eq. (43) which account for the AG forces can no longer
be neglected.
For instance, for a machine like the KURRI 150 MeV
FFA where k = 7.6, one can estimate the contribution of
the AG due to the field index to be:〈

q̃indx

2
〉

= k2
〈
φ2
〉

≈ 7.62
〈
(0.33 ∗ sin(12θ))2

〉
= 3.14 (48)

which is about 2/5 of the focusing due to the average field
index. This is non negligible and can place the tunes in
the second stability region of Hill’s equation, hence the
concept of scaling FFA with small orbit excursion [10].
However, this will be discussed more in detail later on in
this paper where the AG focusing is evaluated.

B. Thomas focusing

Under the assumption of small orbit scalloping,
Eq. (42) holds and the contribution of the Thomas fo-
cusing to the vertical tune can be simplified to:

qthy (θ) = −
(

1 + φ̇
)

tan(φ)
1

F

∂F

∂θ
≈ −φ∂F

∂θ
(49)

By means of an integration per parts and making use of
Eq. (42), one finally obtains:〈

qthy
〉

=
〈

(F (θ)− 1)
2
〉

= F2 (50)

where F2 is generally referred to as the magnetic flutter
and can also be re-written in the following form:

F2 =

〈
F 2
〉
− 〈F 〉2

〈F 〉2
=

〈
B2
〉
− 〈B〉2

〈B〉2
(51)

The latter represents the fractional mean square az-
imuthal deviation of the field at a fixed radius [11]. This
term is large when the field is changing rapidly along the
closed orbit.
In general, Thomas focusing is dominated by the edge fo-
cusing effect and acts in a way that the resulting effect is
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FIG. 5. Plot of the different terms contributing to the Thomas
focusing at the injection energy of the KURRI scaling FFA:
the orbit scalloping is shown via the angle φ (in blue) while
the contribution of the field index is shown in green (partial
derivative of the flutter function F .) Their product is shown
in dashed lines which accounts for the vertical focusing.

a net restoring force in the vertical plane. It was Thomas
in his seminal paper of 1938 [12] that showed for the first
time that using an azimuthally varying field producing a
scalloped particle orbit allows to overcome the defocusing
effect that would set the maximum energy of cyclotrons
to 20 MeV as claimed by Bethe and Rose [13].
Thomas’s insight was to realize that the interaction be-
tween the radial component of the momentum and the
azimuthal component of the magnetic field yields a ver-
tical restoring force:

Fy = qvRBθ = q
dR

dθ

dθ

dt
Bθ (52)

where Bθ is the azimuthal component of the magnetic
field which writes for small z [12]:

Bθ = − z
R

∂B

∂θ
+O(z3) (53)

Injecting the latter into the expression of Fy and making
use of Eq. (2) yields:

Fy = q
dθ

dt
tan(φ)

∂B

∂θ
z (54)

Such a force is usually directed towards the mid-plane
and therefore it is restoring in the vertical plane. Its
average contribution to the vertical tune is approximately
given by Eq. (50) which is mainly valid in the limit of
small scalloping of the orbit i.e. φ� 1. This is further
summarized in fig 5 displaying the tracking results from
the KURRI 150 MeV FFA.

C. Horizontal restoring force

Larger scalloping of the orbit is due to larger oscilla-
tions of the flutter function F which can substantially

increase the horizontal restoring force:

〈qresx 〉 =
1

2π

∫ 2π

0

(
1 + φ̇

)2
dθ = 1 +

〈
(φ̇)2

〉
≈ 1 + F2 (55)

It results that, for the horizontal tune, the horizontal
restoring force and the Thomas defocusing term com-
pensate each other in such a way that:

〈qresx 〉 −
〈
qthy
〉
≈ 1 (56)

In addition, stronger vertical focusing can be achieved if
the magnet boundaries are deformed from radial poles
to spiral shaped poles. This is further discussed in the
appendix A.

D. Alternating Gradient focusing

From the previous analysis, and assuming small orbit
scalloping to simplify the calculations, one can write the
expression of Kx for a radial sector scaling FFA:

Kx(θ) = qresx (θ) + qindx (θ)− qthy (θ) + f(θ)

≈
(

1 + φ̇
)2

+
(

1 + φ̇
)
k +

3

2
φφ̈+

φ̇2

2
− φ̇

2

where one neglected a small term involving f(θ) so that
〈Kx〉 ≈ k + 1, and

K̃x(θ) =

∫ θ

0

(Kx(u)− 〈Kx〉) du

≈
[
k +

3

2
(1 + φ̇)

]
φ ; φ(0) = 0 (57)

so that the AG focusing is approximately given by:〈
K̃x

2
〉
≈

〈[
k +

3

2
F (θ)

]2
φ2

〉
(58)

and its first order contribution to the horizontal focusing
is: 〈

K̃x

2
〉
≈
(
k +

3

2

)2 〈
φ2
〉

(59)

This proves that the AG focusing increases with the av-
erage field index of the magnets and with the scalloping
of the closed orbits. For the KURRI 150 MeV FFA, the
effect of the AG term on the horizontal tunes amounts to〈
K̃x

2
〉
≈ 4.5 which is a better estimate than was previ-

ously obtained by solely considering the focusing due to
the average field index as given by Eq. (48). This yields
the following approximate expression for the horizontal
tune:

νx ≈

[
k + 1 +

(
k +

3

2

)2 〈
φ2
〉]1/2

= 3.6 (60)
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which is consistent with the tracking simulation results
using the TSOCA 3D field map as shown in fig 1. In
addition, it is clear that the AG effect is negligible for
fixed field machines where the k-value is not important,
in particular for cyclotron accelerators or for machines
where the orbit scalloping is not important i.e. F (θ) ≈ 1.
Similarly, one can compute the contribution of the AG
to the vertical focusing:

Ky(θ) = −qindx (θ) + qthy (θ) + f(θ)

≈ −
(

1 + φ̇
)
k − φφ̈

2
+
φ̇2

2
− φ̇

2

which yields after integration:

K̃y(θ) =

∫ θ

0

(Ky(u)− 〈Ky〉) du (61)

≈ −
[
k +

1

2
(1 + φ̇)

]
φ+

∫ θ

0

[
φ̇2 −

〈
φ̇2
〉]
du

To facilitate further discussion, one makes the follow-
ing considerations: let’s assume that F (θ) is an even
function in θ as illustrated in fig 4. It results that its
integral and therefore the scalloping angle φ as given by
Eq. (42) is an odd function in θ. Thus, φ writes in the
form:

φ(θ) =

∞∑
j=1

φj sin (jNθ) (62)

where φj are the coefficients of the Fourier series and N
is the total number of sectors in the ring. To simplify the
analysis, one shall keep only the first two terms in this
series:

φ(θ) = φ1 sin(Nθ) + φ2 sin(2Nθ) (63)

Now, making use of Eqs. (57) and (61) one obtains:〈
K̃x

2
〉

=

(
k +

3

2

)2
φ1

2 + φ2
2

2
+

9N2

32

(
φ1

4 + 4φ2
4
)

+
45

16
N2φ1

2φ2
2 (64)

and 〈
K̃y

2
〉

=

(
k +

1

2

)2
φ1

2 + φ2
2

2
+

365

144
N2φ1

2φ2
2

−9

4

(
k +

1

2

)
Nφ1

2φ2 (65)

This shows that the AG effect is generally more impor-
tant in the horizontal plane than in the vertical one. The
latter is particularly sensitive to the shape of the closed
orbit. In addition, the contribution of the AG to the
transverse focusing increases with the number of sectors.
Now, as a verification example, let’s fit the tracking data
of the scalloping angle φ at the injection energy of the
KURRI 150 MeV FFA with the form given by Eq. (63).

This yields φ1 = −0.2557 rad and φ2 = 0.0673 rad. In-
jecting the latter into Eqs. (64) and (65) yields:

νx ≈
[
〈Kx〉+

〈
K̃x

2
〉]1/2

= [7.84 + 3.43]
1/2

= 3.36

νy ≈
[
〈Ky〉+

〈
K̃y

2
〉]1/2

= [0.92 + 1.44]
1/2

= 1.53

which is in good agreement with the measured as well as
the tracking results.

E. Benchmarking the analytical formula with
tracking simulations

In summary, the number of betatron oscillations for
a radial sector scaling FFA can be determined from the
expressions of Kx and Ky:

Kx(θ) = qresx (θ) + qindx (θ)− qthy (θ) + f(θ)

Ky(θ) = −qindx (θ) + qthy (θ) + f(θ)

where f(θ) is given by Eq. (25) such that its first order
contribution is a small defocusing effect in both planes:

〈f〉 = −
〈
p2
〉

4
= −1

4

〈
(1− φ̇)2 tan2(φ)

〉
(66)

and the tunes are evaluated by means of Eq. (43).
Table I shows a comparison of the tracking results of ra-
dial sector scaling FFA with the analytical expressions for
different values of the average field index: as can be seen,
when increasing the k-value, the vertical tune decreases.
However, this is explained by two main contributions: an
increasing average field index as well as a decreasing edge
focusing. In addition, one can see that the often quoted
formula ν2x ≈ k+1 and ν2y ≈ −k+F2 do predict the qual-
itative behavior. However, they fail to predict the quan-
titative (or monotonic behavior as will be shown later on
in this paper). In general, for small k-values, one can
observe that the vertical tunes are well approximated by
the average values of the transverse forces applied on the
beam. This is the cyclotron regime for which the average
field index does not depart much from γ2 − 1. Neverthe-
less, the horizontal tunes are not well predicted by such
an approximation. The reason is that in our model, the
FD ratio is non negligible so that the AG forces dominate
in the horizontal plane. Hence the need to account for
the additional focusing terms given by Eq. (43). This
is further illustrated in table II where one can see that
the discrepancy between the tracking and the 1st order
formula increases with increasing FD ratio (−BD0/BF0).
Note that the edge focusing term was calculated from its
exact expression so that the effect of the orbit scalloping
is precisely evaluated.

V. BEAM STABILITY ANALYSIS

Technically, it is impossible to make a field which cor-
responds exactly to the designed one. Therefore, it is im-
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TABLE I. Comparison of the zgoubi tracking results with the approximate formula for various values of the average field
index k.

Field
index k

Tracking 1st order 3rd order Edge focusing〈
qthy
〉

ν2x ν2y 〈Kx〉 〈Ky〉 〈Kx〉 +
〈
K̃x

2
〉

+ ... 〈Ky〉 +
〈
K̃y

2
〉

+ ...

0 1.40 22.89 (-1.27) 21.72 1.17 23.02 22.02
1 2.97 17.68 0.42 17.41 2.89 17.73 18.68
2 4.67 14.25 1.86 14.13 4.67 14.22 16.31
3 6.54 11.67 3.17 11.43 6.61 11.66 14.58
4 8.59 9.62 4.38 9.09 8.72 9.62 13.20
5 10.86 7.89 5.56 7.02 11.02 7.87 12.10
6 13.43 6.40 6.70 5.12 13.51 6.30 11.20
7 16.45 5.07 7.81 3.36 16.23 4.81 10.44
8 20.19 3.90 8.91 1.73 19.13 3.35 9.80
9 25.55 2.80 9.91 0.17 22.25 1.86 9.23
10 32.01 1.86 11.06 (-1.32) 25.58 0.32 8.75

TABLE II. Comparison of the zgoubi tracking results with the approximate formula for various FD ratio (k = 5).

FD
ratio

Tracking 1st order 3rd order Edge focusing〈
qthy
〉

ν2x ν2y 〈Kx〉 〈Ky〉 〈Kx〉 +
〈
K̃x

2
〉

+ ... 〈Ky〉 +
〈
K̃y

2
〉

+ ...

0.34 7.88 0.81 5.97 0.48 8.14 0.78 5.51
0.47 8.73 3.00 5.89 2.52 9.02 2.97 7.57
0.61 10.00 6.00 5.71 5.30 10.25 5.99 10.37
0.75 11.93 10.43 5.36 8.96 11.90 10.02 14.07
0.89 14.99 15.36 4.74 13.58 14.02 15.24 18.78
1.10 25.69 27.60 3.06 22.42 18.15 25.54 27.86

portant to understand the effect of small imperfections
of the field on the beam dynamics.
The general equations of motion including non-linear
terms and imperfections are defined by:


d2x

ds2
= P (x, y, s)

d2y

ds2
= Q(x, y, s)

(67)

where x and y represent the deviation around the closed
orbit, s the curvilinear coordinate and P and Q are real
analytic functions of x, y and s.
In the following, we investigate the stability of the parti-
cle trajectories that can arise with different field errors.
We use two different approaches to investigate the beam
stability due to field errors: the first approach is based
on the previously established analytical solution of the
betatron wave numbers by means of a smooth approxi-
mation of the linearized equations of motion. The second
model is the ZGOUBI [7] tracking model of the magnet,
which is the most accurate one. The ZGOUBI model
solves the non-linear equation of motion using field maps
or user-implemented analytical models. To conclude, we
establish a comparison between the different results and
comment on the outcome of this study.

A. Field imperfections in scaling FFAs

For an ideal radial sector scaling FFA, the magnetic
field writes in cylindrical coordinates in the following
way:

B(R, θ) = B0

(
R

R0

)k
F (θ) (68)

Thus, a natural way to verify the validity of a calculated
field map is to introduce a generalized definition of the
average field index which accounts for the local imperfec-
tions of the field (radially and azimuthally):

k(R, θ) =
R

B

∂B

∂R
(69)

where one shall exclude the field-free region from the def-
inition of k(R, θ).
In order to avoid any confusion, it is important to re-
mind the definition of the average field index introduced
by Symon which is given by:

ksymon =
R
〈B〉co

d 〈B〉co
dR

(70)

If Eq. (68) holds everywhere in the ring, then k(R, θ) = k
is constant and both definitions are equivalent. Never-
theless, due to imperfections one expects some variations
of the above defined quantities as illustrated in fig 6.
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FIG. 6. Plot of the average field index ksymon as a function
of the kinetic energy for the KURRI 150 MeV scaling FFA.
Note the oscillatory behavior which is due to the granularity
of the field map.

1. Field map derivative

Using TOSCA 2D median plane field maps of the
KURRI FFA, one calculated the field map derivative
k(R, θ) of the main magnets, i.e. the focusing F-magnet
and the defocusing D one. The result is shown in
figs 7 and 8 where one can observe a non negligible vari-
ation of this quantity: for the F-magnet, the variations
of k are small and the latter is close to its design value
k = 7.6. Nevertheless, for the D-magnet, the variations
of k are important. The main source of discrepancy is
observed in the interaction region between the two mag-
nets and seems to affect mainly the defocusing one in the
neighborhood of the injection radius. In order to have
a better understanding of the impact of such a discrep-
ancy, one can simplify the model by assigning an average
field index to each magnet. The latter is calculated in
the central region of each and evolves with the radius as
shown in fig. 9.

B. Generalized model of imperfect scaling radial
sector FFA

In order to carry out parametric studies of the field
defects in scaling FFAs, one decided to assign an average
field index to each magnet that is not necessarily equal
to the ideal one. Thus, one can write:

ki =
R

Bi

∂Bi
∂R

; i = F,D, drift (71)

where Bi is the vertical component of the magnetic field
in the median plane of the FFA magnet. Since the drift
space between the magnets is likely to contain the fringe
fields, it is important to assign a field index to it to de-
termine its effect on the beam dynamics. However, in the
ideal case, kdrift = 0, which we will assume in the future
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FIG. 7. Plot of the average field index map of the F-magnet.
The central line (Y = 0) is a line of symmetry of the DFD
triplet.
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FIG. 8. Plot of the average field index map of the D-magnet.
The lower part of the magnet is in the neighborhood of the F-
magnet while the upper part is surrounded by the drift space
separating the sectors.

for simplicity, yet without loss of generality. Now, assum-
ing that the k-values have no radial dependence (a com-
plete derivation of the expression of the field when k is
R-dependent can be found in the Appendix B), Eq. (71)
can be integrated and the magnetic field expressed in
cylindrical coordinates:

B(R, θ) =BF0

(
R

R0

)kF
FF (θ)

+ aBD0

(
R

R0

)kD
FD(θ) (72)
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where FF and FD are the fringe field factors (or flutter
functions) that describe the azimuthal variation of the
field in the F and D magnets respectively, and a is a
scale factor that allows to vary the FD ratio of the mag-
net (a ≥ 0). It is important to note that the field is a sep-
arable function in radial and azimuthal coordinates since
the fringe fields merge to zero in our model between the
magnets as can be seen in Fig. 10, thus FF (θ)FD(θ) = 0.
Also, note that if kF = kD, the field writes in the stan-
dard form of a scaling FFA. The lattice considered for this
study is a radial sector KURRI-like DFD triplet [14]. It

FIG. 10. Magnetic field along several closed orbits in a DFD
triplet.

results that:

1

B

∂B

∂θ
=

1

Fi

∂Fi
∂θ

=
1

F

∂F

∂θ
(73)

1

B

∂B

∂R
=
ki(R)

R
(74)

where F (θ) = FF (θ) + FD(θ).
Assuming that the average field index ki within each ele-
ment evolves slowly as a function of the radius in order to
neglect its radial dependence for a specific closed orbit,

one finally obtains:〈
qindx

〉
(p) =

1

2π

∫ 2π

0

(
1 + φ̇

) R
B

∂B

∂R
dθ

≈ 1

2π

N∑
i=1

ki(R)

∫
θi

(1 + φ̇)dθ

=

N∑
i=1

αi(p)ki(p) (75)

where N is the sum of all the elements in the ring and αi
represents the signed fractional curvature for an element
i with a specific momentum p:

αi(p) =
1

2π

∫
θi

(1 + φ̇)dθ (76)

therefore satisfying

N∑
i=1

αi(p) = 1 (77)

Assuming that the ring contains two types of magnets F
and D, then Eq. (75) becomes:〈

qindx

〉
= kF + αD(p) (kD − kF ) (78)

Given that αD < 0, the established equation shows that
the contribution of the average field index to the hori-
zontal focusing will be lower than expected if the average
field index kD of the defocusing magnet exceeds that of
the focusing magnet.

C. Monotonic behavior of the batatron wave
numbers

1. Property

In this section, we establish the following property:

In presence of scaling imperfections, the number of
betatron oscillations per turn increases (resp. decreases)
with the energy if κ > 0 (resp. κ < 0) where κ = kD−kF .
Besides, the variation of the tune squared is, to the first
order, proportional to |κ|, i.e. ∆(ν2x,y) ≈ ax,y|κ|.

From what preceded, it can be predicted that the
tune variations are imposed by the AG term in the
horizontal plane and the edge focusing as well as the AG
term in the vertical plane. Let’s start from the vertical
plane by calculating the expression of the magnetic
flutter. From Eq. (72), it results that:

〈
B2
〉

=BF0
2

(
R

R0

)2kF

×

〈[
FF (θ) +A

(
R

R0

)κ
FD(θ)

]2〉
(79)
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where A = aBD0/BF0 > 0. Also,

〈B〉2 =BF0
2

(
R

R0

)2kF

×
〈
FF (θ) +A

(
R

R0

)κ
FD(θ)

〉2

(80)

Thus, given that FF (θ)FD(θ) = 0, and setting BF0 and
BD0 such that 〈FF (θ)〉 = −〈FD(θ)〉 = 1, one obtains

F2 =

〈
B2
〉

〈B〉2
− 1

=

〈
F 2
F (θ)

〉
+A2

〈
F 2
D(θ)

〉( R

R0

)2κ

[
1−A

(
R

R0

)κ]2 − 1 (81)

which is an increasing (resp. decreasing) function of the
energy if κ > 0 (resp. κ < 0). Thus (when the AG is
neglected) the vertical tune is an increasing (resp. de-
creasing) function of the energy if κ > 0 (resp κ < 0).
Now, the magnetic flutter excursion writes

|F2(max)−F2(min)| =

∣∣∣∣∣∣∣∣∣
〈
F 2
F (θ)

〉
+A2

〈
F 2
D(θ)

〉( R

R0

)2κ

[
1−A

(
R

R0

)κ]2 −
〈
F 2
F (θ)

〉
+A2

〈
F 2
D(θ)

〉
[1−A]

2

∣∣∣∣∣∣∣∣∣ (82)

≈
2
[
A
〈
F 2
D(θ)

〉
+
〈
F 2
F (θ)

〉]
(1−A)

3 A
∆R

R0
|κ| ∝ |κ| (83)

which partially proves the property above in the vertical
plane. Now, to establish the same result in the horizontal
plane, it is important to evaluate the monotonic behavior
of the scalloping angle with the radius. Noting that:

F (R, θ) =
B(R, θ)

Bm(R)
=

FF (θ) +A

(
R

R0

)κ
FD(θ)

1−A
(
R

R0

)κ (84)

Integrating the previous equation while assuming R con-
stant, one obtains the expression of φ:

φ(θ) =

∫ θ

0

[F (R, θ)− 1] dθ

=

F̃F (θ) +A

(
R

R0

)κ
F̃D(θ)

1−A
(
R

R0

)κ (85)

yielding

〈
φ2
〉

=

〈
F̃F (θ)2

〉
+A2

(
R

R0

)2κ 〈
F̃D(θ)2

〉
[
1−A

(
R

R0

)κ]2 (86)

which is in the same form given in Eq. (81) above. Thus〈
φ2
〉

exhibits the same behavior as the magnetic flutter

vis-à-vis field imperfections of the type described. The
AG which is predominantly proportional to

〈
φ2
〉

follows
as well. Qualitatively, the property established above
states that the impact of reducing the average field in-
dex of the defocusing magnet in imperfect scaling FFA
concept is to reduce the AG contribution as well as the
magnetic flutter impact on the transverse tunes. Stated
differently, this is equivalent to reducing the FD ratio
of the DFD triplet which decreases the focusing in both
planes.

Nevertheless, it is important to highlight that the va-
lidity of the above result fails when the magnet contains
an overlapping region of the field of the F and D magnet.
However, the above calculation can be extended to take
this effect into account.
Equation (83) shows that reducing the FD ratio helps
reduce the tune variations. This is expected since, in our
model, the D magnet is the source of the field defect.
Furthermore, increasing the alternation of the gradient
increases the sensitivity of the tunes to the field imper-
fections via the second order moments of the flutter func-
tions, i.e.

〈
F 2
D(θ)

〉
and

〈
F 2
F (θ)

〉
. In addition, it is shown

that the effect of the scaling imperfections on the tune
variations grows linearly with the radial excursion of the
orbits in both horizontal and vertical planes. This shows
the advantages of having an FDF triplet configuration
(rather than a DFD one) with much larger field index,
since then the orbit excursion can be reduced by a factor
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of 5 or more [18] leading to much lower tune variations
due to field errors of the type described above.

D. Tracking simulations

Now, we demonstrate that our findings with the pre-
vious analysis are reinforced by numerical simulations
and provide an application example which is the KURRI
150 MeV scaling FFA.
From the hard edge model and the smooth approxima-
tion, it was found that the tune is sensitive to the av-
erage field index kF and kD of the F and D magnet
respectively. In other words, breaking the scaling law,
although a major source of imperfection in scaling FFA,
can also be utilized in order to control the tune path in
FFA. In order to quantify the source of imperfection, we
introduce two new quantities in the calculation: the av-
erage value of the tunes νmx = 〈νx〉 and νmy = 〈νy〉 over
the range of energies to quantify the average focusing
strength of the applied forces on the beam, and the rms
value of the tunes νrmsx = σνx and νrmsy = σνy to quan-
tify the scaling imperfections in terms of tune variations.
One could instead use the |max−min| value of the tunes
to account for the oscillations. However, the rms quan-
tities have the merit to be average quantities, thus more
appealing to use in order to obtain smooth variations of
the described quantities.

1. Benchmarking work

Following the FFAG14 workshop held at BNL[15], a
simulation campaign was established to benchmark sev-
eral simulation codes. The main objective is to provide
reliable modelling tools for FFA type of accelerators and
to better explain the results of the experiments at the
KURRI 150 MeV scaling FFA [6]. The first benchmark-
ing test was carried out for the calculation of the betatron
tune as a function of the momentum and shows excellent
agreement between the different codes (that were part
of this campaign) as shown in Fig. 11. The setup of the
benchmarking model as well as the details of the simula-
tion can be found in [16].

2. Zgoubi tracking model

Based on the successful benchmarking test, we carry
out parametric studies based on the zgoubi tracking code.
The zgoubi code solves the non-linear equation of mo-
tion using truncated Taylor expansions of the field and
its derivatives up to the 5th order. Thus, it is more ac-
curate than the linear approach. Given that the energy
gain per turn is small in scaling FFAs (typically 2 keV
per turn in the KURRI machine), one can reasonably as-
sume that the accelerated orbit trajectory for any given
energy is quasi the same as the closed orbit trajectory.
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FIG. 11. Betatron tunes from 11 to 139 MeV (left to right)
calculated with several codes [16]. The Zgoubi model is in
good agreement with the others. The solid lines, in black,
show the resonance lines up to the 4th order.

Thus, the procedure employed for the calculation of the
betatron wave number is based on the closed orbits for-
malism described below:
First, one generates a median plane field map for a given
(a, kF , kD) as shown in Fig. 10. The field fall-off at
the end of the magnets is obtained by using an Enge-
type fringe field model [17]. Extrapolation off the median
plane is then achieved by means of Taylor series: for that,
the median plane symmetry is assumed and the Maxwell
equations are accommodated. This yields results in ex-
cellent agreement with the 3D field map calculation.
Second, search for NCO closed orbits between injec-
tion and extraction using the built-in fitting routines in
zgoubi. NCO was chosen to be 30 in order to have good
statistics and ensure the convergence of the calculated
quantities. A typical example of 4 closed orbits search is
illustrated in Fig. 12.
Lastly, for each closed orbit, the betatron wave number
is calculated in both planes.

Fig. 13 shows the stability diagram obtained by vary-
ing the average field index of the magnets (κ = 0) as well
as their FD ratio, therefore the scale factor a in Eq. (72).
One can observe that, on the top and bottom right, the
stability limits are set by the horizontal and vertical cell
tunes, respectively. On the left side, the physical size of
the magnets (here we choose a radial excursion limited
to 10 m) determines the boundary limits.

Now, we choose to focus our analysis on the average
field index of the magnets. For that, we fix the FD ratio.
We choose a = 1 which corresponds to the green line in
Fig. 13. A scan on kF and kD provides the stability
diagram of the DFD triplet in the transverse plane (see
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FIG. 12. Example of several closed orbits for a scaling FFA.

0 2 4 6 8 10 12
k 

0.0

0.2

0.4

0.6

0.8

1.0

−
B
D

0
/B

F
0
∗a

0.050

0.100

0.150

0.200
0.250

0.300

0.350

0.
40

0 0.
40

0

0.
05

0

0.100

0.150

0.200

0.250

0.300

0.350 0.400

Stability diagram

horizontal
vertical

FIG. 13. Stability diagram as a function of the FD ratio and
the average field index k: the green line shows the value of
the FD ratio that we choose for the study that follows. Note
that the region on the left side is limited by the physical size
of the magnets, which is limited to Rmax = 10 m.

Fig. 14). Qualitatively, it shows that, in the case where
kF = kD = k, the average cell tune exhibits the expected
behavior predicted by the Symon formula i.e. Eq. (1):
increasing k increases the horizontal tune and decreases
the vertical one. One can also observe that for large k
values, the stability diagram shrinks, thus any design im-
perfection will make the orbits quickly unstable. This is
explained in the following way: on the right side of the
stability diagram, i.e. when κ < 0, the stability limit is
set by the condition that ν2y is to remain positive (Flo-
quet resonance), given that the tunes decrease with the
energy.
On the left side of the stability diagram, i.e. when κ > 0,

the stability limit is set by the radial π-mode stop-band
resonance, given that the tunes increase with the energy.
Note that a second stability island exists for larger
k values [18]. However, we restrict our analysis to a
KURRI type FFA for which the design value of k ≈ 7.6.
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Now, calculating the RMS tune variations shows that
the latter exhibit the expected behaviour in the vicinity
of the line kF = kD where they become negligible. This is
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shown in fig 15. When field imperfections such that κ 6= 0
are introduced, one can observe that the tune variations
increase with |κ| as demonstrated earlier.

Based on all the above, we compare the tracking re-
sults with those obtained from the analytical formula es-
tablished in the previous section. This is shown in figs
16 and 17 for the horizontal and vertical plane, respec-
tively. The red points are the simulation results while the
blue points represent the analytical formula: for κ > 0
(upward-pointing triangle), the tunes increase with the
energy in both planes, while for κ < 0 (down-pointing
triangle), the tunes exhibit the opposite behaviour. This
confirms the findings of the previous section.
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The main finding of the smooth approximation is that

scaling imperfections produce an orbit distortion that
manifests through a radial dependence of the scalloping
angle of the orbits as well as the magnetic flutter. The
tracking simulations confirm our findings: as shown in
fig 18, the Thomas focusing explains the monotonic be-
havior of the vertical tune as a function of the energy for
various κ values. Nevertheless, in the horizontal plane,
the horizontal restoring force and the Thomas defocusing
effect act in opposition such that Eq. (56) holds. Thus,
it is the AG that explains the monotonic behavior of the
tunes in the horizontal plane (the average field index k
of the orbits changes insignificantly).
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E. Application to the KURRI 150 MeV scaling
FFA

We will benchmark the analytical formula against the
simulated values obtained from particle tracking using
3D field maps and compare with the measurement.
The tracking results provide the closed orbits and there-
fore the scalloping angle φ for various particle energies
which are then exploited to calculate the horizontal and
vertical tunes by applying the 1st and 3rd order approx-
imation given by Eq. (43). The difference between the
two approximations lies in the fact that the AG effect is
accounted for by the higher order terms which represents
approximately half the focusing in both planes.
Each magnet is characterized by an average field index
which is assumed to be constant, kF = 7.6 and kD = 9.0.
In addition, the flutter function F changes considerably
with the radius. However, the latter is re-calculated only
at 3 different radii as shwon in fig 19.
Comparison between the different results are summarized
in Figs. 20 and 21. To begin with, the 1st order formula
is less in agreement with the tracking results. The main
reason is the missing focusing which results from the AG
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effect. In addition, it is important to note that the mono-
tonic behavior of the tunes is a consequence of several lo-
calized imperfections that our simplified model does not
take into account. In particular, due to the variations of
the flutter function with the radius, it may be interest-
ing to calculate the spiral focusing term qspiy to determine
its impact on the beam dynamics. However, this is not
what we seek in this model which aims at simplifying the
conception of the imperfections at the KURRI FFA and
yields satisfactory results so far.
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VI. CORRECTION SCHEME AND ADVANCED
FFA CONCEPT

Practically, it is difficult to correct the orbit and optics
distortion in fixed field accelerators for the entire momen-
tum range since the beam moves outward radially during
acceleration. Therefore, a dedicated correction system
should be implemented along the radius of the magnet
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FIG. 21. Tune calculation in the vertical plane of the KURRI
150 MeV FFA ring and comparison with the analytical for-
mula as well as the measurement. Note the oscillatory be-
havior of the 1st and 3rd order approximation which is due
to the fact that the flutter function F is calculated only at 3
different locations in the ring.

to produce the desired field profile. From the point of
view of cyclotrons, this consists in the implementation of
trim coils to correct the isochronism, i.e. the revolution
time of the orbits. From the point of view of a scaling
FFA, the main target is to fix the betatron wave num-
ber in both planes which will allow to avoid the crossing
of transverse resonances and maximize the overall beam
transmission from injection to extraction.
From what preceded, one obtained general rules to ex-
plain the monotonic behaviour of the tunes as a function
of the energy as well as the amplitude of its variations.
This is a crucial result if one aims to reduce the tune
excursion. One major outcome of this study is that gra-
dient errors in the FFA magnet yield a non-scaling of the
orbits and lead to a change of the average as well as the
alternating gradient focusing forces applied on the beam.
This means that fixing the field defect of the FFA mag-
net by aiming to produce a constant average field index k
(by considering the average field over the entire circum-
ference) is not sufficient since the azimuthal variations of
this quantity yield a non-scaling of the orbits. In what
follows, we present a novel scheme to correct the field
errors in FFA that relaxes the constraint of having the
scaling law valid everywhere in the ring.

A. Alternating scaling imperfections

In the context of the present study and for the sake of
simplicity, the field defect is due to one of the magnets,
either the focusing (F) or the defocusing (D) one such
that κ 6= 0. Without any loss of generality, we assume
that the D magnet is the source of imperfection. In order
to minimize the tune variations, one way is to reduce the
FD ratio of the DFD triplet. This can be achieved by
reducing its excitation current or by sliding it to outer
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radii so that the average field encountered by the parti-
cle at any radius is lower. However, this approach leads
to the loss of focusing in both planes as shown earlier
(see fig 13). Another interesting but not yet evaluated
approach consists in misaligning vertically some of the
magnets in order to modify the shape of the closed or-
bits. However, this is not considered in the present paper
since one neglected the changes in the vertical direction
in Eq. (7). Based on the property established earlier,
the tune variation with the energy exhibits antagonistic
behavior based on the sign of κ. Therefore, the idea of
the following correction scheme is to introduce a pertur-
bation of the field every P sectors in order to counteract
the already existing imperfections. For instance, if we
choose P = 2, then a 12-fold symmetry machine is re-
placed by a 6-fold symmetry in the following way: let’s
note Di (resp Fi) the Defocusing (resp Focusing) magnet
with scaling factor kDi (resp kFi). The original design
12× (D0F0D0) is replaced by 6× (D0F0D0D1F0D1) in
the following way: if kD0 > kF0 then kD1 < kF0 and vice-
versa. Thus, instead of aiming to fix the design imper-
fections by correcting the field profile to match with the
ideal one for every magnet and make the orbits scale at
every azimuthal position, one can fix the scaling of the
orbits on an average sense by creating alternation of the
difference of the average field index of the magnets. This
has a major advantage of reducing the cost of the cor-
rection system since then only 12 D-magnets (out of 36
magnets) will require trimming coils to be implemented.
The number can be further reduced if increasing P . This
is the cornerstone of the fixed tune non-linear non-scaling
radial sector FFA concept that is discussed in detail in
what follows.

B. Fixed tune non-scaling FFA

In what follows we shall examine the characteristics
of this concept which incorporates the alternation of the
difference of the gradients scheme to FFA. The parti-
cle trajectories in the median plane are shown in fig 22
where one compares the orbits of a 12-fold symmetry
scaling FFA 12 × (kF0, kF0) with those of a 6-fold sym-
metry concept 6× (kF0, kD0), (kF0, kD1): the orbit scal-
loping in the non-scaling case differs mainly in the dom-
inant F-magnet. If κ < 0, the radial field increase in
the F-magnet is faster than in the D-magnet so that the
equilibrium orbit (pink) in the F-magnet is at lower radii
compared to the scaling case. The opposite effect occurs
when κ > 0 (light blue orbit). As a consequence of the
alternation of κ, the monotonic behavior of the phase
advance per cell is alternating (increasing if κ > 0 and
decreasing if κ < 0). This is illustrated in fig 23 where
one can see that the combination of the two cells yields a
fixed average tune per cell. This results from the alterna-
tion of the monotonic behavior of the horizontal restoring
force as well as the Thomas focusing and the AG effect
which is due to the azimuthal change of the orbit scal-

FIG. 22. Closed orbits in a scaling FFA (black) and in a
fixed tune non-scaling FFA with alternating κ (pink and light
blue). For the sake of clarity, the distance between the closed
orbits of the scaling and the non-scaling FFA is amplified.
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loping angle φ. The Thomas focusing term
〈
qthy
〉

within
each cell as well as for their combination is shown in fig 24
and is in agreement with the property established above.
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The same holds for all other quantities.
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C. Dynamic Acceptance

Although strong non-linearities of the field are inher-
ent to the scaling FFA, large Dynamic Acceptance (DA)
is obtained with this concept. Therefore, one main ques-
tion to answer is how the DA of the fixed tune non-scaling
FFA compares to that of the scaling FFA.
In our analysis, the DA is defined as the maximum trans-
verse invariant value that the beam can have without loss
due to single particle dynamics effects. Particle tracking
at fixed energy is employed for our analysis. A particle
with original displacement from the closed orbit is de-
fined as stable if it survives 1000 turns. Given that the
vertical aperture in fixed field accelerators is the limiting
factor due to the small gap size, we focus our analysis
on the horizontal plane. However, in our simulations, it
is noted that a vertical beam size up to 1 cm at injec-
tion can be transported without any losses and that the
horizontal DA is insensitive to it. The main idea is to
generate two lattices that have the same tunes in both
planes. This is obtained by first generating a non-scaling
fixed tune lattice with κ ≈ 0.3, then matching its tunes
by finely tuning the average field index as well as the FD
ratio of the scaling lattice. This is achieved for a lattice
with (νx, νy) = (4.43, 2.16).
Comparison of the calculated DA in both cases shows
(fig 25) that, for the same tunes, the horizontal beam ac-
ceptance is the same even though the orbits do not scale.
This is only valid if resonance crossing is not occurring:
in the non-scaling case discussed here, and for P = 2,
the resonance population is doubled in comparison with
the scaling case. Thus, one can expect that the reso-
nance crossing problem is more severe in the non-scaling
case. This requires further investigation. Comparison of
the phase space trajectories between the two cases is fi-
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FIG. 25. Comparison of the DA of the scaling and the non-
scaling FFA in the horizontal plane.

nally shown in fig 26. The trajectories in both cells are
symmetric with respect to X ′ = 0.

VII. CONCLUSION

In this paper, one analyzed the stability of the particle
trajectories due to field errors. Several approaches to
the problem were developed and analyzed. Comparison
of the results showed that the first order approximation
based on the smooth approximation is only sufficient
for a lattice where the average field index is negligible.
Relying on the non-linear approach based on tracking
simulations alongside the analytical derivations based on
the 3rd order approximation from the smooth approxi-
mation, a crucial result was to establish a relationship
between the betatron wave number and the field defects.
A key parameter to measure the amplitude of the defects
is the κ-value defined as the difference of the average
field index of the focusing and defocusing magnets.
Furthermore, analysis of the stability diagram (fig 14)
showed that the tolerance to scaling imperfections
becomes lower when increasing the average field index
of the magnets. Based on these results, a new scheme
to remediate the variation of the betatron oscillations
with the energy was proposed. The main idea consists
in alternating the κ-values of the magnets, every two (or
more) sectors. This leads to the new concept of the fixed
tune non-scaling radial sector FFA that one developed in
section VI: in addition to the fact that this demonstrates
that the conditions of scaling are non necessary to obtain
a fixed tune FFA, the newly developed concept is easier
to implement by means of trim coils that can be adjusted
to find the condition of minimum tune excursion and
avoid the crossing of harmful resonances. Analysis of
the DA showed that the lattice with alternating κ-values
has the same DA as the equivalent scaling FFA case.
Given that the alternating-κ FFA reduces the number of
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FIG. 26. Horizontal phase space trajectories at 100 MeV including the separatrix.

super-periods in the accelerator, therefore doubling the
resonance population, one can expect that the impact of
the resonance crossing is more severe than the scaling
FFA case. This needs further investigation.
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Appendix A: Spiral focusing

Let’s assume that the magnet boundaries are deformed
from radial poles to spiral shaped poles. As an example,
the flutter function of the median plane magnetic field
for a spiral sector FFA can be written in the following
way [1]:

B(R, θ) = B0 (R/R0)
k
F (R, θ) (A1)

F (R, θ) = 1 + f cos [Nθ −N tan(ξ) ln(R/R0)] (A2)

where f is the flutter factor, N the number of sectors
around the machine, B0 the reference field at R = R0

and ξ is the spiral angle between the locus of the field
maximum and the radius. Assuming small orbit scallop-
ing around R0 such that Eq. (42) holds, one obtains:

qspiy (θ) = −
(

1 + φ̇
) R
F

∂F

∂R
≈ −R∂F

∂R
(A3)

= −fN tan(ξ) sin [Nθ −N tan(ξ) ln(R/R0)]

At first sight, one might think that the average value
of qspiy would be zero. However, as will be established
below, there is a net focusing effect due to the different
path lengths of the particle in the focusing and defocusing
fields. Under the assumption of small orbit scalloping, i.e.
ln(R/R0)� 1, Eq. (A4) can be expanded:

qspiy (θ) ≈− fN tan(ξ) sin (Nθ)

+ fN2 tan2(ξ) ln(R/R0) cos (Nθ) (A4)

Now, integrating Eq. (42) and choosing the reference
such that φ(0) = 0 yields:

φ(θ) ≈
∫ θ

0

(F (R, u)− 1) du ≈ f

N
sin (Nθ) (A5)

Integrating again the expression of φ (Eq. (2)), one can
determine the azimuthal variation of the radius along the
closed orbit:

ln

(
R(θ)

R0

)
= ln

(
R(θ = 0)

R0

)
−
∫ θ

0

φ(u)du ≈ f

N2
cos(Nθ)

Injecting this into Eq. (A4) yields:

qspiy (θ) ≈ −fN tan(ξ) sin (Nθ) + f2 tan2(ξ) cos2 (Nθ)

so that the first order contribution of the spiral focusing
to the vertical tune is given by:〈

qspiy

〉
=
f2

2
tan2(ξ) = F2 tan2(ξ) (A6)

In addition, due to the Alternating Gradient focusing, a
second contribution to the vertical focusing can be cal-
culated: 〈

q̃spiy

2
〉
≈ f2

2
tan2(ξ) = F2 tan2(ξ) (A7)

so that the overall contribution to the vertical tune is
given by the often quoted formula [11]:

ν2y ≈ −k + F2
[
1 + 2 tan2(ξ)

]
(A8)

http://arxiv.org/abs/de-sc/0012704
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This formula is an approximation which becomes less
and less accurate when the orbit scalloping becomes
important and when the Alternating Gradient effect
due to the average field index of the magnet becomes
more and more important, i.e. for large k-values and for
non-negligible values of f .

Appendix B: Analytical expression of the magnetic
field to account for radial defects

In order to obtain the radial dependence of the field
when the mean field index k is R-dependent, let’s assume
that k can be fitted with an n-order polynomial. Thus,
k writes in the following way:

k(R) =

n∑
i=0

ai

(
R

R0

)i
(B1)

Then by equating Eq. (71) and Eq. (B1), one obtains:

dB

B
=

n∑
i=0

ai
Ri0

Ri−1dR = a0
dR

R
+

n∑
i=1

ai
Ri0

Ri−1dR

which gives after integration:

ln(
B

B0
) = a0 ln(

R

R0
) +

n∑
i=1

ai
Ri0

∫ R

R0

Ri−1dR (B2)

B(R) = B0 exp

[
a0 ln(

R

R0
) +

n∑
i=1

ai
Ri0

(Ri −Ri0)

i

]

so that the general form of the magnetic field becomes,
B(R, θ) = B(R)F (θ), i.e.,

B(R, θ) = B0

(
R

R0

)a0
× exp

(
n∑
i=1

ai
Ri −Ri0
i×Ri0

)
× F (θ)
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