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In this paper, we investigate the stability of the particle trajectories in fixed field alternating gradient
accelerators (FFAs) in the presence of field errors. The emphasis is on the scaling radial sector FFA type:
A collaboration work is ongoing in view of better understanding the properties of the 150 MeV scaling FFA
at Kyoto University Institute for Integrated Radiation and Nuclear Science in Japan and progress toward
high-intensity operation. Analysis of certain types of field imperfections revealed some interesting features
that required the development of an analytical model based on the scalloping angle of the orbits. This
helped explain some of the experimental results as well as generalize the concept of a scaling FFA to a
nonscaling one for which the tune variations obey a well-defined law. Based on this, a compensation
scheme of tune variations in imperfect scaling FFAs is presented. This is the cornerstone of a novel concept
of a fixed tune FFA in which the scaling is not achieved at every azimuthal position of the ring but rather in
an average sense.
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I. INTRODUCTION

The scaling fixed field alternating gradient accelerator
(FFA) is a concept that was invented in the 1950s almost
independently in the United States, Japan, and USSR [1–3].
Several electron machines were built in the United States.
However, it was not until the 1990s that the interest for
scaling FFAs was revived in Japan. Several machines were
built, among which is a 150 MeV proton machine at Kyoto
University Institute for Integrated Radiation and Nuclear
Science (KURNS) [4]. One main feature of this machine is
its potential for high-power applications, hence its use as a
proton driver for an accelerator-driven subcritical reactor
[5] at KURNS. A large dynamic acceptance can be
achieved, since the crossing of the betatron resonances is
avoided in this concept. This is achieved by introducing an
Rk increase of the magnetic field with the radius, resulting
in the beam experiencing the same focusing throughout the
acceleration, therefore keeping the tunes constant. The
magnetic field profile allowing this is written in cylindrical
coordinates in the form B ¼ B0ðR=R0ÞkFðθÞ, where B is

the vertical component of the magnetic field in the median
plane, R is the radial coordinate with respect to the center of
the ring, B0 is the reference field at R ¼ R0, FðθÞ is the
flutter function describing the azimuthal variations of the
field, and k is the average field index of the magnets,
sometimes also referred to as the scaling factor, defined by
k ¼ R=B:∂B=∂R and, ideally, a constant value everywhere
in the ring. One shall insist here that this form of the
magnetic field is a sufficient but non-necessary condition in
order to obtain a fixed tune FFA. In the scaling FFA
concept, the orbit excursion is uniquely determined by the
field index and the flutter function. Given that all built
machines in the past opted for a phase advance per cell
below 180°, the orbit shift is therefore large, of the order of
1 m, which makes the magnet larger than typical synchro-
tron magnets. Besides, due to the complexity of the field
profile and flutter of the magnets, field imperfections can be
problematic and difficult to cure, since the orbits move
outward from the center of the machine with increasing
energies. This can lead to the crossing of several betatron
resonances at low speed and to beam deterioration in
consequence. For instance, this is a strong contribution
to the overall low beam transmission in the KURNS
FFA [6,7].
Despite some controversy regarding the definition of

FFA, it is worth mentioning that spiral sector cyclotrons are
a class of nonscaling FFA where the alternating gradient
effect comes from the spiral-shaped poles [1]. Some of
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these machines existed since the 1950s such as the Paul
Scherrer Institut and Tri-University Meson Facility cyclo-
trons which have been operating for over 40 years at the
high-intensity regime with very low losses. In this concept,
the scaling is sacrificed in favor of isochronism, thus
allowing such machines to operate in the continuous wave
mode. Unlike cyclotrons, scaling FFAs operate like syn-
chrocyclotrons in that the rf frequency must be varied to
remain synchronous with the accelerating particles.
In addition, although FFAs are generally assumed to

have a nonlinear field profile with the radius, there exists a
second class of FFAs, that of linear concepts. The linear
FFAs are so called because they use only linear elements
such as dipoles and quadrupoles. A proof-of-principle
electron model of this concept called Electron Model for
Many Applications [8] has been constructed and operated
successfully at the Science and Technology Facilities
Council Daresbury Laboratory in the United Kingdom.
Such a concept has been proposed in the context of rapid
acceleration of unstable muons for future high-energy
colliders. Furthermore, the first energy recovery linac based
on linear FFA magnets is being constructed at Cornell
University [9] as a prototype for a potential electron ion
collider, the so-called eRHIC [10].
In the original work of Symon [1], it was established that

if the average field index is kept constant and the closed
orbits are geometrically similar in a way that will become
clearer later on in this paper, then the number of betatron
oscillations can be approximated by

ν2x ≈ kþ 1;

ν2y ≈ −kþ F 2½1þ 2tan2ðξÞ�; ð1Þ

where F is the magnetic flutter and ξ is the spiral angle
of the magnets. Nevertheless, due to field imperfections,
it is particularly challenging to design and manufacture a
magnet which produces exactly the desired magnetic field.
For instance, the measured as well as the simulated tunes of
the 150 MeV FFA at KURNS are shown in Fig. 1, where
one can observe non-negligible tune variations.
In what follows, we will derive the linearized Hill’s

equations of motion in cylindrical coordinates in order to
take into account the field imperfections and define the
domain of validity of the above approximation [Eq. (1)]. In
particular, it will be shown that the linear motion around the
planar closed orbit in a radial sector FFA is fully deter-
mined by two main parameters: the scalloping angle of the
closed orbit and the average field index of the magnet. One
objective of this paper is to establish approximate expres-
sions of the ring tunes that take into account the nonscaling
of the orbits due to field imperfections and compare with
the tracking results. This will be a crucial result in order to
establish a correction scheme to minimize the tune varia-
tions in imperfect radial scaling FFA.

II. GEOMETRY OF THE CLOSED ORBIT

In cylindrical coordinates as shown in Fig. 2, it can be
shown that any median plane closed orbit satisfies the
following equation:

tanðϕÞ ¼ −
dR=dθ

R
¼ −

_R
R
; ð2Þ

where ϕðθÞ is the angle between the extended radial line

and the normal to the equilibrium orbit, i.e., ϕ ¼ ð duR�!; ux
!Þ.

ϕ is a natural parameter to describe the scalloping of the
closed orbit (note that ϕ ¼ −T for the element “polarmes”
in the tracking code ZGOUBI [11]): If ϕðθÞ ¼ 0 for all θ,
then the closed orbit is a circle. In order for R to be a well-
defined function of the azimuthal angle, the orbit cannot be
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FIG. 1. Betatron tunes from 11 to 100 MeV (left to right). The
details of the measurement as well as the methods and tools that
were used to characterize the 150 MeV KURNS FFA are
discussed in Ref. [7].

FIG. 2. Geometric properties of the closed orbit. The point O is
the center of the ring, and the particle motion is clockwise. u⃗T is
the unit vector along the momentum direction.
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moving radially outward. This sets the following condition
on ϕ: jϕj < π=2.
Differentiating again with respect to the azimuthal angle

yields

R̈ ¼ − _R tanðϕÞ − R _ϕ½1þ tan2ðϕÞ�: ð3Þ

Now, the signed curvature of the closed orbit can be
expressed as a function of the radius:

1

ρ
¼ R2 þ 2ð _RÞ2 − RR̈

½R2 þ ð _RÞ2�3=2 ¼ 1

R
ð1þ _ϕÞ cosðϕÞ; ð4Þ

where we use the convention that the particle motion is
clockwise with increasing θ and that the curvature is
positive if the momentum vector turns clockwise with
increasing θ.
Thus, when defining the particle closed orbit in cylin-

drical coordinates, the particle radius R changes with the
azimuthal angle. Such a dependence is described by
the angle ϕðθÞ, which is also defined as the angle between
the tangent to the circle of radius RðθÞ and the particle
momentum vector at the azimuthal angle θ. It results that
the position of the particle on the closed orbit is specified
by the variables ½RðθÞ; θ; zðθÞ�. In addition, the geometrical
properties of each closed orbit will be periodic in the
azimuthal angle θ with period 2π=N, N being the number
of identical sectors in the ring.
Note that, in a drift space where the particle trajectory is a

straight line, Eq. (4) holds, and it can be easily shown that
_ϕ ¼ −1 by observing that the vector ux! remains unchanged
along a straight line. In addition, ð1þ _ϕÞ > 0 for positive
curvature, which implies that the vertical component of the
magnetic field points upward for positive charged particles.

A. Arclength in cylindrical and generalized
azimuthal coordinates

To describe the transverse beam dynamics in particle
accelerators, very often the first approach consists in
searching for the closed orbit corresponding to a specific
energy and writing the linearized Hill’s equation of motion
describing the betatron oscillations around that orbit. In the
seminal Midwestern Universities Research Association
paper of 1956, Symon introduced the concept of general-
ized azimuthal coordinates in which each orbit is specified
by its equivalent radius R defined in the following way:

C ¼ 2πR; ð5Þ

where C is the closed orbit length for a specific energy.
In addition, a generalized azimuthal coordinate is defined
which is related to the distance measured along the orbit,
i.e., to the curvilinear abscissa s, in the following way:

s ¼ Rϑ: ð6Þ

In the formalism to be developed in the following section,
the linearized equations of motion in cylindrical coordi-
nates will be derived which are particularly useful when
calculating a correction scheme of magnetic field imper-
fections. For this reason, we will express the increment ds
in s as a function of the increment dθ in θ along a
closed orbit.
The increment of the arclength in cylindrical coordinates

is given by

ds ¼ ðdR2 þ R2dθ2 þ dz2Þ1=2

¼ R

�
1þ

�
_R
R

�2

þ
�
_z
R

�
2
�1=2

dθ: ð7Þ

Neglecting the changes in the vertical direction (the ideal
closed orbit usually lies in the median plane of the
accelerator), then one obtains by making use of Eq. (2)

ds
dθ

¼ RðθÞ
cosðϕÞ ; ð8Þ

d2s
dθ2

¼
_R

cosðϕÞ þ
R _ϕ tanðϕÞ
cosðϕÞ : ð9Þ

Note that Eq. (8) can be also established by basic
trigonometric considerations in the triangle OAC in
Fig. 2 and by taking the limit dθ → 0. Equating the change
of the arclength in both coordinates yields

ds ¼ Rdϑ ¼ R
cosðϕÞ dθ; ð10Þ

so that one can establish the transformation from the
generalized azimuthal coordinate to the cylindrical azimu-
thal coordinate:

dϑ ¼ R
R

1

cosðϕÞ dθ ð11Þ

and

ϑ ¼ 1

R

Z
θ

0

RðuÞ
cosðϕÞ du; ð12Þ

where one assumed that both quantities coincide at θ ¼ 0.
In particular, this shows that, even for a radial sector FFA,
the generalized azimuthal angle ϑ and the polar angle θ are
not identical.
In addition, R can be defined in cylindrical coordinates

as follows:
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R ¼ C
2π

¼ 1

2π

Z
2π

0

R
cosðϕÞ dθ; ð13Þ

which shows thatR will be larger than the mean radius hRi
of the closed orbit.
Now, by making use of Eqs. (4) and (10), we can

compute the average value of the curvature function for a
given closed orbit in the following way:

1

2π

Z
2πR

0

ds
ρ

¼ 1

2π

Z
2π

0

RðθÞ
ρðθÞ

1

cosðϕÞ dθ

¼ 1

2π

Z
2π

0

ð1þ _ϕÞdθ ¼ 1 ð14Þ

as expected, since the sum of all deflecting angles of the
closed orbit shall equal 2π.

III. TRANSVERSE EQUATIONS OF MOTION
IN CYLINDRICAL COORDINATES

The transverse equations for the linear betatron oscil-
lations around the closed orbit are written in the following
way [12]:

d2x
ds2

þ 1 − n
ρ2

x ¼ 0; ð15Þ

d2y
ds2

þ n
ρ2

y ¼ 0; ð16Þ

where ρ is the signed curvature of the closed orbit which is a
function of s while x and y are the transverse deviations of
the particle in the horizontal and vertical direction, respec-
tively. Since the field map in a fixed field accelerator is
usually defined in cylindrical coordinates ðR; θÞwith respect
to the center of the ring, it is natural to write the particle
equations of motion in such a frame. Differentiating with
respect to the azimuthal angle θ yields

dx
dθ

¼ dx
ds

ds
dθ

; ð17Þ

d2x
dθ2

¼ d2x
ds2

�
ds
dθ

�
2

þ dx
ds

d2s
dθ2

; ð18Þ

where the transverse coordinate is a function of θ only. Now,
injecting Eqs. (17) and (18) into the Hill’s equations (15)
and (16) yields

ẍ −
̈s
_s
_xþ _s2

ρ2
ð1 − nÞx ¼ 0; ð19Þ

ÿ −
̈s
_s
_yþ _s2

ρ2
ny ¼ 0; ð20Þ

where the _ðÞ represents the differentiationwith respect to the
azimuthal variable. The above equations can be written in
the standard form:

üþ pðθÞ _uþ qðθÞu ¼ 0: ð21Þ

This is a second-order linear differential equation with
variable coefficients, for which, in general, a closed form
solution is not known. The first-order derivative is removed
by making the Liouville-Green transformation:

uðθÞ ¼ vðθÞ: exp
�
−
1

2

Z
θ

θ0

pðhÞdh
�
; ð22Þ

which yields

v̈þ
�
qðθÞ − 1

2

dp
dθ

−
p2

4

�
v ¼ 0: ð23Þ

Now, back to Eqs. (19) and (20). The above formalism
applies by simply replacing pðθÞ ¼ −̈s=_s, which yields

uðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ds=dθ

pffiffiffiffiffiffiffiffiffiffiffiffiffi
ds=dθ

p
θ0

vðθÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðθÞ
cosðϕÞ

s
vðθÞ; ð24Þ

and the differential equations for the linear betatron oscil-
lations around the planar equilibrium orbit are given by

v̈x;y þ ½qx;yðθÞ þ fðθÞ�vx;y ¼ 0;

qxðθÞ ¼
_s2

ρ2
ð1 − nÞ ¼ ð1þ _ϕÞ2ð1 − nÞ;

qyðθÞ ¼
_s2

ρ2
n ¼ ð1þ _ϕÞ2n;

pðθÞ ¼ −
̈s
_s
¼ ð1 − _ϕÞ tanðϕÞ;

fðθÞ ¼ −
_p
2
−
p2

4
: ð25Þ

In the next section, we shall seek the expression of the field
index in cylindrical coordinates.

A. Field variations

1. Field index

Using the chain rule for partial differentiation, one
obtains

n ¼ −
ρ

B
∂B
∂x ¼ −

ρ

B

�∂B
∂R

∂R
∂x þ ∂B

∂θ
∂θ
∂x

�
; ð26Þ

where B is the magnetic field seen by the particle.
Applying the law of sines in the triangles ABD andOAD

as illustrated in Fig. 3, the following relations can be
established [13]:
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∂R
∂x ¼ cosðϕÞ; ð27Þ

∂θ
∂x ¼ sinðϕÞ

R
: ð28Þ

Next, we substitute Eqs. (4), (27), and (28) into Eq. (26) to
get the expression of the field index:

n ¼ −
R
B
∂B
∂R

1

1þ _ϕ
−
1

B
∂B
∂θ

tanðϕÞ
1þ _ϕ

: ð29Þ

Now, the median plane magnetic field can be written in
cylindrical coordinates in the general form:

BðR; θÞ ¼ BmðRÞFðR; θÞ; ð30Þ

where BmðRÞ is the average magnetic field at a given radius
which is R-dependent and FðR; θÞ is the flutter function
describing the azimuthal field variations along a fixed
radius and satisfying

1

2π

Z
2π

0

FðR; θÞdθ ¼ 1: ð31Þ

Taking the partial derivatives of the field in cylindrical
coordinates yields

1

B
∂B
∂R ¼ 1

BmðRÞ
∂Bm

∂R þ 1

FðR; θÞ
∂FðR; θÞ

∂R ; ð32Þ

1

B
∂B
∂θ ¼ 1

FðR; θÞ
∂FðR; θÞ

∂θ : ð33Þ

Finally, the field index can be expressed as follows:

n ¼ −
R
Bm

∂Bm

∂R
1

1þ _ϕ
−
R
F
∂F
∂R

1

1þ _ϕ
−
1

F
∂F
∂θ

tanðϕÞ
1þ _ϕ

;

ð34Þ

and the character of the betatron oscillations is determined
by Eqs. (25), which transform into

qxðθÞ ¼ ð1þ _ϕÞ2 þ ð1þ _ϕÞ R
Bm

∂Bm

∂R
þ ð1þ _ϕÞR

F
∂F
∂R þ ð1þ _ϕÞ tanðϕÞ 1

F
∂F
∂θ ; ð35Þ

qyðθÞ ¼ −ð1þ _ϕÞ R
Bm

∂Bm

∂R − ð1þ _ϕÞR
F
∂F
∂R

− ð1þ _ϕÞ tanðϕÞ 1
F
∂F
∂θ ; ð36Þ

fðθÞ ¼ ϕ̈

2
tanðϕÞ þ

_ϕ2 − 1

4
tan2ðϕÞ þ

_ϕ

2
ð _ϕ − 1Þ: ð37Þ

Note the analogy between Eq. (36) and Eq. (5.12) in
Symon’s paper [1], where all the derivations are based on
generalized azimuthal coordinates: Both equations are
exact in the sense that they describe the linear motion of
the particles around the median plane closed orbit in any
shape of magnetic field writing in cylindrical coordinates in
the form given by Eq. (30). The main assumption in both
derivations is that the magnetic field is perfectly symmetric
with respect to the median plane. The first term in Eq. (36)
represents the defocusing due to the average field index of
the magnets. The spiral focusing comes predominantly
from the second term. The third term is usually small except
near the edge of the magnet; hence, it accounts for the edge
focusing effect (often called Thomas focusing). Finally,
the additional term in Eq. (35) comes from the horizontal
restoring force.
Note, in addition, that the flutter function FðR; θÞ can

vanish in the straight sections, thus yielding a singularity in
the above equations. However, it can be observed that the
sign of the curvature function is related to the sign of the
flutter function. Therefore, we shall seek a relationship
between these two quantities. Before proceeding any
further, we will assume that the flutter function does not
exhibit any radial dependence. In other words, the con-
dition of a radial sector FFA is fulfilled whereby
∂F=∂R ¼ 0. However, the latter may not hold for non-
scaling machines where the magnet is not sector shaped
[14,15]. This will be discussed in a later publication.

2. Flutter function

First, let us compute the average magnetic field over a
closed orbit R corresponding to a particle momentum p.
From Eq. (14), one obtains

FIG. 3. Geometric properties of the particle motion around the
closed orbit.
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hBico ¼
1

2πR

Z
2πR

0

p
q

ds
ρðsÞ ¼

p
qR

; ð38Þ

where hico refers to the average taken over the curvilinear
abscissa. It results that

Bρ ¼ p
q
¼ hBicoR: ð39Þ

For the case of a radial sector FFA, the flutter function is
independent of the radius, and the expression of the
magnetic field seen by the particle is written as a function
of the azimuthal angle:

B½RðθÞ; θ� ¼ Bm½RðθÞ�FðθÞ: ð40Þ

Now, equating the expression of the magnetic rigidity in
both representations and making use of Eqs. (4), (11),
and (39), we finally obtain

FðθÞ ¼ hBico
Bm½RðθÞ�

R
RðθÞ ð1þ

_ϕÞ cosðϕÞ

¼ hBico
Bm½RðθÞ�

dθ
dϑ

ð1þ _ϕÞ: ð41Þ

Thus, when assuming that the closed orbit does not depart
much from a fixed radius orbit, i.e., ϕ ≪ 1, which is
generally the case for fixed field accelerators, we can write
as a first-order approximation

_ϕ ≈ FðθÞ − 1: ð42Þ

Nevertheless, the above approximation becomes less valid
when the azimuthal variations as well as the radial increase
of the field become large. For instance, for the KURNS
FFA, the above formula is tested at injection energy where

the orbit scalloping ΔR=hRi is about 2%, and we can
observe in Fig. 4 a non-negligible difference between the
two expressions. Thus, higher-order approximations are
established (see the Appendix A) which are more accurate
to explain the azimuthal variations of the scalloping angle
as illustrated in Fig. 4.

IV. NUMBER OF BETATRON OSCILLATIONS
FROM THE SECOND-ORDER DIFFERENTIAL

EQUATION

As was established by Teng [16], if we define Kx;yðθÞ as
the forcing term of the Hill’s equation [Kx;yðθÞ ¼ qx;yðθÞþ
fðθÞ], then the number of betatron oscillations can be
approximated by

ν2i ≈ hKii þ hfKi
2i þ 3hKiihffKi

2i þ hKi
ffKi

2i; ð43Þ

where the subscript i stands for x or y, the symbol hi
represents the average taken over the azimuthal coordinate,
and the tilde is the integrating operator defined by

g̃ðθÞ ¼
Z

½gðθÞ − hgi�dθ;

˜̃gðθÞ ¼
Z

½g̃ðθÞ − hg̃i�dθ:

Such an approximation is generally referred to in the
literature as the smooth approximation [1,16]: Symon
relied on such an approximation (limited to the first two
terms) to derive the often-quoted formula for the tunes in
FFA [see Eq. (1)].
For each closed orbit, there is a different set of linearized

equations for the betatron oscillations, i.e., different pairs
½KxðθÞ; KyðθÞ�, so that the betatron wave numbers are
susceptible to change with the energy. Our analysis is thus
restricted to the fixed energy closed orbits, which is the
commonly used approach to study the stability of the
particle trajectories, since the acceleration process is
adiabatic in scaling FFA.
For a radial sector FFA, when the closed orbit scalloping

and the field gradients are small, i.e., FðθÞ ∼ 1 and k≲ 1,
the alternating gradient (AG) effect can be neglected. In
other words, the tunes can be well approximated by the
first-order term in Eq. (43), which is the average of the
forcing term of the second-order linear differential equa-
tion (25): This accounts for the focusing (or defocusing)
effect due to the mean restoring forces. Nevertheless, when
the k value increases substantially, such an approximation
no longer holds, and it becomes important to account for
the higher-order terms which are due to the AG forces that
produce a substantial scalloping of the orbits alongside a
stronger focusing. This is accounted for by the tilde
functions, which represent the fluctuations about the mean
value of the applied forces on the beam.

-2
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FIG. 4. Comparison of the tracking results (red curve) of the
closed orbit scalloping at the KURNS FFA injection energy with
its first- and second-order approximate expressions (green and
blue curves, respectively).
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In what follows, the different terms of the Hill’s equation
expressed in cylindrical coordinates will be discussed, and
the emphasis made on their contribution to the number of
betatron oscillations. Several formula will be established
and their limit of validity discussed. To conclude, we will
make a comparison between the tracking results and the
analytical estimates for various values of the FD ratio and
the average field index of the magnets.

A. Focusing due to the average field index

If the averaged field (over the azimuth) increases with the
radius, this will yield an overall focusing (respectively,
defocusing) force in the horizontal (respectively, vertical)
plane. Such a contribution to qxðθÞ, denoted by the
superscript ind, is defined by

qindx ðθÞ ¼ ð1þ _ϕÞ R
Bm

∂Bm

∂R ¼ ð1þ _ϕÞk: ð44Þ

Next, two concepts will be discussed based on the
expression of the average magnetic field.

1. Cyclotron

In order to keep the isochronism in a cyclotron, the
average magnetic field strength changes according to
the law

BmðRÞ ¼ B0γðRÞ ¼
B0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð R
R∞
Þ2

q ; ð45Þ

where R∞ is a constant. It results that

hqindx i ¼ k ¼ γ2 − 1; ð46Þ

which shows that, in general, the average field index
contributes weakly to the horizontal focusing in cyclotrons.
Such a weak contribution is advantageous in the vertical
plane, since it can be overcome by means of Thomas and/or
spiral focusing.

2. Scaling FFA

For a perfect scaling FFA, k is constant everywhere in
the ring. It results that

hqindx i ¼ k ¼ const: ð47Þ

Since the k value can be large, k ¼ 7.6 for the KURNS
scaling FFA, it is obvious that the higher-order terms in
Eq. (43) which account for the AG forces can no longer be
neglected.
For instance, for a machine like the KURNS 150 MeV

FFA, we can estimate the contribution of the AG due to the
field index to be

hgqindx
2i ¼ k2hϕ2i

≈ 7.62h½0.33 � sinð12θÞ�2i ¼ 3.14; ð48Þ

which is about 2=5 of the focusing due to the average field
index. This is non-negligible and can place the tunes in the
second stability region of Hill’s equation, hence the concept
of scaling FFAwith a small orbit excursion [17]. However,
this will be discussed more in detail later on in this paper
where the AG focusing is evaluated.

B. Thomas focusing

From the previous analysis, the scalloping angle ϕ of the
closed orbit can be accurately calculated using the second
(or higher) order approximation established in Appendix A
and written in the following general way:

_ϕ ¼ hðk; θÞFðθÞ − 1 ð49Þ

[where hðk; θÞ ¼ 1 if we relied on the first-order approxi-
mation instead]. It results that the contribution of the
Thomas focusing to the vertical tune can be simplified to

qthy ðθÞ ¼ −ð1þ _ϕÞ tanðϕÞ 1
F
∂F
∂θ

¼ − tanðϕÞϕ̈þ ∂h
∂θ tanðϕÞF; ð50Þ

thus removing its singularity.
By making use of Eq. (A4), we finally obtain

qthy ðθÞ ¼ − tanðϕÞϕ̈ − ðkþ 1Þ tanðϕÞð1þ _ϕÞ tanðF̃Þ:
In general, though, the right-hand-side term in the previous
equation can be neglected in comparison with the left-hand-
side term as long as kϕmax=N ≪ 1. This is valid for all
machines where the k value is not exceedingly large, i.e.,
k ∼ 100, which is not the focus of our analysis in the
present paper.
By means of an integration by parts, the leading term of

the Thomas focusing can be calculated:

hqthy i ≈ h−ϕϕ̈i ¼ h _ϕ2i ¼ h½hðk; θÞFðθÞ − 1�2i: ð51Þ
At this point, it is important to recall the contribution of
the Thomas focusing to the vertical tune, which is usually
quoted in the literature in several equivalent ways
[1,18–22]:

F 2 ¼ hF2i − hFi2
hFi2 ¼ hB2i − hBi2

hBi2 ¼ f2

2

¼ h½FðθÞ − 1�2i; ð52Þ

where F 2 is generally referred to as the magnetic flutter.
The latter represents the fractional mean square azimuthal
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deviation of the field at a fixed radius. This term is large
when the field is changing rapidly along the closed orbit.
However, such a result is an approximation that is based on
the assumption that the field changes slowly, both radially
and azimuthally, and does not account for the variation of
the orbit scalloping with the k value. As is clearly stated in
Ref. [22], “the most important of all these simplifications is
the assumption of a small azimuthal variation of the field
strength.” To further illustrate this, both approximations
[Eqs. (51) and (52)] are compared with the tracking results
for various lattices where k is varied while maintaining the
flutter function FðθÞ unchanged, and one can see in Fig. 5
that the second-order approximation reduces the error of
the first-order estimate to below 5%. In conclusion, the
first-order approximation based on the expression (52)
should be avoided, since it introduces an erroneous concept
that the edge focusing is independent of the k value of the
magnet.
In general, Thomas focusing is dominated by the edge

focusing effect and acts in a way that the resulting effect is a
net restoring force in the vertical plane. It was Thomas in
his seminal paper of 1938 [23] who showed for the first
time that using an azimuthally varying field producing a
scalloped particle orbit allows one to overcome the defo-
cusing effect that would set the maximum energy of
cyclotrons to 20 MeV as claimed by Bethe and Rose [24].
Thomas’s insight was to realize that the interaction

between the radial component of the momentum and the
azimuthal component of the magnetic field yields a vertical
restoring force:

Forcey ¼ −qvRBθ ¼ −q
dR
dθ

dθ
dt

Bθ; ð53Þ

where Bθ is the azimuthal component of the magnetic field
which is written for small z [23]

Bθ ¼
z
R
∂B
∂θ þOðz3Þ: ð54Þ

Injecting the latter into the expression (53) and making use
of Eq. (2) yields

Forcey ¼ q
dθ
dt

tanðϕÞ ∂B∂θ z: ð55Þ

Such a force is usually directed toward the midplane, and,
therefore, it is restoring in the vertical plane. Its average
contribution to the vertical tune is approximately given by
Eq. (51). This is further summarized in Fig. 6, displaying
the tracking results from the KURNS 150 MeV FFA. In
some cases, it is asserted that the Thomas focusing was a
special case of the general theory of the AG focusing.
However, such a misconception is clarified in Ref. [25], and
we make the distinction clear in the present paper.

C. Horizontal restoring force

Larger scalloping of the orbit is due to larger oscillations
of the flutter function F which can substantially increase
the horizontal restoring force:

hqresx i ¼ 1

2π

Z
2π

0

ð1þ _ϕÞ2dθ ¼ 1þ h _ϕ2i: ð56Þ

It results that, for the horizontal tune, the horizontal
restoring force and the Thomas defocusing term compen-
sate each other in such a way that

hqresx i − hqthy i ≈ 1: ð57Þ

In addition, stronger vertical focusing can be achieved if
the magnet boundaries are deformed from radial poles to

 10

 15

 20

 25

 0  2  4  6  8  10

T
ho

m
as

 f
oc

us
in

g

Average field index k

Tracking
Eq. (51)
Eq. (52)

FIG. 5. Comparison of the tracking results for the Thomas
focusing term hqthy i with the analytical estimates based on the
first- and second-order approximations, Eqs. (52) and (51),
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spiral-shaped poles. However, in the present paper, the
focus of our analysis will be only on radial sector machines
so that such a contribution is disregarded.
In the next subsection, we focus the analysis on

obtaining simplified approximate expressions for the tunes
in order to better understand when the alternating gradient
focusing plays an important role in FFA.
Clearly, an exact solution of the problem can be obtained

by relying on the Hill’s equation of motion in cylindrical
coordinates for which the scalloping angle is precisely
solved as shown earlier.

D. Alternating gradient focusing

In summary, the expression of Kx for a radial sector
scaling FFA is written

KxðθÞ ¼ qresx ðθÞ þ qindx ðθÞ − qthy ðθÞ þ fðθÞ

≈ ð1þ _ϕÞ2 þ ð1þ _ϕÞkþ 3

2
ϕϕ̈þ

_ϕ2

2
−

_ϕ

2
;

where one neglected a small term involving fðθÞ so that
hKxi ≈ kþ 1 and

fKxðθÞ ¼
Z

θ

0

½KxðuÞ − hKxi�du

≈
�
kþ 3

2
ð1þ _ϕÞ

�
ϕ; ϕð0Þ ¼ 0; ð58Þ

where the reference azimuth is chosen such as ϕð0Þ ¼ 0.
This is necessarily the case if θ ¼ 0 is a point of symmetry
of the orbit, i.e., Fð−θÞ ¼ FðθÞ. Similarly, we can compute
the contribution of the AG to the vertical focusing:

KyðθÞ ¼ −qindx ðθÞ þ qthy ðθÞ þ fðθÞ

≈ −ð1þ _ϕÞk − ϕϕ̈

2
þ

_ϕ2

2
−

_ϕ

2
;

which yields after integration hKyi ≈ −kþ h _ϕ2i and

fKyðθÞ ¼
Z

θ

0

½KyðuÞ − hKyi�du

≈ −
�
kþ 1

2
ð1þ _ϕÞ

�
ϕþ

Z
θ

0

½ _ϕ2 − h _ϕ2i�du: ð59Þ

To facilitate further discussion, we make the following
considerations: Let us assume that FðθÞ is an even function
in θ as illustrated in Fig. 4. It results that its integral and,
therefore, the scalloping angle ϕ are odd functions in θ.
Thus, ϕ is written in the form

ϕðθÞ ¼
X∞
j¼1

ϕj sin ðjNθÞ; ð60Þ

where ϕj are the coefficients of the Fourier series and N is
the total number of sectors in the ring. To simplify the
analysis, we shall keep only the first two terms in this
series:

ϕðθÞ ¼ ϕ1 sinðNθÞ þ ϕ2 sinð2NθÞ: ð61Þ

Now, making use of Eqs. (58) and (59) yields

hfKx
2i ¼

�
kþ 3

2

�
2 ϕ1

2 þ ϕ2
2

2
þ 9N2

32
ðϕ1

4 þ 4ϕ2
4Þ

þ 45

16
N2ϕ1

2ϕ2
2 ð62Þ

and

hfKy
2i ¼

�
kþ 1

2

�
2 ϕ1

2 þ ϕ2
2

2
þ 365

144
N2ϕ1

2ϕ2
2

−
9

4

�
kþ 1

2

�
Nϕ1

2ϕ2: ð63Þ

If ϕ2 ¼ 0, then an approximate expression of the tunes is
written as follows:

νx ≈
�
kþ 1þ

�
kþ 3

2

�
2

hϕ2i þ 9

8
N2hϕ2i2

�
1=2

; ð64Þ

νy ≈
�
−kþ h _ϕ2i þ

�
kþ 1

2

�
2

hϕ2i
�
1=2

; ð65Þ

where we assumed that most of the focusing comes
predominantly from the first two terms in the tune ex-
pression (43) and where the scalloping angle ϕ is obtained
from the second (or higher) order approximation,

ϕ ≈ ghðk; θÞFðθÞ.
The above expressions of the tunes show that the AG

effect is generally more important in the horizontal plane
than in the vertical one. The latter is particularly sensitive to
the shape of the closed orbit. In addition, the contribution
of the AG to the transverse focusing increases with the
number of sectors.
Last but not least, achieving a constant k value is not a

sufficient condition in order to obtain a fixed tune machine:
If the flutter function FðθÞ changes from low energies to
high energies, this will necessarily introduce a change in

the scalloping angle of the closed orbit, ϕðk; θÞ ≈ghðk; θÞFðθÞ and, therefore, the tunes as well.
Now, as a verification example, the second-order ana-

lytical approximation of the scalloping angle ϕ at the
injection energy of the KURNS 150 MeV FFA where
k ¼ 7.6 yields hϕ2i ¼ 0.036 and h _ϕ2i ¼ 6.76 (while the
first order yields F 2 ¼ 10.74). Injecting the latter into
Eqs. (64) and (65) yields
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νx ≈ ½8.6þ 2.98þ 0.2�1=2 ¼ 3.43;

νy ≈ ½−7.6þ 6.76þ 2.36�1=2 ¼ 1.23;

which is consistent with the tracking simulation results
relying on the simulated field map using the OPERA-3D–
TOSCA package [26] as shown in Fig. 1. In addition, it is
clear that the AG effect is negligible for radial sector fixed
field machines where the k value is not important such as
cyclotron accelerators or for machines where the orbit
scalloping is small, i.e., FðθÞ ≈ 1. When the k value is non-
negligible as well as the orbit scalloping, which is the focus
of our analysis, then the net focusing is due to a mixing
between the average forces applied on the beam and the
fluctuations around the mean values of these forces. It is
important to point out that the approximate expressions
shown above cannot be more accurate than the tracking
results. However, they are sufficiently accurate to serve as
an important guideline for the design of the magnet and the
verification of the convergence of the tracking simulations.

E. Benchmarking the analytical formula
with tracking simulations

In summary, the number of betatron oscillations for a
radial sector scaling FFA can be determined from the
expressions of Kx and Ky:

KxðθÞ ¼ qresx ðθÞ þ qindx ðθÞ − qthy ðθÞ þ fðθÞ;
KyðθÞ ¼ −qindx ðθÞ þ qthy ðθÞ þ fðθÞ;

where fðθÞ is given by Eq. (25) such that its first-order
contribution is a small defocusing effect in both planes:

hfi ¼ −
hp2i
4

¼ −
1

4
hð1 − _ϕÞ2tan2ðϕÞi; ð66Þ

and the tunes are evaluated by means of Eq. (43). The
scalloping angle of the closed orbits is obtained by solving
the coupled equations (A1) and (A2) using the method of

successive approximations discussed in Appendix A. The
closed orbit results are in excellent agreement with the
tracking simulation results [below 1 mrad absolute error on
ϕðθÞ with the fifth-order approximation].
Table I shows a comparison of the tracking results of

radial sector scaling FFAwith the analytical expressions for
different values of the average field index: As can be seen,
when increasing the k value, the vertical tune decreases.
However, this is explained by two main contributions: an
increasing average field index as well as a decreasing edge
focusing. The latter is particularly sensitive to the shape of
the equilibrium orbit, which depends on the average field
index as well as the flutter function. In addition, it can be
seen that the often-quoted formulas ν2x ≈ kþ 1 and ν2y ≈
−kþ F 2 do predict the qualitative behavior. However, they
fail to predict the quantitative (or monotonic behavior as
will be shown later on in this paper): The first approxi-
mation, ν2x ≈ kþ 1, does underestimate the horizontal
tunes, since it does not account for the AG forces.
However, the second one, ν2y ≈ −kþ F 2, does overestimate
the vertical tunes, since it does not account for the reduced
scalloping of the orbit which reduces substantially the edge
focusing effect. In general, for small k values, we can
observe that the vertical tunes are well approximated by the
first-order formula, hKyi, i.e., the average values of the
transverse forces applied on the beam. This is the cyclotron
regime for which the average field index does not depart
much from γ2 − 1. Nevertheless, the horizontal tunes are
not well predicted by such an approximation. The reason is
due to the FD ratio, which is defined as the absolute value
of the ratio between the minimum and maximum of the
flutter function, i.e., FD ¼ jminðFÞ=maxðFÞj. The latter is
non-negligible in this example, FD ¼ 0.69, so that the AG
forces dominate in the horizontal plane, hence the need to
account for the additional focusing terms given by Eq. (43).
This is further illustrated in Table II, where the discrepancy
between the tracking and the first-order formula increases
with an increasing FD ratio.

TABLE I. Comparison of the ZGOUBI tracking results with the approximate formula for various values of the average field index k. The
FD ratio is fixed such that F 2 ¼ 25.89.

Tracking First order Third order

Field index k ν2x ν2y hKxi hKyi hKxi þ hfKx
2i þ � � � hKyi þ hfKy

2i þ � � � Edge focusing hqthy i
0 1.41 22.89 (−1.30Þ 21.73 1.14 23.04 22.03
1 2.98 17.75 0.40 17.50 2.88 17.82 18.72
2 4.69 14.35 1.84 14.24 4.68 14.34 16.42
3 6.58 11.80 3.14 11.55 6.63 11.79 14.70
4 8.64 9.76 4.37 9.24 8.76 9.77 13.36
5 10.95 8.06 5.54 7.17 11.08 8.05 12.28
6 13.58 6.59 6.68 5.29 13.62 6.50 11.39
7 16.68 5.30 7.80 3.55 16.37 5.04 10.64
8 20.58 4.14 8.89 1.92 19.35 3.60 10.00
9 24.40 3.08 9.97 0.37 22.53 2.12 9.44
10 28.87 2.18 11.04 ð−1.11Þ 25.95 0.59 8.96

M. HAJ TAHAR and F. MÉOT PHYS. REV. ACCEL. BEAMS 23, 054003 (2020)

054003-10



Nevertheless, it appears that the smooth approximation
fails near the stability boundary, hence the need to extend
the approximation to higher-order terms [16]. However, we
will not pursue this here.

V. BEAM STABILITY ANALYSIS

Technically, it is impossible to make a field which
corresponds exactly to the designed one. Therefore, it is
important to understand the effect of small imperfections of
the field on the beam dynamics.
In the following, we investigate the stability of the

particle trajectories that can arise with different field errors.
We use two different approaches to investigate the beam
stability due to field errors: The first approach is based on
the previously established analytical solution of the beta-
tron wave numbers by means of a smooth approximation of
the linearized equations of motion. The second model is the
ZGOUBI [11] tracking model of the magnet, which is the
most accurate one. The ZGOUBI model solves the nonlinear
equation of motion using field maps or user-implemented
analytical models. To conclude, we establish a comparison
between the different results and comment on the outcome
of this study.

A. Field imperfections in scaling FFAs

For an ideal radial sector scaling FFA, the magnetic field
is written in cylindrical coordinates in the following way:

BðR; θÞ ¼ B0

�
R
R0

�
k
FðθÞ: ð67Þ

Thus, a natural way to verify the validity of a calculated
field map is to introduce a generalized definition of the
average field index which accounts for the local imperfec-
tions of the field (radially and azimuthally):

kðR; θÞ ¼ R
B
∂B
∂R ; ð68Þ

where the field-free region is excluded from the definition
of kðR; θÞ.
In order to avoid any confusion, it is important to remind

the definition of the average field index introduced by
Symon, which is given by

ksymon ¼
R

hBico
dhBico
dR

: ð69Þ

If Eq. (67) holds everywhere in the ring, then kðR; θÞ ¼
ksymon is constant and both definitions are equivalent.
Nevertheless, due to imperfections, we expect some var-
iations of the above defined quantities as illustrated
in Fig. 7.

1. Field map derivative

Using a TOSCA 2D median plane field map of the
KURNS FFA which is simulated using OPERA finite
element software, we calculated the field map derivative
kðR; θÞ of the main magnets, i.e., the focusing F magnet
and the defocusing D one. The result is shown in Figs. 8
and 9, where a non-negligible variation of this quantity is
observed: For the F magnet, the variations of k are small,
and the latter is close to its design value k ¼ 7.6.
Nevertheless, for the D magnet, the variations of k are
important. The main source of discrepancy is observed in
the interaction region between the two magnets and seems
to affect mainly the defocusing one in the neighborhood of
the injection radius. Each sector in the ring is comprised of
a DFD triplet configuration which is symmetrical around

TABLE II. Comparison of the ZGOUBI tracking results with the approximate formula for various FD ratios (k ¼ 5).

Tracking First order Third order

FD ratio ν2x ν2y hKxi hKyi hKxi þ hfKx
2i þ � � � hKyi þ hfKy

2i þ � � � Edge focusing hqthy i
0.30 7.58 0.0023 6.00 −0.29 7.81 − 0.003 4.74
0.43 8.30 1.88 5.94 1.48 8.57 1.85 6.52
0.58 9.35 4.50 5.81 3.91 9.64 4.48 8.98
0.72 10.95 8.06 5.54 7.17 11.08 8.05 12.28
0.85 13.44 12.81 5.06 11.30 12.99 12.74 16.48
1.00 17.62 19.11 4.31 15.72 14.86 17.70 21.00
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FIG. 7. Plot of the average field index ksymon as a function of
the kinetic energy for the KURNS 150 MeV scaling FFA.
Note the oscillatory behavior which is due to the granularity
of the field map.

TUNE COMPENSATION IN NEARLY SCALING … PHYS. REV. ACCEL. BEAMS 23, 054003 (2020)

054003-11



the center of the F magnet. Besides, a “return-yoke-free”
design has been developed to ease the problem of variable
energy extraction. This means that the flux generated by the
F poles return through the D poles [26,27]. Nevertheless,
this causes a non-negligible leakage field in the straight
section and affects mainly the D magnet. In order to have a
better understanding of the impact of such a discrepancy,
we can simplify the model by assigning an average field
index to each magnet. The latter is calculated in the central
region of each and evolves with the radius as shown
in Fig. 10.

B. Generalized model of imperfect scaling
radial sector FFA

In order to carry out parametric studies of the field
defects in scaling FFAs, we assign an average field index to

each magnet that is not necessarily equal to the ideal one.
Thus, we define

ki ¼
R
Bi

∂Bi

∂R ; i ¼ F;D; ð70Þ

where Bi is the vertical component of the magnetic field in
the median plane of the FFA magnet. Now, assuming that
the k values have no radial dependence (a complete
derivation of the expression of the field when k is R
dependent can be found in Appendix B), Eq. (70) can be
integrated and the magnetic field expressed in cylindrical
coordinates:

BðR;θÞ¼BF0

�
R
R0

�
kF
FFðθÞþaBD0

�
R
R0

�
kD
FDðθÞ; ð71Þ

where FF and FD are the fringe field factors (or flutter
functions) that describe the azimuthal variation of the field
in the F and D magnets, respectively, BF0 and BD0 are
chosen such that hFFi ¼ −hFDi ¼ 1, and a is a scale factor
that allows one to vary the FD ratio of the magnet (a ≥ 0).
It is important to note that the field is a separable function in
radial and azimuthal coordinates, since, in our model, the
fringe fields merge to zero between the magnets as can be
seen in Fig. 11; thus, FFðθÞFDðθÞ ¼ 0. Also, note that if
kF ¼ kD, the field is written in the standard form of a
scaling FFA. The lattice considered for this study is a radial
sector KURNS-like DFD triplet [28]. It results that

1

B
∂B
∂θ ¼ 1

Fi

∂Fi

∂θ ¼ 1

F
∂F
∂θ ; ð72Þ

1

B
∂B
∂R ¼ kiðRÞ

R
; ð73Þ

where FðθÞ ¼ FFðθÞ þ FDðθÞ.

FIG. 8. Plot of the average field index map of the F magnet.
The central line (Y ¼ 0) is a line of symmetry of theDFD triplet.

FIG. 9. Plot of the average field index map of the D magnet.
The lower part is in the neighborhood of the F magnet, while the
upper part is surrounded by the drift space separating the sectors.
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C. Monotonic behavior of the betatron wave numbers

1. Conjecture

In this section, we make the following conjecture
regarding the impact of scaling imperfections on the
monotonic behavior of the tunes.
In the presence of scaling imperfections, the number

of betatron oscillations per turn increases (respectively,
decreases) with the energy if κ > 0 (respectively, κ < 0)
where κ ¼ kD − kF. Besides, the variation of the tune
squared is, to the first order, proportional to jκj, i.e.,
Δðν2x;yÞ ≈ ax;yjκj.
From what preceded, it was shown that the shape of the

equilibrium orbit which is determined by the scalloping
angle ϕ is the fundamental parameter that determines
whether the closed orbits do or do not scale. In a nearly
scaling FFA where the k value of the D magnet is larger
than that of the F magnet, this is to some extent equivalent
to increasing the FD ratio with the energy and thereby to
increasing the scalloping of the closed orbits with the
energy. The impact of increasing the scalloping of the orbits
is, therefore, to increase the edge focusing effect as well as
the AG focusing with the energy. Thus, by means of
Eqs. (64) and (65), we shall expect that the tunes will
increase monotonically with the energy of the particle if
κ > 0. The opposite effect occurs when κ < 0.
For the second part of the conjecture, we shall evaluate

the flutter function which is written in cylindrical coor-
dinates as follows:

FðR; θÞ ¼ BðR; θÞ
hBðR; θÞi ¼

FFðθÞ þ Að RR0
ÞκFDðθÞ

1 − Að RR0
Þκ ; ð74Þ

where 0 < A ¼ aBD0=BF0 < ðR0=RÞκ. For small scaling
imperfections, the flutter function evolves slowly with the
radius. Thus, an approximate expression of F for a given
closed orbit of average radius r is

Fðr; θÞ ¼
FFðθÞ þ Að r

R0
ÞκFDðθÞ

1 − Að r
R0
Þκ : ð75Þ

To simplify the analysis, we rely on the first-order
approximation of the scalloping angle:

h _ϕ2i ≈ hFðr; θÞ2i − 1

¼
hF2

Fi þ A2hF2
Dið r

R0
Þ2κ

½1 − Að r
R0
Þκ�2 − 1; ð76Þ

which is an increasing (respectively, decreasing) function
of r if κ > 0 (respectively, κ < 0). Furthermore, the overall
variation of the edge focusing can be estimated as follows:

jh _ϕ2imax − h _ϕ2iminj≈
���� hF2

Fi þ A2hF2
Dið r

R0
Þ2κ

½1 − Að r
R0
Þκ�2

−
hF2

Fi þ A2hF2
Di

½1 − A�2
���� ð77Þ

≈
2½AhF2

Di þ hF2
Fi�

ð1 − AÞ3 A
Δr
R0

jκj ∝ jκj;

ð78Þ
which partially establishes the conjecture above in the
vertical plane. Similarly, the impact of the AG focusing on
the tunes can be evaluated by calculating hϕ2i. The result
will be in the same form.
Equation (78) shows that reducing the FD ratio helps

reduce the tune variations. This is expected, since, in our
model, the D magnet is the source of the field defect.
Furthermore, increasing the alternation of the gradient
increases the sensitivity of the tunes to the field imperfec-
tions via the second-order moments of the flutter functions,
i.e., hF2

Di and hF2
Fi. In addition, it is shown that the effect of

the scaling imperfections on the tune variations grows
linearly with the radial excursion of the orbits in both
horizontal and vertical planes. This shows the advantages
of having an FDF triplet configuration (rather than a DFD
one) with a much larger field index, since then the orbit
excursion can be reduced by a factor of 5 or more [29],
leading to much lower tune variations due to field errors of
the type described above.

D. Tracking simulations

Now, we demonstrate that our findings with the previous
analysis are reinforced by numerical simulations.
From the smooth approximation, it was found that the

tune is sensitive to the average field index kF and kD of the
F and D magnet, respectively. In other words, breaking
the scaling law, although a major source of imperfection in
scaling FFA, can also be utilized in order to control the tune
path in FFA. In order to quantify the source of imperfection,
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FIG. 11. Magnetic field along several closed orbits in a DFD
triplet.
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we introduce two new quantities in the calculation: the
average value of the tunes νmx ¼ hνxi and νmy ¼ hνyi over
the range of energies, to quantify the average focusing
strength of the applied forces on the beam, and the rms
value of the tunes νrms

x ¼ σνx and ν
rms
y ¼ σνy , to quantify the

scaling imperfections in terms of tune variations. One could
instead use the jmax−min j value of the tunes to account
for the oscillations. However, the rms quantities have the
merit to be average quantities and, thus, more appealing to
use in order to obtain smooth variations of the described
quantities.

1. Benchmarking work

Following the FFA workshop held at BNL [30], a
simulation campaign was established to benchmark several
simulation codes. The main objective is to provide reliable
modeling tools for FFA type of accelerators and to better
explain the results of the experiments at the KURNS
150 MeV scaling FFA [7]. There exist several simulation
codes for FFAs [31]. However, only a few were part of this
benchmarking analysis so far. For instance, the CYCLOPS

code, which is probably the best known tool for beam
dynamics simulations in cyclotrons, can also be used for
the simulation of FFA, yielding results in excellent agree-
ment with the others [32]. Nevertheless, the aim of the
present paper is not to compare codes.
The first benchmarking test was carried out for

the calculation of the betatron tune as a function of the
momentum and shows excellent agreement between the
different codes (that were part of this campaign) as shown
in Fig. 12. The setup of the benchmarking model as well as
the details of the simulation can be found in Ref. [33].

2. ZGOUBI tracking model

Based on the successful benchmarking test, we carry out
parametric studies based on the ZGOUBI tracking code. The
ZGOUBI code solves the nonlinear equation of motion using
truncated Taylor expansions of the field and its derivatives
up to the fifth order. Thus, it is more accurate than the linear
approach. Given that the energy gain per turn is small in
scaling FFAs (typically 2 keV per turn in the KURNS
machine), it can be reasonably assumed that the accelerated
orbit trajectory for any given energy is quasi the same as the
closed orbit trajectory. Thus, the procedure employed for
the calculation of the betatron wave number is based on the
closed orbits formalism described below.
First, a median plane field map is generated for a given

ða; kF; kDÞ as shown in Fig. 11. The field falloff at the end
of the magnets is obtained by using an Enge-type fringe
field model [34]. Extrapolation off the median plane is then
achieved by means of Taylor series: For that, the median
plane symmetry is assumed, and the Maxwell equations are
accommodated. This yields results in excellent agreement
with the 3D field map calculation.
Second, a search for a number of closed orbits between

injection and extraction is performed using the built-in
fitting routines in ZGOUBI. This quantity denoted NCO was
chosen to be 30 in order to have good statistics and ensure
the convergence of the average as well as the rms calculated
quantities. A typical example of four closed orbits search is
illustrated in Fig. 13.
Lastly, for each closed orbit, the betatron wave number is

calculated in both planes.
Figure 14 shows the stability diagram obtained by

varying the average field index of the magnets (κ ¼ 0)
as well as their FD ratio and, therefore, the scale factor a in

FIG. 12. Betatron tunes from 11 to 139 MeV (left to right)
calculated with several codes [33]. The ZGOUBI model is in good
agreement with the others. The solid lines, in black, show the
resonance lines up to the fourth order. FIG. 13. Example of several closed orbits for a scaling FFA.
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Eq. (71). It can be seen that, on the top and bottom right, the
stability limits are set by the horizontal and vertical cell
tunes, respectively. On the left side, the physical size of the
magnets (here, a radial excursion limited to 10 m is chosen)
determines the boundary limits.
Now, we choose to focus our analysis on the average

field index of the magnets. For that, we fix the FD ratio. We
choose a ¼ 1, which corresponds to the green line in
Fig. 14. A scan on kF and kD provides the stability diagram
of the DFD triplet in the transverse plane (see Fig. 15).
Qualitatively, it shows that, in the case where kF ¼ kD ¼ k,
the average cell tune exhibits the expected behavior
predicted by the Symon formula, i.e., Eq. (1): Increasing
k increases the horizontal tune and decreases the vertical
one. We can also observe that, for large k values, the
stability diagram shrinks; thus, any design imperfection
will make the orbits quickly unstable. This is explained in
the following way: On the right side of the stability
diagram, i.e., when κ < 0, the stability limit is set by the
condition that ν2y is to remain positive (Floquet resonance),
given that the tunes decrease with the energy.
On the left side of the stability diagram, i.e., when κ > 0,

the stability limit is set by the radial π-mode stop-band
resonance, given that the tunes increase with the energy.
Note that a second stability island exists for larger k

values [29]. However, we restrict our analysis to a KURNS-
type FFA for which the design value of k ≈ 7.6.
Now, calculating the rms tune variations shows that the

latter exhibit the expected behavior in the vicinity of the
line kF ¼ kD where they become negligible. This is shown
in Fig. 16. When field imperfections such that κ ≠ 0 are

introduced, we can observe that the tune variations increase
with jκj as demonstrated earlier.
Based on all the above, we compare the tracking results

with those obtained from the analytical formula established
in the previous section. This is shown in Figs. 17 and 18 for
the horizontal and vertical plane, respectively. The red
points are the simulation results, while the blue points

FIG. 14. Stability diagram as a function of the FD ratio and the
average field index k: The green line shows the value of the FD
ratio that we choose for the study that follows. The number along
with the red and blue lines are the horizontal and vertical cell
tunes, respectively. Note that the region on the left side is limited
by the physical size of the magnets, which is limited to
Rmax ¼ 10 m.

FIG. 15. Stability diagram of the average cell tune as a function
of the average field index kF and kD: The green line corresponds
to the case of a scaling FFA with no field imperfections, i.e.,
κ ¼ 0.

FIG. 16. Stability diagram of the rms vertical cell tune as a
function of the average field index kF and kD: The green line
corresponds to the case of a scaling FFA with no field imper-
fections, i.e., κ ¼ 0. Note that a similar result is obtained for the
horizontal plane.
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represent the analytical formula: For κ > 0 (upward-point-
ing triangle), the tunes increase with the energy in both
planes, while for κ < 0 (down-pointing triangle), the tunes
exhibit the opposite behavior. This confirms the findings of
the previous section.
The main finding of the smooth approximation is that

scaling imperfections produce an orbit distortion that
manifests through a radial dependence of the scalloping
angle of the orbits as well as the magnetic flutter. The
tracking simulations confirm our findings: As shown in
Fig. 19, the Thomas focusing explains the monotonic
behavior of the vertical tune as a function of the energy
for various κ values. Nevertheless, in the horizontal plane,
the horizontal restoring force and the Thomas defocusing

effect act in opposition such that Eq. (57) holds. Thus, it is
the AG that explains the monotonic behavior of the tunes in
the horizontal plane (the average field index k of the orbits
changes insignificantly).

E. Application to the KURNS 150 MeV scaling FFA

We will benchmark the analytical formula against the
simulated values obtained from particle tracking using 3D
field maps and compare with the measurement.
The analytical model of the DFD triplet is characterized

by an average field index which is assumed to be constant,
kF ¼ 7.6 and kD ¼ 9.0. The flutter function F is deter-
mined at injection as shown in Fig. 6 and recalculated at
higher energies by making use of Eq. (74).
For each closed orbit, the scalloping angle is solved

using the fourth-order approximation and is in good
agreement with the tracking results as is shown in
Fig. 27. The latter are exploited to calculate the horizontal
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and vertical tunes by applying the first- and third-order
approximation given by Eq. (43). The difference between
the two approximations lies in the fact that the AG effect is
accounted for by the higher-order terms which represent
approximately half the focusing in both planes as illustrated
in Figs. 20 and 21. In addition, it is important to note that
the monotonic behavior of the tunes is a consequence of
several localized imperfections that our simplified model
does not take into account. In particular, due to the
variations of the flutter function with the radius, it may
be interesting to calculate the spiral focusing term to
determine its impact on the beam dynamics. However,
this is not what we seek in this model, which aims at
simplifying the conception of the imperfections at the
KURNS FFA and yields satisfactory results so far.

VI. CORRECTION SCHEME AND
ADVANCED FFA CONCEPT

Practically, it is difficult to correct the orbit and optics
distortion in fixed field accelerators for the entire momen-
tum range, since the beam moves outward radially during
acceleration. Therefore, a dedicated correction system
should be implemented along the radius of the magnet
to produce the desired field profile. From the point of view
of cyclotrons, this consists in the implementation of trim
coils to correct the isochronism, i.e., the revolution time of
the orbits. From the point of view of a scaling FFA, the
main target is to fix the betatron wave number in both
planes, which will allow one to avoid the crossing of
transverse resonances and maximize the overall beam
transmission from injection to extraction.
From what preceded, we obtained general rules to

explain the monotonic behavior of the tunes as a function
of the energy as well as the amplitude of its variations. This
is a crucial result if we aim to reduce the tune excursion.
One major outcome of this study is that gradient errors in
the FFA magnet yield a nonscaling of the orbits and lead to

a change of the average as well as the alternating gradient
focusing forces applied on the beam. This means that fixing
the field defect of the FFA magnet by aiming to produce a
constant average field index k (by considering the average
field over the entire circumference) is not sufficient, since
the azimuthal variations of this quantity yield a nonscaling
of the orbits. In what follows, we present a novel scheme to
correct the field errors in FFA that relaxes the constraint of
having the scaling law valid everywhere in the ring.

A. Alternating scaling imperfections

In the context of the present study and for the sake of
simplicity, the field defect is due to one of the magnets,
either the focusing (F) or the defocusing (D) one such that
κ ≠ 0. Without any loss of generality, we assume that theD
magnet is the source of imperfection. In order to minimize
the tune variations, one way is to reduce the FD ratio of the
DFD triplet. This can be achieved by reducing its exci-
tation current or by sliding it to outer radii so that the
average field encountered by the particle at any radius is
lower. However, this approach leads to the loss of focusing
in both planes as shown earlier (see Fig. 14). Another
interesting but not yet evaluated approach consists in
misaligning vertically some of the magnets in order to
modify the shape of the closed orbits. However, this is not
considered in the present paper, since the changes in the
vertical direction were neglected in Eq. (7). Based on
the property established earlier, the tune variation with the
energy exhibits antagonistic behavior based on the sign of
κ. Therefore, the idea of the following correction scheme is
to introduce a perturbation of the field every P sectors in
order to counteract the already existing imperfections. For
instance, if we choose P ¼ 2, then a 12-fold symmetry
machine is replaced by a sixfold symmetry in the following
way: Let us note Di (respectively, Fi) the defocusing
(respectively, focusing) magnet with scaling factor kDi
(respectively, kFi). The original design 12 × ðD0F0D0Þ is
replaced by 6 × ðD0F0D0D1F0D1Þ in the following way: If
kD0 > kF0, then kD1 < kF0 and vice versa. Thus, instead of
aiming to fix the design imperfections by correcting the
field profile to match with the ideal one for every magnet
and make the orbits scale at every azimuthal position, the
scaling of the orbits can be fixed on an average sense by
creating an alternation of the difference of the average field
index of the magnets. This has a major advantage of
reducing the cost of the correction system, since then only
12 D magnets (out of 24 magnets) will require trimming
coils to be implemented. The number can be further
reduced if increasing P. This is the cornerstone of the
fixed tune nonlinear nonscaling radial sector FFA concept
that is discussed in detail in what follows.

B. Fixed tune nonscaling FFA

In what follows, we shall examine the characteristics
of this concept which incorporates the alternation of the
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difference of the gradients scheme to FFA. The particle
trajectories in the median plane are shown in Fig. 22,
where the orbits of a 12-fold symmetry scaling FFA
12 × ðkF0; kF0Þ are compared with those of a sixfold

symmetry concept 6 × ðkF0; kD0Þ; ðkF0; kD1Þ: The orbit
scalloping in the nonscaling case differs mainly in the
dominant F magnet. If κ < 0, the radial field increase in
the F magnet is faster than in the D magnet so that the
equilibrium orbit (pink) in the F magnet is at lower radii
compared to the scaling case. The opposite effect occurs
when κ > 0 (light blue orbit). As a consequence of the
alternation of κ, the monotonic behavior of the phase
advance per cell is alternating (increasing if κ > 0 and
decreasing if κ < 0). This is illustrated in Fig. 23, where the
combination of two cells yields an overall fixed average
tune per cell. This results from the alternation of the
monotonic behavior of the horizontal restoring force as
well as the Thomas focusing and the AG effect which is due
to the azimuthal change of the orbit scalloping angle ϕ. The
Thomas focusing term hqthy i within each cell as well as for
their combination is shown in Fig. 24 and is in agreement
with the property established above. The same holds for all
other quantities.

C. Dynamic acceptance

Although strong nonlinearities of the field are inherent
to the scaling FFA, large dynamic acceptance (DA) is
obtained with this concept. Therefore, one main question to
answer is how the DA of the fixed tune nonscaling FFA
compares to that of the scaling FFA.
In our analysis, the DA is defined as the maximum

transverse invariant value that the beam can have without
loss due to single-particle dynamics effects. Particle
tracking at a fixed energy is employed for our analysis.
A particle with an original displacement from the closed
orbit is defined as stable if it survives 1000 turns. Given that
the vertical aperture in fixed field accelerators is the
limiting factor due to the small gap size, we focus our
analysis on the horizontal plane. However, in our simu-
lations, it is noted that a vertical beam size up to 1 cm at

FIG. 22. Closed orbits in a scaling FFA (black) and in a fixed
tune nonscaling FFAwith alternating κ (pink and light blue). For
the sake of clarity, the distance between the closed orbits of the
scaling and the nonscaling FFA is amplified.
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injection can be transported without any losses and that the
horizontal DA is insensitive to it. The main idea is to
generate two lattices that have the same tunes in both
planes. This is obtained by first generating a nonscaling
fixed tune lattice with κ ≈ 0.3 and then matching its tunes
by finely tuning the average field index as well as the FD
ratio of the scaling lattice. This is achieved for a lattice
with ðνx; νyÞ ¼ ð4.43; 2.16Þ.
Comparison of the calculated DA in both cases shows

(Fig. 25) that, for the same tunes, the horizontal beam
acceptance is the same even though the orbits do not scale.
This is valid only if resonance crossing is not occurring:
In the nonscaling case discussed here, and for P ¼ 2, the
resonance population is doubled in comparison with the
scaling case. Thus, we can expect that the resonance
crossing problem is more severe in the nonscaling case.
This requires further investigation. Comparison of the
phase space trajectories between the two cases is finally

shown in Fig. 26. The trajectories in both cells are
symmetric with respect to X0 ¼ 0.

VII. CONCLUSION

In this paper, we analyzed the stability of the particle
trajectories due to field errors. Several approaches to the
problem were developed and analyzed. Comparison of the
results showed that the first-order approximation based on
the smooth approximation is sufficient only for a lattice
where the average field index is negligible. Relying on the
nonlinear approach based on tracking simulations along-
side the analytical derivations based on the third-order
approximation from the smooth approximation, a crucial
result was to establish a relationship between the betatron
wave number and the field defects. A key parameter to
measure the amplitude of the defects is the κ value defined
as the difference of the average field index of the focusing
and defocusing magnets. Furthermore, analysis of the
stability diagram (Fig. 15) showed that the tolerance to
scaling imperfections becomes lower when increasing the
average field index of the magnets. Based on these results,
a new scheme to remediate the variation of the betatron
oscillations with the energy was proposed. The main idea
consists in alternating the κ values of the magnets, every
two (or more) sectors. This leads to the new concept of the
fixed tune nonscaling radial sector FFA that we developed
in Sec. VI: In addition to the fact that this demonstrates
that the conditions of scaling are not necessary to obtain a
fixed tune FFA, the newly developed concept is easier to
implement by means of trim coils that can be adjusted to
find the condition of minimum tune excursion and avoid
the crossing of harmful resonances. Analysis of the DA
showed that the lattice with alternating κ values has the
same DA as the equivalent scaling FFA case. Given that the
alternating-κ FFA reduces the number of superperiods in

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 10  20  30  40  50  60  70  80  90  100

D
A

 n
or

m
 [

m
m

 m
ra

d]

Kinetic Energy [MeV]

Nonscaling
Scaling

FIG. 25. Comparison of the DA of the scaling and the non-
scaling FFA in the horizontal plane.

-80

-60

-40

-20

0

20

40

60

80

457 458 459 460 461 462 463 464 465 466

X
’ 

(m
ra

d)

Radius (cm)

-80

-60

-40

-20

0

20

40

60

80

457 458 459 460 461 462 463 464 465 466

X
’ 

(m
ra

d)

Radius (cm)

Phase space cell 1
Phase space cell 2

(a) (b)

FIG. 26. Horizontal phase space trajectories at 100 MeV including the separatrix. (a) Case of scaling FFA, (b) Case of nonscaling FFA:
the trajectories in the 1st cell are shown in red while the trajectories in the 2nd cell areshown in green.

TUNE COMPENSATION IN NEARLY SCALING … PHYS. REV. ACCEL. BEAMS 23, 054003 (2020)

054003-19



the accelerator, therefore doubling the resonance popula-
tion, it can be expected that the impact of the resonance
crossing is more severe than the scaling FFA case. This
needs further investigation.
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APPENDIX A: HIGHER-ORDER
APPROXIMATIONS OF THE CLOSED ORBIT

SCALLOPING ANGLE

In this Appendix, we establish an improved approxima-
tion of the orbit scalloping angle. The main idea is to use
the method of successive approximations for the set of
coupled equations (2) and (41) in order to obtain higher-
order approximations of the scalloping angle of the
closed orbit.
First, Eq. (2) can be integrated, and the radius of the

closed orbit is given by

RðθÞ ¼ Rð0Þ exp
�
−
Z

θ

0

tan ½ϕðθÞ�dθ
�
: ðA1Þ

Now, from Eq. (41), the expression of the scalloping angle
can be rewritten in the general form:

1þ _ϕ ¼ Bm½RðθÞ�:RðθÞ:FðθÞ= cosðϕÞ
hBm½RðθÞ�:RðθÞ:FðθÞ= cosðϕÞi

; ðA2Þ

where the condition of the closed path of the orbit is satisfied
by ensuring that h1þ _ϕi ¼ 1. Thus, solving Eqs. (A1) and
(A2) simultaneously shall yield the exact scalloping angle of

the median plane closed orbit. For that, the nature of the
function BmðRÞ describing the evolution of the average
magnetic field with the radius must be taken into account in
order to obtain higher-order approximations.
Since the focus of our analysis in the present paper is on

nearly scaling FFA, we will assume that BmðRÞ obeys the
Rk law. Injecting the first-order approximation ϕ ≈ F̃ into
the right-hand-side term of Eq. (A2) yields

1þ _ϕ ≈
exp f−ðkþ 1Þ R θ

0 tan ½F̃ðθÞ�dθg
hexp f−ðkþ 1Þ R θ

0 tan ½F̃ðθÞ�dθg:FðθÞi
FðθÞ

¼ hðk; θÞFðθÞ; ðA3Þ

where the tilde operator is the integrating operator defined
by F̃ðθÞ ¼ R

θ
0 ðF − hFiÞdθ. This shows that the scalloping

angle is a function of the average field index of the magnet
as well as the flutter function F [note that the impact of the
cosine function in Eq. (A2) can be neglected for the second-
order approximation—it plays a role in improving the
approximation at a higher order]. To our knowledge,
this is the first time that such a relationship is establi-
shed analytically in FFA. In particular, this demonstrates
that, for radial sector cyclotrons, the orbits do not scale,
since k is a function of the radius. To proceed with
the approximation to higher orders, the idea is to reinject

the newly obtained approximation ϕðk; θÞ ≈ ghðk; θÞFðθÞ
into Eqs. (A1) and (A2) consecutively and then integrate.
The newly obtained approximations will be in the
same form.
The convergence of this iterative scheme is shown in

Fig. 27, where we compared several high-order approx-
imations with the results of tracking. Usually, the second-
order approximation is sufficient to obtain an accurate
calculation of the shape of the equilibrium orbit with a
relative error below 5%.
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FIG. 27. Comparison of the analytical approximation of the orbit scalloping angle with the tracking results based on the 3D field map
of the KURNS FFA: The second-order approximation yields an absolute error below 12 mrad, while the fourth-order approximation
reduces the absolute error below 3 mrad.
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Note in addition that, in the limit where k → 0 and
FðθÞ → 1, hðk; θÞ → 1 so that the first-order approxima-
tion is sufficient. Taking the partial derivative of the h
function yields

∂h
∂θ ¼ −ðkþ 1Þ tan ½F̃ðθÞ�h: ðA4Þ

Finally, to illustrate the impact of the average field index
on the scalloping angle of the closed orbit, we assume a
lattice for which the flutter function is fixed and vary the k
values. The tracking results are compared with the ana-
lytical estimates (solid lines) in Fig. 28, where a good
agreement on the 5% level is achieved. This shows that the
orbit scalloping decreases with increasing k and, hence, the
edge focusing decreases as well as shown in Sec. IV E.

APPENDIX B: ANALYTICAL EXPRESSION OF
THE MAGNETIC FIELD TO ACCOUNT FOR

RADIAL DEFECTS

In order to obtain the radial dependence of the field when
the mean field index k is R dependent, let us assume that k
can be fitted with an n-order polynomial. Thus, k is written
in the following way:

kðRÞ ¼
Xn
i¼0

ai

�
R
R0

�
i
: ðB1Þ

Then equating Eqs. (70) and (B1) yields

dB
B

¼
Xn
i¼0

ai
Ri
0

Ri−1dR ¼ a0
dR
R

þ
Xn
i¼1

ai
Ri
0

Ri−1dR;

which gives after integration

BðRÞ ¼ B0 exp

�
a0 ln

�
R
R0

�
þ
Xn
i¼1

ai
Ri
0

ðRi − Ri
0Þ

i

�
so that the general form of the magnetic field becomes
BðR; θÞ ¼ BðRÞFðθÞ, i.e.,

BðR; θÞ ¼ B0

�
R
R0

�
a0
× exp

�Xn
i¼1

ai
Ri − Ri

0

i × Ri
0

�
× FðθÞ:
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