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Focusing on three-pion states with maximal isospin (πþπþπþ), we present the first nonperturbative
determination of an energy-dependent three-hadron scattering amplitude from first-principles QCD. The
calculation combines finite-volume three-hadron energies, extracted using numerical lattice QCD, with a
relativistic finite-volume formalism, required to interpret the results. To fully implement the latter, we also
solve integral equations that relate an intermediate three-body K matrix to the physical three-hadron
scattering amplitude. The resulting amplitude shows rich analytic structure and a complicated dependence
on the two-pion invariant masses, represented here via Dalitz-like plots of the scattering rate.
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Introduction.—The three-body problem lies at the core of a
broad range of outstanding questions in quantum chromody-
namics (QCD). The largest uncertainty in QCD-based struc-
ture calculations of light nuclei, for example, is the estimate of
the three-nucleon force (see Ref. [1]). In addition, many QCD
resonances have significant branching fraction to channels
with three or more hadrons. The Roper resonance, for
example, has defied simple quark-model descriptions, due
in part to its nature as a broad resonance with a ∼30%
branching fraction to Nππ. A rigorous QCD calculation
would elucidate the role of nonperturbative dynamics in
the Roper’s peculiar properties, e.g., the fact that it has a
lower mass than the negative-parity ground state, which seems
unnatural from the perspective of the quark model [2,3].
As a necessary step towards studying a broad class of

three-hadron systems, in this work we present the first
study of an energy-dependent three-body scattering ampli-
tude from QCD. This nonperturbative result is achieved by
the coalescence of three novel techniques: a calculation of
finite-volume three-hadron energies based in numerical
lattice QCD, a relativistic finite-volume formalism to relate

the energies to K matrices, and a numerical evaluation of
corresponding integral equations to convert the latter into
the three-hadron scattering amplitude. The theoretical
basis required to achieve these final two steps was derived
in Refs. [4,5]. (A large body of work has investigated
general methods for relating finite-volume energies to
scattering amplitudes for both two- and three-body states.
See Refs. [6–24] and Refs. [25–45], respectively.)
This work considers the scattering of three-pion states

with maximal isospin (I ¼ 3) in QCD with three dynamical
quarks (Nf ¼ 2þ 1): two degenerate light quarks, with
heavier-than-physical mass corresponding to a pion mass
mπ ≈ 391 MeV, and a strange quark. This channel offers an
optimal benchmark case, since both the maximal-isospin
three-pion system and its two-pion subsystem are expected
to be weakly interacting and nonresonant.
Many numerical studies of three-hadron states have been

published over the last decade, ranging from early work
deriving and fitting large-volume expansions of the three-
pion ground state [46–48] to more recent results using
quantization conditions to study ground [49] and excited
states [50–52], with the latter set each analyzing the lattice
QCD spectrum published in Ref. [53]. Independent sets of
finite-volume energies have also been calculated and
analyzed in Refs. [54] and [55]. The present investigation
goes beyond this previous work, by providing the first
complete numerical determination of physical scattering
amplitudes for three-body systems.
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In the following, we first discuss our determination of
two- and three-pion finite-volume energies, before describ-
ing the fits used to relate these to infinite-volume K
matrices. The latter then serve as inputs to known integral
equations, which we solve numerically to extract the
3πþ → 3πþ scattering amplitude. Additional details of
the analysis are discussed in the SupplementalMaterial [56].
Spectral determination.—Figure 1 summarizes the two-

and three-pion finite-volume spectra calculated in this
work. Two-pion energies on the larger volume have already
appeared in Ref. [57].
Computations were performed on anisotropic lattices

which have a temporal lattice spacing, at, finer than the
spatial lattice spacing, as [at ¼ as=ξ with ξ ¼ 3.444ð6Þ
[57] ]. Two lattice ensembles were used, differing only
in the volume: ðL=asÞ3 × ðT=atÞ ¼ 203 × 256 (with 256

gauge-field configurations) and 243 × 128 (with 512 con-
figurations). We use 2þ 1 flavors of dynamical clover
fermions, with three-dimensional stout-link smearing in
the fermion action, and a tree-level Symanzik-improved
gauge action. The bare parameters and basic lattice proper-
ties are detailed in Refs. [58,59]. Setting the scale via
a−1t ¼ mexp

Ω ðatmlatt
Ω Þ−1, [where atmlatt

Ω ¼ 0.2951ð22Þ was
measured in Ref. [60] and mexp

Ω is the experimentally
determined Ω baryon mass from Ref. [61] ] and combining
with atmπ ¼ 0.06906ð13Þ [57] and atmK ¼ 0.09698ð9Þ
[62], yields mπ ≈ 391 MeV and mK ≈ 550 MeV. The
values of atmπ and ξ translate into spatial extents ofmπL ¼
4.76 and mπL ¼ 5.71 for the two ensembles.
The spectrum of energies in a finite volume is discrete and

each energy level provides a constraint on the scattering
amplitudes at the corresponding center-of-momentum energy.
To obtain more constraints, we compute spectra for systems
with overall zero and nonzero momentum, P. Momenta are
quantized by the cubic spatial boundary conditions,
P ¼ ð2π=LÞðn1; n2; n3Þ, where fnig are integers, and we
write this using a shorthand notation as ½n1n2n3�.
In this work we restrict attention to S-wave scattering.

The reduced symmetry of a cubic lattice means that total
angular momentum J is not a good quantum number and
instead channels are labeled by the irreducible representa-
tion (irrep, Λ) of the octahedral group with parity for P ¼ 0
or the relevant subgroup that leaves P invariant for P ≠ 0
[63,64]. We consider the relevant irreps which contain
J ¼ 0: A−

1 ðAþ
1 Þ for πππ (ππ) at rest and A2ðA1Þ for πππ (ππ)

with nonzero P. Isospin I andG parityG are good quantum
numbers in our lattice formulation; these distinguish the
two-pion (IG ¼ 2þ) and three-pion (IG ¼ 3−) channels. We
neglect higher partial waves here, in particular the two-
particle D wave that mixes with the S wave in the finite-
volume energies. As described in Ref. [57], a nonzero
D-wave interaction can be extracted, in particular, if aided
by the consideration of other, nontrivial finite-volume
irreps, but has a small influence on the two-pion energies
considered here. There is, in principle, a systematic
uncertainty associated with neglecting the D-wave contri-
bution. Given the consistency of our results with Ref. [57],
this appears to be below the statistical uncertainty in the
present fits. See also Secs. VIII A and B of that work for
more discussion.
To reliably extract the finite-volume energies we have

computed two-point correlation functions using a large basis
of appropriate interpolating operators. From these, the spectra
aredeterminedusing thevariationalmethod [65–67],with our
implementation described in Refs. [68,69]. This amounts to
calculating a matrix of correlation functions,

GijðtÞ ¼ hOiðtÞO†
jð0Þi; ð1Þ

and diagonalizing Mðt; t0Þ ¼ Gðt0Þ−1=2GðtÞGðt0Þ−1=2 for
a fixed t0. One can show that the corresponding eigenvalues

FIG. 1. The πþπþ and πþπþπþ finite-volume spectra in the
center-of-momentum frame for the relevant finite-volume irreps
with various overall momenta, as explained in the text. Points are
computed energy levels on the two volumes with error bars
showing statistical uncertainties. Each rectangular inset shows a
vertical zoom of the region indicated by the small neighboring
rectangle. Gray curves are the “noninteracting” finite-volume
energies, i.e., the energies in the absence of any interactions
between pions. Orange curves are predictions from the finite-
volume formalism based only on the two-particle scattering
length, given in Eq. (4) (here with the local three-body interaction
set to zero).
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satisfy λnðt; t0Þ → e−EnðLÞðt−t0Þ, where EnðLÞ is the nth
energy level with overlap to some of the operators in the
basis. This basic methodology has been applied to a wide
range of two-hadron scattering observables for several
phenomenologically interesting channels [57,70–81]. See
Sec. I of the Supplemental Material [56] for some example
plots of λnðt; t0Þ.
In order to robustly interpolate the two- and three-pion

energy eigenstates we use operators with two- and three-
meson-like structures in the appropriate irrep, constructed
from products of single-meson-like operators projected to
definite spatial momentum. The latter are built from linear
combinations, chosen to optimize overlap to the single-pion
states, of fermion bilinears of the form, ψ̄ΓD…Dψ , where
ψ is a quark field andD is a discretized covariant derivative.
Details of these operator constructions are given in Sec. V
of the Supplemental Material [56] with further details
relevant to the three-meson-like operators presented in
Ref. [82]. Using such a wide variety of optimized operators,
and especially multihadron operators with momentum-
projected single-hadron components, allows one to mini-
mize excited state contamination and extract the energies
reliably and precisely from small values of t. This approach
is made feasible due to the distillation method [83] which
we employ to efficiently compute the numerous quark-field
Wick contractions that are required. We use 128 distillation
vectors for the 203 ensemble and 162 for the 243.
Returning to the two- and three-pion spectra summarized

in Fig. 1, we observe a one-to-one correspondence between
the computed energy levels and the noninteracting energies
in all panels, with the computed values slightly higher in
energy than the noninteracting levels. This suggests that the
system is weakly interacting and repulsive in both the two-
and three-hadron sectors.
Analyzing the finite-volume spectra.—We now describe

our method for determining two- and three-body K
matrices from the extracted finite-volume energies, begin-
ning with an overview of scattering observables:
The two-pion scattering amplitude is defined as the

connected part of the overlap between an incoming πþπþ
asymptotic state (with momenta p;−p) to an outgoing
πþπþ state (with p0;−p0). Without loss of generality, here
we have assumed the center-of-momentum frame. We also
define p ¼ jpj ¼ jp0j, where we have used that the magni-
tudes must be equal to satisfy energy conservation. In
addition, s2 ≡ E⋆2

2 ≡ 4ðp2 þm2
πÞ defines the squared

center-of-momentum frame energy. The only remaining
degree of freedom is the scattering angle between p and p0.
In this work we focus on the S-wave scattering amplitude,
denoted M2, in which this angle is integrated to project
onto zero-angular-momentum states. Finally we recall the
simple relation betweenM2 and the K matrix in the elastic
region, K−1

2 ¼ ReM−1
2 . The imaginary part of M−1

2 is
completely fixed by unitarity so thatK2 is the only part free
to depend on the dynamics of the system. We work with the

simple phase space factor, proportional to the momentum
magnitude. See, e.g., Ref. [23] for more details. In contrast
toM2,K2 is real for real s2 and is meremorphic in a region
of the complex s2 plane around s2 ¼ 4m2

π . In this work we
also consider an analogous, three-body K matrix, intro-
duced in Ref. [4] and denoted by Kdf;3.
In the two-pion sector, in the case that the S-wave

interactions are dominant, the scalar-irrep finite-volume
energies satisfy the quantization condition [6,7,9],

K2ðE⋆
2Þ þ F−1ðE2;P; LÞ ¼ 0; ð2Þ

where E⋆
2 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
2 − P2

p
is the center-of-momentum energy

and FðE2;P; LÞ is a known geometric function. For the
three-body sector, we use the isotropic approximation of
the general formalism derived in Ref. [4], which takes an
analogous form, now for pseudoscalar-irrep energies

K3;isoðE⋆
3Þ þ F−1

3;iso½K2�ðE3;P; LÞ ¼ 0; ð3Þ

where the notation ismeant to stress thatF3;iso½K2�ðE3;P; LÞ
is a functional of K2ðE⋆

2Þ. F3;iso is defined in Eq. (39) of
Ref. [4]. Here K3;iso is the component of Kdf;3 that only
depends on the total three-hadron energy, i.e., is “isotropic.”
Equation (3) holds only when Kdf;3 is well approximated to
be isotropic and our fits give evidence that this is a good
approximation for this system.
Combining these two conditions with the energies plotted

in Fig. 1 allows one to constrain both the two- and three-
hadron K matrices. One strategy is to fit a parametrization of
K2 and use this to determine the energy dependence ofK3;iso

as summarized in Fig. 2. An alternative approach is to
parametrize both K matrices and fit these simultaneously to
the entire set of finite-volume energies. A detailed discussion
with a wide range of fits is given in Sec. II of the
Supplemental Material [56]. Both strategies give consistent
results and the key message is that the full dataset is well
described by a constant K3;iso that is consistent with zero,
together with the leading-order effective range expansion:
tan δðpÞ ¼ −a0p with K2ðE⋆

2Þ ¼ −16πE⋆
2 tan δðpÞ=p.

Here the second equation defines the S-wave scattering
phase shift δðpÞ, and the first defines the scattering length
a0. Our best fit, performed simultaneously to all spectra
shown in Fig. 1 but with a cutoff in the center-of-momentum
frame energies included, yields

mπa0 ¼ 0.296� 0.008

m2
πK3;iso ¼ −339� 770

�
1.0 0.6

1.0

�
; ð4Þ

with a χ2 per degree of freedom of 64.5=ð37 − 2Þ ¼ 1.84.
This fit is denoted by B2þ3 in Sec. II of the Supplemental
Material [56]. As explained there, the fitted data include
all two-pion energies below E⋆

2;cut ¼ 3.4mπ and all
three-pion energies below E⋆

3;cut ¼ 4.4mπ, with both cutoffs
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applied to energies in the center-of-momentum frame. The
square-bracketed matrix gives the correlation between the two
fit parameters. This fit is consistent with the previous
determination of the scattering length at this pion mass,
presented in Ref. [57], and is also the value used to generate
the orange curves in Fig. 1 (together with K3;iso ¼ 0). In
Fig. 2 we illustrate the same fit using the darker cyan curves.
In addition, we include the lighter bands as a systematic
uncertainty, estimated from the spread of various constant and
linear fits, as detailed in Sec. II of the Supplemental
Material [56].
3πþ scattering amplitude.—Following the relativistic

integral equations presented in Ref. [5], we can write the
J ¼ 0 and K3;iso ¼ 0 amplitude as follows:

Mðu;uÞ
3 ðp;kÞ¼−M2ðE⋆

2;pÞGsðp;kÞM2ðE⋆
2;kÞ

−M2ðE⋆
2;pÞ

Z
k0
Gsðp;k0ÞMðu;uÞ

3 ðk0;kÞ; ð5Þ

where
R
k ≡

R
dkk2=½ð2πÞ2ωk� and we have introduced

Gsðp; kÞ≡ −
Hðp; kÞ
4pk

log

�
αðp; kÞ − 2pkþ iϵ
αðp; kÞ þ 2pkþ iϵ

�
; ð6Þ

αðp; kÞ≡ ðE3 − ωk − ωpÞ2 − p2 − k2 −m2: ð7Þ

M2 is the S-wave two-particle scattering amplitude,
introduced above, which depends on the invariant
E⋆2
2;k ≡ ðE3 − ωkÞ2 − k2, with ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. The ðu; uÞ

superscript emphasizes that specific spectator momenta, k
and p, are singled out in the initial and final states,
respectively. The function Gs encodes the spectator
exchange, projected to the S wave. It inherits a scheme
dependence through the smooth cutoff function H, defined
in Eqs. (28) and (29) of Ref. [4]. This scheme dependence
is matched by that inside of K3;iso such that the resulting
scattering amplitude is universal.
To use Eq. (5) in practice, one requires a parameter-

ization for M2. As described in the previous section, the
πþπþ system is well described using the leading order
effective range expansion for M2,

M2ðE⋆
2Þ ¼

16πE⋆
2

−1=a0 − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E⋆2
2 =4 −m2

π

p : ð8Þ

Following the derivation of Ref. [5], the final step is to
symmetrize with respect to the spectators, to reach

M3ðs3;m02
12;m

02
13;m

2
12;m

2
13Þ¼

X
pi∈Pp

X
k∈Pk

Mðu;uÞ
3 ðp;kÞ; ð9Þ

where Pp ¼ fp; a0;−p − a0g and Pk ¼ fk; a;−k − ag. We
have presented the left-hand side as a function of the five
Lorentz invariants that survive after truncating to J ¼ 0 in
both the two and three particle sector: the squared three-
hadron center-of-momentum frame energy, s3, as well as
two pion-pair invariant masses for each of the initial and
final states. These are defined by introducing the notation
fk; a;−k − ag ¼ fp1; p2; p3g, then, for example,

m2
12 ¼ ðp1 þ p2Þ2 ¼ ðE⋆

3 − ½m2
π þ p23�1=2Þ − p23; ð10Þ

where the middle expression depends on on-shell four-
vectors with p2

1 ¼ m2
π .

In the top panel of Fig. 3 we show a Dalitz-like plot of
jM3j2 as a function of ðm12; m13Þ, with all other kinematics
fixed as indicated in the caption. In a usual Dalitz descrip-
tion, the incoming energy is fixed by the decaying particle so
that only the outgoing kinematics can vary, whereas here we
simply fix the other kinematics. The inputs to this plot are the
best-fit scattering length, given in Eq. (4), together with
K3;iso ¼ 0. The bottom panel of Fig. 3 shows the same

ffiffiffiffiffi
s3

p
but varies incoming and outgoing kinematics according to
m12 ¼ m0

12 and m13 ¼ m0
13.

FIG. 2. Example of data and fits for K2 and K3;iso, as described
in the text. The red points are given by substituting finite-volume
energies into −1=FðE2;P; LÞ and −1=F3;isoðE3;P; LÞ for the
two- and three-particle energies, respectively, with the volume
and P indicated in the legend. A symbol appearing at the very top
or bottom represents a case where the central value falls outside
the plotted region. The dark cyan bands represent the fit shown in
Eq. (4) while the lighter bands show the spread covered by the
various fits described in the Supplemental Material [56]. For the
bottom panel we normalize to m2

πKLO
3;iso ¼ 4608π2ðmπa0Þ2, with

mπa0 taken from Eq. (4). This simple relation between K3;iso and
the two-particle scattering length holds at leading order in chiral
perturbation theory at threshold, as was first derived in Ref. [50].
The gray curve gives the full leading-order prediction, which is
linear in E⋆2

3 .
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Additional details concerning the S-wave integral equa-
tions are presented in Secs. III and IVof the Supplemental
Material [56], where we also describe the propagation of
the uncertainties of mπa0 and K3;iso into the predicted
amplitude. (See also Ref. [84] for more details on express-
ing the three-particle amplitude via a truncated partial wave
series and Ref. [85] for a discussion of integral equations
and their solutions in a resonant three-hadron channel.)
Summary.—In this work we have presented the first

lattice QCD determination of the energy-dependent three-
to-three scattering amplitude for three pions with maximal
isospin. The calculation proceeded in three steps: (i) deter-
mining finite-volume energies with πþπþπþ quantum
numbers, (ii) using the framework of Ref. [4] to extract
two- and three-body K matrices from these, and (iii) apply-
ing the results of Ref. [5] to convert these to the three-
hadron scattering amplitude, by solving known integral
equations. The three steps are summarized, respectively, by
Figs. 1, 2, and 3.

Having established this general workflow, it is now well
within reach to rigorously extract three-hadron resonance
properties from lattice QCD calculations. In particular the
formalism has recently been extended to three-pion states
with any value of isospin in Ref. [42]. This should enable
studies, for example, of the ω, h1, and a1 resonances. The
main outstanding challenges here include rigorous resonant
parametrizations of the intermediate three-body K matrix,
as well as a better understanding of the analytic continu-
ation required to identify the resonance pole position.
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