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Abstract

A search is presented for a Higgs boson that is produced via vector boson fusion and
that decays to an undetected particle and an isolated photon. The search is performed
by the CMS collaboration at the LHC, using a data set corresponding to an integrated
luminosity of 130 fb−1, recorded at a center-of-mass energy of 13 TeV in 2016–2018.
No significant excess of events above the expectation from the standard model back-
ground is found. The results are interpreted in the context of a theoretical model in
which the undetected particle is a massless dark photon. An upper limit is set on the
product of the cross section for production via vector boson fusion and the branching
fraction for such a Higgs boson decay, as a function of the Higgs boson mass. For
a Higgs boson mass of 125 GeV, assuming the standard model production rates, the
observed (expected) 95% confidence level upper limit on the branching fraction is 3.5
(2.8)%. This is the first search for such decays in the vector boson fusion channel.
Combination with a previous search for Higgs bosons produced in association with a
Z boson results in an observed (expected) upper limit on the branching fraction of 2.9
(2.1)% at 95% confidence level.
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1 Introduction
Following the observation of a Higgs boson by the ATLAS and CMS collaborations [1–3], an
important focus of the CERN LHC physics program has been the study of the properties of
this particle. The observation of a sizable branching fraction of the Higgs boson to invisible
or almost invisible final states [4–7] would be a strong sign of physics beyond the standard
model (BSM). Studies of the new boson at a mass of about 125 GeV [8, 9] show no significant
deviation from the standard model (SM) Higgs boson hypothesis, and measurements of its
couplings constrain its partial decay width to undetected decay modes [10, 11]. Assuming that
the couplings of the Higgs boson to W and Z bosons are not larger than the SM values, an
upper limit of 38% has been obtained at 95% confidence level (CL) on the branching fraction
of the 125 GeV Higgs boson to BSM particles by the CMS collaboration using data collected in
2016 [11, 12].

This paper presents a search for a scalar Higgs boson H produced via vector boson fusion (VBF)
and decaying to an undetected particle and a photon γ. Such Higgs boson decays are predicted
by several BSM models [7, 13, 14]. In this search, the target channel is qqH(→ γγD), where the
final-state quarks (q) arise from the VBF process and γD is a massless dark photon that couples
to the Higgs boson through a dark sector [15–18]. The dark photon escapes undetected. A
Feynman diagram for this process is shown in Fig. 1. The branching fraction for a Higgs boson
decaying to such an invisible particle and a photon, B(H → inv. + γ), could be as large as
5% and still be consistent with current experimental constraints [16]. While the main focus of
this search is on production via VBF, the additional contribution from gluon fusion production
(ggH) is sizable if initial-state gluon radiation mimics the experimental signature of VBF. Thus,
the ggH process is also considered for the SM Higgs boson. Additionally, a model-independent
search for VBF production is performed for heavy neutral Higgs bosons with masses between
125 and 1000 GeV [19], since similar decays are also possible for potential non-SM scalar bosons.
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Figure 1: A Feynman diagram for the VBF production of the qqH(γγD) final state.

In the VBF production mode, a Higgs boson is accompanied by two jets that exhibit a large
separation in pseudorapidity (|∆ηjj|) and a large dijet mass (mjj). This characteristic signature
allows for the suppression of SM backgrounds, making the VBF channel a very sensitive mode
in the search for exotic Higgs boson decays. The invisible particle together with the photon
produced in the Higgs boson decay can recoil with high transverse momentum (pT) against
the VBF dijet system, resulting in an event with a large missing transverse momentum (pmiss

T )
which can be used to select signal-enriched samples.

The analysis summarized in this paper uses proton-proton (pp) collision data collected at



2

√
s = 13 TeV with the CMS detector in 2016–2018, with a total integrated luminosity of 130 fb−1.

Similar searches have previously been performed by the CMS Collaboration using the data col-
lected at

√
s = 8 TeV [20] and

√
s = 13 TeV [21], where the Higgs bosons were produced by

ggH or in association with a Z boson, respectively. This analysis presents the first search for
Higgs bosons decaying to an undetected particle and a photon using the VBF signature for
Higgs boson production.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scin-
tillator hadron calorimeter, each composed of a barrel and two endcap sections. The tracker
system measures the momentum of charged particles in the region up to |η| < 2.5, where η
is the pseudorapidity, while the ECAL and HCAL provide coverage up to |η| < 3.0. Forward
calorimeters extend the η coverage provided by the barrel and endcap detectors to |η| < 5.0.
Muons are detected in gas-ionization chambers embedded in the steel magnetic flux-return
yoke outside the solenoid, which cover the region up to |η| < 2.4.

Events of interest are selected using a two-tiered trigger system [22]. The first level (L1), com-
posed of custom hardware processors, uses information from the calorimeters and muon de-
tectors to select events at a rate of around 100 kHz within a fixed time interval of less than
4 µs. The second level, known as the high-level trigger (HLT), consists of a farm of processors
running a version of the full event reconstruction software optimized for fast processing and
reduces the event rate to around 1 kHz before data storage.

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [23].

3 Data samples and event reconstruction
The data used in this search were collected in separate LHC operating periods in 2016–2018.
The three data sets are analyzed independently, with calibration constants and correction fac-
tors appropriate for the LHC running conditions and CMS detector properties in each year.

Monte Carlo (MC) simulated events are used to model the expected signal and background
yields. The dominant background processes are from W + jets and γ + jets production, in
addition to smaller contributions from W(`ν) + γ, Z + γ, and Z + jets processes. For each
process, three sets of simulated events are needed to match the different data-taking condi-
tions in each of the three years. The next-to-leading order (NLO) POWHEG v2 [24–28] generator
is used to simulate the VBF and ggH Higgs boson production processes at NLO in quantum
chromodynamics (QCD), as well as the tt, tW, ttγ, triple vector boson (VVV), and WW, WZ,
and ZZ (VV) processes. For the VBF signal process, the Higgs boson production cross section
as a function of mH , incorporating the inclusive next-to-NLO QCD and NLO electroweak cor-
rections, is taken from Refs. [19, 29], where an SM-like Higgs boson is assumed. Monte Carlo
events with SM-like Higgs boson masses of mH = 125, 150, 200, 300, 500, 800, and 1000 GeV
are simulated. The semi-visible decay of the Higgs boson H → γγD is simulated with PYTHIA

8.226 (8.230) for the 2016 (2017–18) sample [30]. The same versions of PYTHIA are used to
simulate the parton showering and hadronization for all processes. The W + jets, Z + jets,
and γ + jets background processes are generated using MADGRAPH5 aMC@NLO 2.2.2 (2.4.2)
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at leading order (LO) accuracy in QCD with up to four partons for 2016 (2017–18) [31]. The
different jet multiplicities of these samples are merged using the MLM scheme [32] to match
matrix element and parton shower jets. The LO simulations for these processes are corrected
using boson pT-dependent NLO QCD K-factors derived using MADGRAPH5 aMC@NLO. They
are also corrected using pT-dependent higher-order electroweak corrections extracted from the-
oretical calculations [33]. Production of W(`ν) + γ and Z + γ events with up to one additional
parton is simulated at NLO accuracy in QCD using the MADGRAPH5 aMC@NLO 2.2.2 (2.4.2)
generator with the FxFx scheme [34] for 2016 (2017 and 2018) samples. The same generator
without the FxFx scheme is used to model the electroweak production of W(`ν) + γ, W + jets,
Z + γ, and Z + jets events with two partons at LO precision in QCD. The NNPDF 3.0 NLO [35]
(NNPDF 3.1 next-to-next-to-leading order [36]) parton distribution functions (PDFs) are used
for simulating all 2016 (2017–18) samples. The modeling of the underlying event is generated
using the CUETP8M1 [37, 38] and CP5 tunes [39] for simulated samples corresponding to the
2016 and 2017–18 data sets, respectively.

All MC generated events are processed through a simulation of the CMS detector based on
GEANT4 [40] and are reconstructed with the same algorithms used for data. Additional pp
interactions in the same and nearby bunch crossings, referred to as pileup, are also simulated.
The distribution of the number of pileup interactions in the simulation is adjusted to match
the one observed in the data. The average number of pileup interactions was 23 (32) in 2016
(2017–18).

The CMS particle-flow (PF) algorithm [41] is used to combine the information from all sub-
detectors for particle reconstruction and identification. Jets are reconstructed by clustering PF
candidates using the anti-kT algorithm [42] with a distance parameter of 0.4. Jets are calibrated
in the simulation, and separately in data, accounting for energy deposits of neutral particles
from pileup and any nonlinear detector response [43, 44]. Jets with pT > 30 GeV and |η| < 4.7
are considered in the analysis. The effect of pileup is mitigated through a charged-hadron
subtraction technique, which removes the energy of charged hadrons not originating from the
primary interaction vertex (PV) [45]. The PV is defined as the vertex with the largest value of
summed physics-object p2

T. Here, the physics objects are the jets clustered using the jet finding
algorithm [42, 46] with the tracks assigned to the candidate vertex as inputs, and the associated
~pmiss

T is calculated as the negative vector pT sum of those jets.

For further analysis the vector ~pmiss
T is defined as the negative vector pT sum of all PF particle

candidates and its magnitude is defined as pmiss
T . Corrections to jet energies due to detector

response are propagated to ~pmiss
T [47]. Events with possible contributions from beam halo pro-

cesses or anomalous signals in the calorimeters are rejected using dedicated filters [47].

Electrons and muons are reconstructed by associating a track reconstructed in the tracking
detectors with either a cluster of energy in the ECAL [48, 49] or a track in the muon system [50].
Events are rejected from the signal region (SR) if any electron (muon) with pT > 10 GeV and
|η| < 2.5 (2.4) passing the “loose” identification criteria is found [48, 50]. Several leptonic
control regions are defined, where muons must pass the “medium” identification and “tight”
isolation working points [48], while electrons must pass the “tight” identification and isolation
working points [50]. Section 5 provides more details about the control regions used in the
analysis.

Finally, photon candidates are reconstructed from energy deposits in the ECAL [51] with |η| <
1.47 (barrel region) and pT > 80 GeV. The identification of the candidates is based on shower
shape and isolation variables, and the medium working point, as described in Ref. [51], is
chosen to select those candidates. For a photon candidate to be considered as isolated, scalar
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sums of the transverse momenta of PF charged hadrons, neutral hadrons, and photons within
a cone of ∆R =

√
(∆η)2 + (∆φ)2 < 0.3 around the candidate photon must fall below certain

bounds [51]. Only the PF candidates that do not overlap with the candidate photon are in-
cluded in the isolation sums. In addition, a standard “pixel-seed electron veto” [51] is applied
to reject electrons misidentified as photons. The electron to photon misidentification rate is
measured in Z → ee events by comparing the ratio of eγ to ee pairs consistent with the Z
boson mass. The average misidentification rate is 2–3%. If a jet overlaps with a reconstructed
photon fulfilling loose identification criteria [51], the jet is removed.

4 Event selection
Collision events were collected using a dedicated VBF+γ trigger in 2016, while in 2017–18, a
combination of single-photon and pmiss

T triggers was used. The HLT algorithm in 2016 is seeded
by an e/γ L1 object with a pT threshold of 40 GeV and comprises two parts. In the first part, a
photon is reconstructed in the barrel region around the L1 object, imposing initial requirements
on shower shapes and isolation. The photon pT must be greater than 75 GeV. In the second part,
calorimeter towers in the event are clustered into anti-kT jets [42] with a distance parameter of
0.4. The event is recorded if it contains a pair of jets with pT > 50 GeV, with mjj > 500 GeV
and |∆ηjj| > 3. This trigger was available for most of the data recorded throughout 2016, and
provided an effective integrated luminosity of 28.5 fb−1. This dedicated trigger made possible
the offline selection of events with much lower photon pT and pmiss

T than could be achieved with
the single-photon and pmiss

T triggers used in 2017 and 2018 [52, 53]. These triggers required
a photon at the HLT with pT > 200 GeV and |η| < 1.47, or pmiss

T > 120 GeV, respectively.
The single-photon trigger path is used if an event satisfies both triggers and a photon with
pT > 230 GeV is identified in the offline analysis. If no such photon is identified, the event may
be selected by the pmiss

T trigger path.

The signal topology consists of two forward high-pT jets consistent with VBF production, large
pmiss

T , and an isolated high-pT photon. The signal cross section is several orders of magnitude
lower than that of the major reducible background processes, and therefore a stringent selection
is required to obtain a sample of sufficient purity to define the SR. To be consistent with the
expected topology, the selection requires leading and subleading jets with pT > 50 GeV, and at
least one photon in the barrel region with pγ

T > 80 (230)GeV for the VBF+γ and pmiss
T (single-

photon) trigger paths. In addition, events are required to have between two and five jets in
total, where each jet has pT > 30 GeV and |η| < 4.7. For the purpose of rejecting the bulk of the
γ+jets background, as well as the signal process with small Lorentz boost of the Higgs boson, a
pmiss

T greater than 100 (140) GeV in 2016 (2017–18) is required, and the azimuthal angle between
all jets with pT > 30 GeV and ~pmiss

T (∆φjet,~p miss
T

) must be >1.0. To reduce the background from
leptonic events, a veto is applied rejecting events with any loosely identified electron or muon,
as described in Section 3.

To select the VBF topology, the two leading jets must be in opposite hemispheres, with |∆ηjj| >
3 and mjj > 500 GeV, and the so-called Zeppenfeld (z∗γ) variable [54] must be <0.6, where

z∗γ ≡
∣∣∣(ηγ − (ηj1 + ηj2)/2

)
/|∆ηjj|

∣∣∣, (1)

where ηγ is the pseudorapidity of the photon, and ηj1 and ηj2 are the pseudorapidities of the
two candidate VBF jets. Since the total pT in the event should be consistent with zero, the
modulus of the vector sum (ptot

T ) of the pT of the two leading jets, the pT of the photon, and
pmiss

T is required to be <150 GeV to reject events with jet pT mismeasurement or with additional
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hard jets. A summary of the SR selection for the analysis is shown in Table 1. The different
pmiss

T requirements on the three data sets are due to different data-taking conditions.

Table 1: Summary of the selection criteria in the SR, depending on the trigger path and data-
taking year. Rows with a single entry indicate that the same requirement is applied for all
data-taking years and trigger paths.

Data-taking year 2016 2017/2018
Trigger VBF+γ Single-photon pmiss

T
Number of photons ≥1 photon
pγ

T >80 GeV >230 GeV >80 GeV
Number of leptons 0
pj1

T , pj2
T >50 GeV

pmiss
T >100 GeV >140 GeV >140 GeV

Jet counting 2–5
mjj >500 GeV
|∆ηjj| >3.0
ηj1 ηj2 <0
∆φjet,~p miss

T
>1.0 radians

z∗γ <0.6
ptot

T <150 GeV

5 Background estimation
There are multiple sources of SM background to the analysis. The most significant background
arises from W(eν) + jets production, where the photon candidate is a misidentified electron.
For larger values of pmiss

T , the most important processes are the production of a photon with
a Z boson, where the Z boson decays into a neutrino-antineutrino pair (Z(νν) + γ), and the
production of a photon with a W boson, where the W boson decays to a lepton-neutrino pair
(W(`ν) + γ). For these processes, a VBF-like two-jet signature can be produced by initial-state
QCD radiation. The W(`ν) + γ process becomes an irreducible background if the charged lep-
ton falls outside of the detector acceptance. Another significant background process is γ + jets
production with a mismeasured pmiss

T . Less significant background processes are Z(νν) + jets
and QCD multijet production, which can contribute to the SR when a jet is misidentified as a
photon. For the W(eν) + jets, W(`ν) + γ, Z(νν) + γ, and Z(νν) + jets backgrounds, produc-
tion via purely electroweak interactions, which is also considered, becomes more relevant at
higher mjj.

The main background processes described above are normalized by comparing the predicted
yields to data in several control regions (CRs) defined to be as close as possible to the SR [53].
These regions are considered in the final discriminant maximum-likelihood fit, as described in
Section 6. In particular, four CRs are defined:

• W(eν) + jets region: the full SR selection is applied, except that an electron must be
selected and no photons found, and the electron is then used in place of the signal
photon to build all kinematic variables.

• Z(µ+µ−) + γ region: the full SR selection is applied, except that two muons must
be selected together with a photon, and the ∆φjet,~p miss

T
requirement is not considered.

The muons are added to ~pmiss
T to emulate the signal topology.
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• W(µν) + γ region: the full SR selection is applied, but a muon must be selected to-
gether with a photon, and the muon is added to ~pmiss

T to emulate the signal topology.

• γ + jets region: the full SR selection is applied, but ∆φjet,~p miss
T

must be <0.5.

There are other rare SM processes involving a photon and neutrinos or out-of-acceptance lep-
tons, e.g. VV, VVV, ttγ, tγ. The contributions from these minor background processes are
very small after the final selection, so they are estimated directly from MC simulation.

We also consider the possibility that a pathological event reconstruction could lead to a sig-
nificant underestimation of the photon energy (mismeasured γ), leaving an event with large
~pmiss

T aligned in azimuthal angle with a photon. These events can be selected as part of the SR
and a yield estimation is needed. It is possible to model the distribution of such events using
the γ + jets simulation. Distributions obtained this way can be used in the signal extraction
fit, as described below. Since the shapes of the kinematic distributions are sufficiently distinct
between this background and the signal, their rates can be determined simultaneously through
the fit.

The distribution of this background is obtained by selecting events from γ + jets simulation
with the signal candidate selection criteria of Section 4, excluding pmiss

T -related requirements.
The content of these events is modified by setting the photon transverse momentum to a frac-
tion of its original value and adding the difference in pγ

T to the ~pmiss
T variable. The nominal

value for the new pγ
T used to obtain this background template is 50%, and alternative scenarios

using 25 and 75% are considered to account for potential variations in the template shape. The
overall normalization is assumed to have an uncertainty corresponding to a factor of two.

The rate of hadrons being misidentified as photons (nonprompt) is estimated using two low-
pmiss

T γ + jets samples [52]. In the first sample, a binned template fit is performed on the dis-
tribution of the lateral extension of the ECAL shower of the photon candidate along the η
direction [48], σηη , applying the full photon selection, except for the σηη requirement. Two sets
of templates are created: for real photons and misidentified hadrons. The photon template is
obtained using γ + jets simulated events. The σηη distribution for the hadron template is de-
rived from data using a sideband in the charged-hadron isolation distribution. The number
of misidentified hadrons surviving the σηη requirement applied to the full photon selection is
determined from the template fit. Their relative contribution to the total event yield in this
low-pmiss

T sample is referred to as the hadron fake rate in the following. The second low-pmiss
T

sample, obtained by inverting the charged-hadron isolation requirement altogether and loos-
ening the σηη requirement, almost exclusively consists of events with misidentified hadrons. A
hadron misidentification transfer factor is calculated as the ratio of the hadron fake rate in the
first subsample and the total yield in the second subsample. It is derived as a function of pγ

T.
The resulting misidentification transfer factors are then used to extrapolate to the SR from a
high-pmiss

T control sample with the same photon candidate selection as applied for the second
low-pmiss

T sample. An absolute prediction for the nonprompt background is then obtained by
multiplying the event yields in the control sample with the transfer factors. An uncertainty of
5 to 15%, depending on the photon pT, is assigned on the nonprompt rates to account for the
limited statistical precision of the measurements. An alternative estimate of this background
was made by considering events with mjj > 500 GeV. An additional systematic uncertainty
was assigned based on the observed difference between the two estimates.



7

6 Signal extraction
After applying the selection, a binned maximum-likelihood fit to the transverse mass of the
~pmiss

T and photon system, mT, is performed to discriminate between the signal and the remain-
ing background processes, where mT is defined as

mT ≡
√

2pmiss
T pγ

T[1− cos(∆φ~p miss
T ,~pγ

T
)], (2)

and ∆φ~p miss
T ,~pγ

T
is the azimuthal angle between the ~pmiss

T and ~pγ
T vectors. A profile likelihood

technique is used where systematic uncertainties are represented by nuisance parameters [55].
For each individual bin, a Poisson likelihood term is used to describe the fluctuation of the
yields around the expected central value, which is given by the sum of the contributions from
signal and background processes. The uncertainties affect the overall normalizations of the
signal and background yields, as well as the shapes of the predictions across the distributions
of the observables. Uncertainties that affect only the normalization within a category are incor-
porated as nuisance parameters with log-normal probability density functions. Uncertainties
affecting the template shapes are treated as nuisance parameters with Gaussian constraints.
The normalization of each bin is interpolated smoothly with a sixth-order polynomial between
the ±1 standard deviation variations and extrapolated linearly beyond this. The total likeli-
hood is defined as the product of the likelihoods of the individual bins and the probability
density functions for the nuisance parameters, including the product of the likelihood for the
individual years.

In addition, events in the SR and in all the CRs are split in two mjj regions, below and above
1500 GeV. This value is chosen to ensure roughly half of the VBF signal events are in each
region. The division also makes it possible to account for different relative contributions to
the W(eν) + jets, W(`ν) + γ, Z(νν) + γ, and Z(νν) + jets templates from strong or purely
electroweak production mechanisms as a function of mjj. In the Z(µ+µ−) + γ and W(µν) + γ

CRs the mT variable emulates the one in the SR by adding the leptons to the pmiss
T . The exact mT

binning choice in the SRs and CRs is summarized in Table 2. Correlations between systematic
uncertainties in different regions of mT and mjj used in the template fit are taken into account.
For all major background sources, normalization factors are used that are allowed to float freely
in the fit. A single normalization factor for each process is used for the W(`ν) + γ and Z + γ
backgrounds, while for the W + jets and γ + jets background processes, separate parameters
are applied for each kinematic region defined by one bin of the respective CRs, resulting in six
(two) separate normalization parameters for the W + jets (γ + jets) process. The events with
mismeasured photons are included in the SRs as described in Section 5.

7 Efficiencies and systematic uncertainties
Several sources of systematic uncertainty are taken into account in the maximum-likelihood
fit. For each source of uncertainty, the effects on the signal and background distributions are
considered correlated.

The integrated luminosities of the 2016, 2017, and 2018 data-taking periods are individually
known with uncertainties in the 2.3–2.5% range [56–58], while the total Run 2 (2016–2018) in-
tegrated luminosity has an uncertainty of 1.8%. The better precision of the overall luminosity
measurement results from an improved understanding of relevant systematic effects.

The simulation of pileup events assumes a total inelastic pp cross section of 69.2 mb, with
an associated uncertainty of 4.6% [59, 60], which has an impact on the expected signal and
background yields of about 1%.
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Table 2: Summary of the mT binning choice in the SRs and CRs.

Region Bins mT range (GeV)
SR, mjj < 1500 GeV 6 [0, 30, 60, 90, 170, 250, ∞]
SR, mjj ≥ 1500 GeV 6 [0, 30, 60, 90, 170, 250, ∞]

W(eν) + jets CR, mjj < 1500 GeV 3 [0, 90, 250, ∞]
W(eν) + jets CR, mjj ≥ 1500 GeV 3 [0, 90, 250, ∞]
Z(µ+µ−) + γ CR, mjj < 1500 GeV 1 [0, ∞]
Z(µ+µ−) + γ CR, mjj ≥ 1500 GeV 1 [0, ∞]
W(µν) + γ CR, mjj < 1500 GeV 1 [0, ∞]
W(µν) + γ CR, mjj ≥ 1500 GeV 1 [0, ∞]
γ + jets CR, mjj < 1500 GeV 1 [0, ∞]
γ + jets CR, mjj ≥ 1500 GeV 1 [0, ∞]

Discrepancies in the lepton and photon reconstruction and identification efficiencies between
data and simulation are corrected by applying scale factors to all simulated samples. These
scale factors are determined using Z → ` ¯̀ events in the Z boson peak region that were recorded
with unbiased triggers [48, 50]. The scale factors depend on the pT and η of the lepton and
have an uncertainty of ≈2% for both electrons and muons. The above procedure is applied
also to determine the scale factors for photons using Z → e+e− events as a proxy, and the yield
uncertainty for photon candidates is ≈4%. The photon momentum scale uncertainty is about
0.5%. These uncertainties are treated as correlated across the three years.

The determination of the trigger efficiency leads to an uncertainty of ≈1% in the VBF+γ and
single-photon triggers, while the uncertainty is ≈7% for the pmiss

T triggers. These uncertain-
ties are treated as uncorrelated across the three data sets and trigger selections, as data-taking
conditions have varied across the three years.

The uncertainty in the calibration of the jet energy scale directly affects the acceptance of the
jet multiplicity requirement and the pmiss

T measurement. These effects are estimated by shifting
the jet energy in the simulation up and down by one standard deviation. The uncertainty in
the jet energy scale is 2–5%, depending on pT and η [43], and the impact on the expected signal
and background yields is about 3%. The uncertainties in the jet energy scale are treated as
uncorrelated across the three data sets.

The theoretical uncertainties due to the choice of QCD renormalization and factorization scales
used in the simulation of the background processes are estimated by varying these scales inde-
pendently up and down by a factor of two (excluding the two extreme variations) and taking
the envelope of the resulting distributions as the uncertainty [61, 62]. The variations of the PDF
set and the strong coupling constant are used to estimate the corresponding uncertainties in the
yields of the signal and background processes, following Refs. [35, 63]. The uncertainties in the
signal predictions due to the choice of the PDF set and the renormalization and factorization
scale variations are taken from Ref. [19]. For the ggH contribution, an additional uncertainty of
40% is assigned to take into account the limited knowledge of the ggH cross section in associ-
ation with two or more jets, as well as the uncertainty in the prediction of the ggH differential
cross section for large Higgs boson pT, following the recipe described in Refs. [61, 64]. Theoret-
ical uncertainties in modeling the parton shower and underlying event primarily affect the jet
multiplicity and are evaluated following the recipes from Refs. [19, 29].

The statistical uncertainty associated with the limited number of simulated events is also con-
sidered a part of the systematic uncertainty. A summary of the impacts of the systematic un-
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certainties on the signal cross section for mH = 125 GeV is presented in Table 3. The impacts
are evaluated by fitting to Asimov data sets [55] and are defined as the change in the fitted
signal cross section when varying a nuisance parameter by its post-fit uncertainty. By perform-
ing the fit to the data simultaneously in the different CRs and SRs, the resultant final back-
ground uncertainties are reduced compared to the input uncertainties [53, 64]. The impacts are
shown for the case of a signal (σ = 0.05σSM, where σSM is the SM Higgs boson cross section for
mH = 125 GeV) and for the case of no signal (σ = 0). The systematic uncertainties are domi-
nated by the limited number of simulated events, the background normalization factors, and
the jet energy scale.

Table 3: Summary of the uncertainties in the fitted signal cross section in fb for mH = 125 GeV
assuming the presence of a signal (σ = 0.05σSM) and the absence of a signal (σ = 0).

Source of uncertainty
Impact for scenario Impact for scenario

with signal (fb) without signal (fb)
Integrated luminosity 3.3 0.6
Lepton and trigger measurements 17 7.7
Jet energy scale and resolution 24 19
Pileup 9.7 8.5
Background normalization 25 18
Theory 6.0 3.0
Simulation sample size 36 36

Total systematic uncertainty 54 46
Statistical uncertainty 58 48

Total uncertainty 79 66

8 Results
The numbers of observed and expected events after applying the full selection requirements
are shown in Table 4. Owing to the anticorrelation between the yields of several background
processes, the uncertainty in the background sum in the different regions is smaller than the un-
certainties in some of the individual contributions. For illustration purposes, the signal shown
has B(H → inv. + γ) set to 0.05 and assumes the SM production cross section, as this corre-
sponds roughly to the expected sensitivity level of the analysis.

The VBF signal reconstruction efficiency increases with mH , with values of 0.2, 2.6, and 8.2%
for masses of 125, 300, and 1000 GeV, respectively. The inefficiency is driven by the pmiss

T and
photon pT requirements. The mjj distributions in the γ + jets, Z(µ+µ−) + γ, and W(µν) + γ
CRs are shown in Fig. 2, while the mT distributions in the W(eν) + jets CRs and in the SRs are
shown in Fig. 3. The signal spectrum shows a Jacobian peak with an end-point at mT ∼ mH ,
while the background processes have either a flat distribution or display an increase towards
lower values of mT.

No significant excess of events above the expectation from the SM background is found. The
upper limits at 95% CL are calculated using a modified frequentist approach with the CLs crite-
rion [65, 66] and an asymptotic method for the test statistic [55, 67]. The statistical compatibility
of the observed results, using the test based on a saturated χ2 model [68], with the expectation
under the background-only hypothesis corresponds to a p-value of 0.25. The expected and
observed cross section upper limits at 95% CL on the product of the signal cross section σVBF
for VBF production and B(H → inv. + γ) as a function of mH are shown in Fig. 4, and range
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Figure 2: The mjj distributions from the simultaneous fit in the γ + jets (upper left), Z(µ+µ−) +
γ (upper right), and W(µν) + γ (lower) CRs. The category other background includes con-
tributions from Z + jets, nonprompt, top quark, VV, and VVV processes. Overflow events
are included in the last bin. The shaded bands represent the combination of the statistical and
systematic uncertainties in the predicted yields. The light green line, illustrating the possible
contribution expected from inclusive SM Higgs boson production, assumes a branching frac-
tion of 5% for H → inv. + γ decays. The lower panel in the figures shows a per-bin ratio of
the data yield and the background expectation. The shaded band corresponds to the combined
systematic and statistical uncertainty in the background expectation.
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Figure 3: The mT distributions from the simultaneous fit for events with mjj < 1500 GeV in the
W(eν) + jets CRs (upper left), for events with mjj ≥ 1500 GeV in the W(eν) + jets CRs (upper
right), for events with mjj < 1500 GeV in the SRs (lower left), and for events with mjj ≥ 1500 GeV
in the SRs (lower right). The category other background includes contributions from Z + jets,
nonprompt, top quark, VV, and VVV processes. Overflow events are included in the last bin.
The shaded bands represent the combination of the statistical and systematic uncertainties in
the predicted yields. The light green line, illustrating the possible contribution expected from
inclusive SM Higgs boson production, assumes a branching fraction of 5% for H → inv. + γ
decays. The lower panel in the figures shows a per-bin ratio of the data yield and the back-
ground expectation. The shaded band corresponds to the combined systematic and statistical
uncertainty in the background expectation.
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Table 4: Data, expected backgrounds, and estimated signal in the different regions. The ex-
pected background yields are shown with their best-fit normalizations from the simultaneous
fit assuming background-only in the different regions. The combination of the statistical and
systematic uncertainties is shown. The illustrative signal yield assumes a production cross
section of 0.05σSM. All data-taking periods and trigger paths are combined together for each
region.

SR W(eν) + jets CR Z(µ+µ−) + γ CR W(µν) + γ CR γ + jets CR
W + jets 250 ± 17 10500 ± 100 — — 180 ± 37
W(`ν) + γ 98 ± 11 240 ± 36 — 190 ± 18 76 ± 8
Z + γ 98 ± 18 6.8 ± 1.5 25 ± 4 1.7 ± 0.4 46 ± 8
γ + jets 230 ± 22 12 ± 4 — 9.5 ± 2.3 1400 ± 58
Mism. γ 34 ± 15 — — — —
Z + jets 41 ± 6 100 ± 10 — 6.3 ± 0.6 26 ± 3
Nonprompt 20 ± 4 1.1 ± 0.2 1.2 ± 0.2 4.4 ± 0.9 62 ± 13
Top quark 18 ± 5 16 ± 4 0.3 ± 0.1 30 ± 7 22 ± 5
VV 6.9 ± 1.0 200 ± 9 0.3 ± 0.3 4.4 ± 0.9 5.7 ± 0.5
VVV 3.1 ± 0.5 7.6 ± 1.0 — 8.1 ± 1.1 3.6 ± 0.5

Total background 800 ± 25 11100 ± 100 27 ± 4 250 ± 16 1800 ± 43

Data 801 11091 27 253 1830

qqH125(γγD) 50.5 ± 7.4 1.7 ± 0.3 — — 4.5 ± 0.4
ggH125(γγD) 30.6 ± 14.3 1.2 ± 0.6 — — 6.9 ± 2.9

from ≈160 to ≈2 fb as mH increases from 125 to 1000 GeV. For the years 2017 and 2018, the
pmiss

T trigger path is the most sensitive one for signal models with mH . 400 GeV; above this
value, the single-photon trigger path dominates. These limits also apply to other models where
a scalar particle decays to a photon and light invisible particles. For mH = 125 GeV, the result
is interpreted as an upper limit on B(H → inv. + γ) assuming the production rate for an SM
Higgs boson [19]. In this case, the additional contribution from the ggH production in the VBF
category is considered, accounting for an increase in the signal yields of about 60%, and mainly
contributing to the region with mjj < 1500 GeV. The observed (expected) 95% CL upper limit
at mH = 125 GeV on B(H → inv. + γ) is 3.5 (2.8+1.3

−0.8)%.

The results of this analysis are combined with a complementary search for the same Higgs
boson decay where the Higgs boson is produced in association with a Z boson (ZH) [21].
The combination is performed assuming the production rates for an SM-like 125 GeV Higgs
boson [19]. For the combination, all the experimental uncertainties are treated as correlated
between the two analyses, while all others are treated as uncorrelated. The observed and ex-
pected 95% CL limits at mH = 125 GeV on B(H → inv.+ γ) for the VBF category, ZH category,
and their combination are shown in Table 5. The combined observed (expected) upper limit at
95% CL at mH = 125 GeV on B(H → inv. + γ) is 2.9 (2.1)%.

Table 5: Observed and expected 95% CL limits at mH = 125 GeV on B(H → inv. + γ) for the
VBF category, ZH category, and their combination.

VBF ZH VBF+ZH
Obs. (%) Exp. (%) Obs. (%) Exp. (%) Obs. (%) Exp. (%)

3.5 2.8+1.3
−0.8 4.6 3.6+2.0

−1.2 2.9 2.1+1.0
−0.7
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Figure 4: Expected and observed upper limits at 95% CL on the product of σVBF and B(H →
inv. + γ) as a function of mH . The dot-dashed line shows the predicted signal corresponding
to 0.05σVBF, assuming SM couplings. A linear interpolation is performed between the values
obtained for the probed mH values.

9 Summary
A search has been presented for a Higgs boson that is produced via vector boson fusion (VBF)
and that decays to an undetected particle and a photon. This is the first analysis for such decays
in the VBF channel. The search has been performed by the CMS Collaboration using a data set
corresponding to an integrated luminosity of 130 fb−1 recorded at a center-of-mass energy of
13 TeV in 2016-2018. No significant excess of events above the expectation from the standard
model background is found. The results are used to place limits on the product of the signal
cross section σVBF for VBF production and the branching fraction for such decays of the Higgs
boson, in the context of a theoretical model where the undetected particle is a massless dark
photon. Allowing for deviations from standard model VBF production, the upper limit on
the product of σVBF and B(H → inv. + γ) ranges from ≈160 to ≈2 fb, for mH from 125 GeV
to 1000 GeV. The observed (expected) upper limit at 95% confidence level at mH = 125 GeV
assuming standard model production rates on B(H → inv. + γ) is 3.5 (2.8)% for this channel.
Combining with an existing analysis targeting associated Z boson production, and assuming
the standard model rates, the observed (expected) upper limit at 95% confidence level at mH =
125 GeV on B(H → inv. + γ) is 2.9 (2.1)%.
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IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
C. Amendola, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour,
A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzi, E. Locci, J. Malcles,
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C. Dziwok, G. Flügge, W. Haj Ahmad19, O. Hlushchenko, T. Kress, A. Nowack, C. Pistone,
O. Pooth, D. Roy, H. Sert, A. Stahl20, T. Ziemons

Deutsches Elektronen-Synchrotron, Hamburg, Germany
H. Aarup Petersen, M. Aldaya Martin, P. Asmuss, I. Babounikau, S. Baxter, O. Behnke,
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M. Schröder, D. Seith, I. Shvetsov, H.J. Simonis, R. Ulrich, M. Wassmer, M. Weber, R. Wolf,
S. Wozniewski

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi,
Greece
G. Anagnostou, P. Asenov, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki,
A. Stakia

National and Kapodistrian University of Athens, Athens, Greece
M. Diamantopoulou, D. Karasavvas, G. Karathanasis, P. Kontaxakis, C.K. Koraka,
A. Manousakis-katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Theofilatos,
K. Vellidis, E. Vourliotis

National Technical University of Athens, Athens, Greece
G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsipolitis, A. Zacharopoulou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, K. Manitara, N. Manthos,
I. Papadopoulos, J. Strologas



25
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