Evidence for Four-Top-Quark Production

Erich W. Varnes University of Arizona for the ATLAS Collaboration

- Not yet observed
- BSM effects can increase cross section
 e.g. gluino pair production, 2-Higgs-doublet models

Four-Top-Quark Decay

• Final state is determined by *W* decays

• 2LSS/3L has highest sensitivity due to strong background suppression

Previous ATLAS Search

• 36 fb⁻¹ sample using 1LOS plus 2LSS/3L channels

CMS Search

• 137 fb⁻¹ sample using 2LSS/3L channels

Event Selection

- Updated ATLAS search is based upon 2LSS/3L channels in 139 fb⁻¹ of *pp* collision data at $\sqrt{s} = 13$ TeV arXiv.2007.14858
- Signal region selection criteria:

Data Quality
Good run
 ≥ 1 primary vertexStandard AT
e charge min
Two same-ch
 $\geq 6 R = 0.4 a$ $\overline{\text{Trigger}}$
Single lepton
 $(p_T > 20 - 26 \text{ GeV})$
Dilepton
 $(p_T > 8 - 24 \text{ GeV})$ $H_T \equiv \sum_{\text{jets, } \ell} p_T > Trilepton; p_T$

 $\frac{\text{Objects}}{\text{Standard ATLAS } e \text{ and } \mu \text{ ID}}$ e charge misID suppressed with BDT $Two \text{ same-charge leptons or } \geq 3 \text{ leptons}$ $\geq 6 R = 0.4 \text{ anti-}k_T \text{ jets } (\geq 2 b\text{-tagged })$

Kinematics

 $H_T \equiv \sum_{\text{jets, }\ell} p_T > 500 \text{ GeV}$ Trilepton: $\left| m_{\ell^+\ell^-} - 91 \text{ GeV} \right| > 10 \text{ GeV}$ SSee: $m_{ee} > 10 \text{ GeV}$ and $\left| m_{ee} - 91 \text{ GeV} \right| > 10 \text{ GeV}$

Jets and *b*-jets

• Jet reconstruction and *b*-jet identification are crucial

Backgrounds

• Several reducible and irreducible backgrounds contribute to the SR yield

Irreducible

Major: $t\overline{t}W, t\overline{t}Z, t\overline{t}H, ttt$ Minor ("others"): $t\overline{t}WW, tWZ, tZq$

Reducible

Charge misID only for SSee rate estimated from $Z \rightarrow ee$ Fake/non-prompt leptons several sources considered

Control Regions

- The fake/non-prompt lepton rate is difficult to simulate precisely
 - highly sensitive to material and response effects
- Control regions enriched in different sources of fake/nonprompt leptons are defined:
 - since *ttW* is a significant contributor in all regions, an additional CR is defined for it

Region	Channel	N_j	N _b	Other requirements	Fitted variable
SR	2LSS/3L	≥ 6	≥ 2	$H_{\rm T} > 500$	BDT
CR Conv.	$e^{\pm}e^{\pm} e^{\pm}\mu^{\pm}$	$4 \le N_j < 6$	≥ 1	$m_{ee}^{\text{CV}} \in [0, 0.1 \text{ GeV}]$	$m_{ee}^{\rm PV}$
				$200 < H_{\rm T} < 500 {\rm ~GeV}$	
CR HF e	eee eeµ	-	= 1	$100 < H_{\rm T} < 250 \; {\rm GeV}$	counting
CR HF μ	еµµ µµµ	-	= 1	$100 < H_{\rm T} < 250 {\rm ~GeV}$	counting
CR ttW	$e^{\pm}\mu^{\pm} \mu^{\pm}\mu^{\pm} $	≥ 4	≥ 2	$m_{ee}^{\rm CV} \notin [0, 0.1 \text{ GeV}], \eta(e) < 1.5$	$\Sigma p_{\mathrm{T}}^\ell$
				for $N_b = 2$, $H_T < 500$ GeV or $N_j < 6$	
				for $N_b \ge 3$, $H_T < 500$ GeV	

9

Control Regions

- track evaluated at PV - small for virtual photons, larger for
 - small for virtual photons, larger for material conversions
- Allows contributions from these sources to be distinguished

Composition of Analysis Regions

• Post-fit sample composition

Signal/background Discrimination

3

- Presence of four *b*-jets distinguishes four-top signal from background
 - each jet assigned an integer score based on BDT:
 - Least *b*-like 1 2
- Sum is taken over all jets
- Provides better S/B discrimination than "tag-andcount" method
 - integers correspond to wellcalibrated working points

Multivariate Analysis

- Optimal signal/bkg discrimination obtained with BDT
- Sum of *b*-tag scores is most powerful variable
- Others are:

Multivariate Analysis

• Expected BDT performance

Multivariate Analysis

Profile Likelihood Fit

- Simultaneous fit of signal and control regions
- Parameter of interest:

$$\mu \equiv \frac{\sigma_{t\bar{t}\bar{t}\bar{t}}(\text{obs.})}{\sigma_{t\bar{t}\bar{t}\bar{t}}(SM)}$$

- Key background normalizations allowed to float:
 - Non-prompt e and μ from heavy-flavor decay
 - Non-prompt *e* from conversions
 - *tTW* (nominal cross section is 601 fb, calculated at NLO w/ EW corrections) JHEP 07 (2012) 052 JHEP 06 (2015) 184 arXiv: 1610.07922
- Other backgrounds constrained to MC prediction within systematic uncertainties

Results

• Fitted distributions in the signal and control regions

Background normalization factors

1.4.1.1.	Parameter	$NF_{t\bar{t}W}$	NF _{Mat. Conv.}	$NF_{Low \ m_{\gamma^*}}$	NF _{HF} e	$\rm NF_{\rm HF}\mu$
details in coming slides	Value	1.6 ± 0.3	1.6 ± 0.5	0.9 ± 0.4	0.8 ± 0.4	1.0 ± 0.4

13th International Workshop on Top Quark Physics

E.W. Varnes

September 18, 2020

Results

• Excess at high BDT in signal region results in

$$\mu = 2.0 \pm 0.4(\text{stat.})_{-0.4}^{+0.7}(\text{syst.})$$

$$\sigma_{t\bar{t}t\bar{t}} = 24 \pm 5(\text{stat.})_{-4}^{+5}(\text{syst.}) \text{ fb}$$

Systematic Uncertainties

Investigation of $t\overline{t}W$

- The $t\overline{t}W$ background is of special interest
 - largest single source of events in signal region
 - fit prefers large normalization factor (1.6 ± 0.3)
- Other ATLAS analyses see similar $t\overline{t}W$ normalization factor

- e.q. $t\overline{t}H$ search in multi-lepton final state:

tīW normalization factors are 1.3 - 1.7 (depending on jet and lepton multiplicity)

Investigation of $t\overline{t}W$

- Validate $t\overline{t}W$ using the charge asymmetry of the production
 - $t\overline{t}W^+ > t\overline{t}W^-$ due to *pp* initial state
- Isolate $t\bar{t}W$ in sample with ≥ 4 jets (≥ 2 *b*-tagged) by considering $N^+ N^-$:

Cross Checks

• Kinematic distributions for events with BDT > 0

Excess over background consistent with $t\overline{t}t\overline{t}$

Cross Checks

Validation region for $t\overline{t}Z$ defined using trilepton events with $m_{\ell^+\ell^-}$ -91 GeV < 10 GeV

• Splitting data sample by run period and fitting H_T rather than BDT score give consistent results

Nothing unexpected observed in cross checks

■ttZ

0.4

0.6

0.8

BDT score

Summary and Plans

- ATLAS reports evidence for four-top-quark production $\sigma_{t\bar{t}\bar{t}\bar{t}} = 24 \pm 5(\text{stat})^{+5}_{-4}(\text{syst}) \text{ fb} = 24^{+7}_{-6} \text{ fb}$
- Significance corresponds to 4.3 s.d. (2.4 expected)
 - consistent with the SM cross section at the 1.7 s.d. level
- Details available in <u>arXiv.2007.14858</u> (submitted to EPJC)

Backup

Pre-fit Variable Comparisons

Post-fit Variable Comparisons

Post-fit Variable Comparisons

Post-fit Yields

	SR	SR and BDT > 0		
$t\bar{t}W$ +jets	102 ± 26	23 ± 10		
tŦWW	7 ± 4	2 ± 1		
$t\bar{t}Z$ +jets	48 ± 9	9 ± 2		
<i>ttH</i> +jets	38 ± 9	8 ± 2		
Q mis-id	16 ± 1	2.7 ± 0.2		
Mat. Conv.	19 ± 6	3 ± 1		
Low m_{γ^*}	9 ± 4	0.9 ± 0.5		
HF e	3 ± 3	1 ± 1		
HF μ	12 ± 6	3 ± 2		
LF	4 ± 5	1 ± 1		
Other fake	6 ± 2	2 ± 1		
VV,VVV,VH	3 ± 2	0.2 ± 0.2		
tZq, tWZ	5 ± 2	1.0 ± 0.4		
Other $t\bar{t}X$	3 ± 2	1 ± 1		
tīt	3 ± 3	2 ± 2		
Total bkg	278 ± 22	59 ± 10		
tīttī	60 ± 17	44 ± 12		
Total	337 ± 18	103 ± 10		
Data	330	105		

13th International Workshop on Top Quark Physics September 18, 2020

29