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Saúl Alonso-Monsalve,1, 2, ∗ Dana Douqa,3, † César Jesús-Valls,4 Thorsten Lux,4 Sebastian
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Deep-learning tools are being used extensively in high energy physics and are becoming central in
the reconstruction of neutrino interactions in particle detectors. In this work, we report on the
performance of a graph neural network in assisting with particle set event reconstruction. The
three-dimensional reconstruction of particle tracks produced in neutrino interactions can be subject
to ambiguities due to high multiplicity signatures in the detector or leakage of signal between
neighboring active detector volumes. Graph neural networks potentially have the capability of
identifying all these features to boost the reconstruction performance. As an example case study,
we tested a graph neural network, inspired by the GraphSAGE algorithm, on a novel 3D-granular
plastic-scintillator detector, that will be used to upgrade the near detector of the T2K experiment.
The developed neural network has been trained and tested on diverse neutrino interaction samples,
showing very promising results: the classification of particle track voxels produced in the detector
can be done with efficiencies and purities of 94-96% per event and most of the ambiguities can be
identified and rejected, while being robust against systematic effects.

I. INTRODUCTION

Since 1999, a series of neutrino oscillation experiments
have provided deep insight into the nature of neutri-
nos [1–8]. A number of these experiments are long-
baseline neutrino oscillation experiments that use two
detectors to characterize a beam of (anti-)neutrinos: a
near detector, located a few hundred meters away from
the target that measures the original beam composition,
and a far detector, located several hundred kilometres
away, that allows for the determination of the beam com-
position after neutrino flavor oscillations.

The energy of these beam neutrinos ranges from a few
hundred MeV up to several GeV. Charged particles can
be produced in neutrino interactions, and the energy that
they deposit as they traverse the detector can be used to
reconstruct the events. In general, the larger the energy
transferred from the neutrino to the nucleus, the larger
the number of particles and particle types produced in
the final state. Modeling nuclear interactions in the tar-
get nuclei is highly complex, particularly for high energy
transfers where the hadronic component of the interac-
tion is more important. As a result, current long-baseline
neutrino oscillation experiments mostly analyze interac-
tions with low particle multiplicity. This situation, how-
ever, is expected to change in the coming years. On one
hand, the statistical and systematic uncertainties of cur-
rent experiments have decreased significantly over recent
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years such that neutrino-nucleus modeling is becoming a
dominant source of uncertainty [8, 9]. On the other hand,
future experiments like DUNE [10] will use a broad-band
energy neutrino beam, expecting a significant fraction of
the neutrino interactions to have a high energy transfer
to the nucleus.

As a result, in recent years, the neutrino physics com-
munity has turned its attention to measuring neutrino-
nucleus interaction cross-sections for different ranges of
energies and target materials [11] as a way to constrain
the oscillation uncertainties while providing new mea-
surements to further develop the interaction models. In
parallel, a new generation of neutrino detectors are un-
der development that aim to resolve and reliably identify
short particle tracks even in very complex interactions.
To achieve this, two main detector technologies stand
out: one is based on Liquid Argon Time-Projection-
Chambers (LArTPCs) [12] and the other is based on
finely segmented plastic scintillators with three readout
views [13] that will form part of the near detectors for
T2K [14] and, possibly, DUNE [15].

For the latter, the detector response to a charged par-
ticle is read out into three orthogonal 2D projections.
When reconstructing the 3D neutrino event, different
types of hits are rebuilt, introducing non-physical entities
that can hinder the reconstruction process. Due to the
spatial disposition of such hits, an approach of utilizing
Graph Neural Networks (GNNs) [16] is proposed to per-
form the classification of 3D hits to provide clean tracks
for event reconstruction.

The article proceeds in the following way: Sec. II de-
scribes properly the motivation behind the methodology
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given the details of the detector technology. Section II
introduces deep-learning techniques and explains the spe-
cific GNN algorithm used. The simulated data samples
and GNN training are discussed in Sec. IV. Results and a
study of systematic uncertainties are given in Secs. IV D
and V, respectively, followed by concluding remarks in
Sec. VI.

II. MOTIVATION

A finely segmented scintillator detector consists of a 3D
matrix of plastic scintillator cubes. The scintillation light
produced by charged particles traversing the cubes is read
out by three orthogonal wavelength-shifting (WLS) fibers
that transport the scintillation light out of the detector
where silicon photomultipliers (SiPMs) convert it into a
certain number of photoelectrons (p.e.), as illustrated in
Figs. 1 and 2.

FIG. 1: Geometry of a single SuperFGD element. Each
cube (gray) is intersected by three WLS fibers (green).

The whole SuperFGD will be an array of 56× 184× 192
of these elements (H × L×W ).

Here, we consider the Super Fine-Grained Detector
(SuperFGD) [14], which will be used in T2K, as a specific
case-study. The detector will have 2 million plastic scin-
tillator cubes, each 1×1×1 cm3 in size, and provides three
orthogonal 2D projections of particle tracks produced by
a neutrino interaction, as depicted in Fig. 4a.

To reconstruct neutrino interactions in three dimen-
sions, the light yield measurements in the three 2D views
are matched together, as shown in Fig. 4b. The 3D ob-
jects, corresponding to the cubes where the energy de-
position is reconstructed, are referred to as voxels. In
addition to the cubes where a particle has passed and de-
posited energy, light-leakage between neighboring cubes
can create additional crosstalk signals [17, 18], as de-
picted in Fig. 2. Moreover, ambiguities in the matching
process can give rise to ghost voxels, shown in Fig. 3.

To accurately reconstruct neutrino interactions in
these detectors, it is crucial to be able to classify each
voxel as one of the three types:

• Track: a voxel whose energy deposit comes, par-
tially or totally, from scintillation light generated
in that same cube.

• Crosstalk: a voxel whose energy deposit comes
exclusively from light-leakage from neighboring
cubes.

• Ghost: a voxel with no physical energy deposit
with an apparent signal arising from ambiguities
when matching the three 2D views into 3D.

Figure 4c shows the three types of voxels using truth
information after 3D matching has been performed for
an example neutrino interaction. Once these voxels are
properly labeled (by a classification algorithm), the ghost
voxels can be removed before the full event reconstruc-
tion proceeds, while simultaneously cleaning the particle
tracks of crosstalk.

FIG. 2: Sketch of the signal generation, fiber transport,
and signal detection processes highlighting the

production of optical crosstalk signals. The cubes are
depicted in gray, the WLS fibers in green, the dashed

red line is a charged track and photons are illustrated in
yellow.
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FIG. 3: Example of a ghost voxel arising from a 2D to
3D matching ambiguity. A 2D hit from each of the

three track or crosstalk voxels (red) intersect generating
a ghost voxel (yellow).
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(a) Projections of the observed neutrino interaction onto the
three 2D detector views (XY, XZ, and YZ).

X

110
130

150
170

191

Z
0

50

100

150
183

Y

0

20

40

55

(b) 3D view of the neutrino interaction after the 3D matching
of the three 2D views in Figure 4a. The 3D voxels are shown

as dark points. Projections of the observed neutrino
interaction onto the three 2D detector views (XY, XZ, and

YZ) are shown as shadow.
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(c) 3D view of the neutrino interaction after the 3D matching of the three 2D views in Fig. 4a.
The 3D voxels labelled as track (red), crosstalk (blue), and ghost (yellow) according to the

truth information from the simulation. Projections of the observed neutrino interaction onto
the three 2D detector views (XY, XZ, and YZ) are shown as shadows.

FIG. 4: Visualization of a neutrino interaction in a finely segmented 3D scintillator detector, demonstrating the
relationship between the observed 2D projections onto the three orthogonal 2D views (Fig. 4a), the reconstructed

3D voxels (Fig. 4b), and the true classification of the voxels (Fig. 4c). The energy of the incoming neutrino is
4.754 GeV. The axes are in cm.

In this article, we represent the voxels as nodes in a graph and classify the signals using a deep-learning tech-
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nique based on a GNN. The abstract data representation
provided by graphs makes this method very versatile and
applicable to any experiment where the output data from
the detector elements can be represented as a list of fea-
tures with arbitrary dimensionality.

In the case study presented here, focused on the Su-
perFGD detector of the T2K experiment, this method
shows great potential to assist reconstruction by assign-
ing a probability to each voxel as being track, crosstalk
or ghost. Detector response simulations show that about
half of the reconstructed voxels in the SuperFGD will not
be of track type. For neutrino physics studies, both in
terms of cross-sections and oscillation measurements, cor-
rect event topology identification and kinematic recon-
struction of outgoing tracks are paramount. Ghost and
crosstalk voxels, if not dealt with, will smear the track
range estimations, and hence the reconstructed momen-
tum and angle. Similarly, more densely populated events
in term of voxels will merge highly colinear tracks and
will make it more difficult to identify short tracks key for
correct topology assignment. The method presented here
is therefore expected to benefit future physics measure-
ments in T2K and in any other experiments with similar
conceptual challenges as the ones here described.

III. DEEP-LEARNING METHODS

A. Convolutional neural networks and data
sparsity

Deep-learning techniques are now commonly applied
within the field of neutrino physics. In particular, Convo-
lutional Neural Network (CNN) [19] algorithms that op-
erate on two-dimensional images of the neutrino interac-
tions have been very successful in a number of tasks, such
as event classification [10, 20–25], hit-level identification
of track-like (linear) and shower-like (locally dense) en-
ergy deposits [26, 27], or energy reconstruction [28–30].
Despite the success of CNNs in the neutrino world, im-
ages of neutrino interactions are typically very sparse as
only those readout channels with a detected signal con-
tribute non-zero values to the images, and in the case of
the detector presented in Sec. II the average occupancy of
the detector for a neutrino interaction is less than 0.02%.
Thus, much of the computation time is spent unnecessar-
ily applying convolutions to empty regions of the images.

The goal of this work is to classify 3D voxels as one
of three categories (track, crosstalk or ghost), which is
natively a three dimensional problem. To apply a 3D
CNN-based algorithm to this detector would require two
million voxels to avoid any downsampling or cropping
of the input data, which is computationally prohibitive.
A popular approach to deal with the sparsity of neu-
trino interactions is the submanifold sparse convolutional
network (SSCN) [31]. Standard “dense” CNNs are very

inefficient when applied on images of neutrino interac-
tions, whereas SSCNs require considerably less computa-
tion and report almost identical (or even better) results in
terms of accuracy [32]. Some neutrino experiments have
improved their reconstruction deep-learning algorithms
by moving to SSCNs. For example, MicroBooNE recently
updated the implementation of their semantic segmenta-
tion CNN [27] to an SCNN-based model [33], reporting
improvements at inference by a factor of 354 and 33 in
memory and wall-time, respectively. The NEXT collab-
oration are also exploring the idea of using an SSCN for
track classification [34].

B. Graph neural networks

An alternative approach for handling with sparse data
is to represent hits (or voxels) as nodes in a graph. In
computer science, a graph G is a data structure that rep-
resents a mathematical concept consisting of nodes V and
edges E :

G = (V, E). (1)

A graph can be directed, where each edge has a starting
and an ending node that define a direction, or undirected,
where the edge simply connects two nodes without induc-
ing a sense of direction. In our case, we use an undirected
graph, since we are only interested in the spatial connec-
tions between nodes. Figure 5 shows a comparison of the
3D CNN and graph data structures, as well as the radial
search method used for defining edges between nodes.

radius r

L

W

H

3D Image: H x L x W pixels Graph: K nodes + N edges

     r

FIG. 5: Data and computation size comparison between
a 3D image and a graph. The size of the 3D image on
the left is fixed (H × L×W ) regardless of the number

of hits as CNNs require fixed image sizes (in most
cases). The connected graph shown on the right is a

much more efficient representation of the data. Each hit
is represented as a graph node and connections, called

edges, are made between neighboring hits within a
sphere of radius r.

As mentioned above, each detector voxel cube is rep-
resented as a node in a graph, and each node con-
sists of a list of input variables called features that de-
scribe the physical properties of the detected signal (see
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Section IV and Appendix B). The deep-learning algo-
rithm that operates on graphs is the Graph Neural Net-
work (GNN) [16, 35]. GNNs are used in many different
fields [36, 37] and can be applied for graph classifica-
tion [38, 39] or node classification [40–42]. In this article,
a GNN inspired by the GraphSAGE algorithm [42] is
used to classify individual voxels in SuperFGD events.
The application of GNNs to data from neutrino experi-
ments has been recently demonstrated by the IceCube ex-
periment in order to identify entire events as atmospheric
neutrino interactions, outperforming a 3D CNN [43]. The
work in Ref. [44] also shows an application of GNNs for
both node and edge classification for a neutrino detector,
where a GNN-based reconstruction chain is used for clus-
tering both electromagnetic showers and particle inter-
actions. Other GNN-based studies have been performed
for particle reconstruction in high energy physics detec-
tors [45–47]. The main drawback of GNNs with respect
to SSCNs is that the former needs to pre-process the
events to perform the neighborhood computation (defin-
ing edges) whilst no pre-processing is needed for the
SSCN images. However, the advantage of GNNs in this
field is that they can use a strong node representation,
where a large number of features can define each node
without reducing the scalability of the model. To the
best of our knowledge, the approach we present in this
paper is one of the first attempts of using GNNs for node
classification in neutrino experiments.

C. GraphSAGE

GraphSAGE [42] is a technique that leverages the fea-
tures of graph nodes V - which can range from physical
information to text attributes - to generate efficient rep-
resentations on previously unseen samples by learning
aggregator functions from training nodes. These aggre-
gators can be simple functions (e.g., mean or maximum)
or more complex ones, such as Long short-term mem-
ory (LSTM) cells [48], and must be functions that take
an arbitrary number of inputs without any given order.
The model learns not only K aggregator functions that
combine information from neighboring nodes but also a
set of weight matrices Wk,∀k ∈ {1, ...,K}, which are
used to propagate information through the K layers of
the model and combines local information of the node
with the aggregator information of its neighbors into an
encoding vector (see Algorithm 1). The number of ag-
gregator functions is also used to define the depth of the
model, meaning that a GraphSAGE model has a depth
of K. In each layer of the aggregator information, a new
representation of the node v is computed, denoted by
hk
v (with h0

v being the initial node features xv). Once
trained, it can produce the embedding of a new node
given its input features and neighborhood, in the form of
the vector of the last layer hK

v ; this embedding is then
used as the input of a multilayer perceptron (MLP) [49]
that is responsible for predicting the label.

Algorithm 1: GraphSAGE embedding
generation (i.e., forward propagation) algorithm

(from [42])

Input : Graph G(V, E); input features {xv, ∀v ∈ V};
depth K; weight matrices
Wk, ∀k ∈ {1, ...,K}; non-linearity σ;
differentiable aggregator functions
aggregatek, ∀k ∈ {1, ...,K}; neighborhood
function N : v → 2V

Output: Vector representations zv for all v ∈ V
1 h0

v ← xv,∀v ∈ V ;
2 for k = 1...K do
3 for v ∈ V do
4 hk

N (v) ← aggregatek({hk−1
u , ∀u ∈ N (v)});

5 hk
v ← σ

(
Wk · concat(hk−1

v ,hk
N (v))

)
6 end

7 hk
v ← hk

v/‖hk
v‖2,∀v ∈ V

8 end

9 zv ← hK
v , ∀v ∈ V

Since GraphSAGE learns from node features, it allows
us to decide which physical information to use for each
voxel. This means that the model can follow the particle
set, i.e., by predicting the label for each voxel based on
the physical attributes of the target voxel as well as the
features of its neighbors.

IV. METHODOLOGY

A. Data sample generation

In order to generate data sets of neutrino interactions
with true labels that allow to train and benchmark the
classification algorithm, the steps below are followed. For
each neutrino interaction:

1. Initial particle types and initial kinematics are
specified for all final-state particles produced in the
interaction.

2. Initial particles are propagated through the detec-
tor geometry producing further particles and leav-
ing signals in the form of energy deposits.

3. Using particle energy deposits, the detector re-
sponse is simulated.

4. The information is stored as a list of voxels with
a unique integer known true label: track, crosstalk
or ghost.

Initial particle types and kinematics
The initial particle types and their associated kinematics
were simulated following two approaches. Firstly, GE-
NIE datasets were created using GENIE-G18.10b neu-
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trino interaction software [50]. For a given neutrino fluxi

and target geometry specification, it generates a list of
realistic neutrino event interactions both in the number
and type of outgoing particles, often referred to as event
topologies, and in their individual initial kinematics. Sec-
ondly, Particle bomb (P-Bomb) datasets have been con-
structed as a complementary group of data not affected
by the specific tunings provided by a neutrino interac-
tion generator, such as GENIE. The motivation under-
lying this is to show in the later sections that the re-
ported algorithm performance is not highly dependent on
the neutrino interaction modelling. Moreover, given that
neutrino generators do not perfectly model real interac-
tions, these two datasets (GENIE and P-Bomb) are also
used in the following sections to discuss the reliability
of training in GENIE (or other generators) and classify-
ing real data. Hence the purpose of P-Bomb datasets is
to provide events similar to those found in neutrino in-
teractions in terms of the outgoing particles but with no
realistic kinematic modeling and without considering any
kinematic correlations among the outgoing particles. To
achieve this the P-Bomb dataset is constructed adding
equal numbers of events with the following particle gun
combinations, each of which has random flat solid angle
and momentum [10-1000 MeV/c] distributions: 1 µ−; 1
µ− and 1 proton; 1 µ− and 1 π−; 1 µ− and 1 π+; 1 µ−

and 2 protons; and 1 µ−, 1 π+ and 3 protons. An illustra-
tive comparison between GENIE and P-Bomb neutrino
interaction modelling can be found in Appendix A. A
summary regarding the number of events and voxels in
the two datasets, as well as of the class distribution is
presented in Tab. I.

GENIE
dataset

Training Validation Testing
# Events 6k 2k 11.5k
# Voxels 1.83M 606.7k 3.58M

Track Crosstalk Ghost
Fraction 43% 37% 20%

P-Bomb
dataset

Training Validation Testing
# Events 6k 2k 39.5k
# Voxels 1.84M 618k 12.3M

Track Crosstalk Ghost
Fraction 49% 38% 13%

TABLE I: Descriptions of both GENIE and P-Bomb
datasets, displaying the number of events and number
of voxels used for training, validating and testing the

models. Additionally the fractions of the different
classes of voxels are shown, which are conserved

through the training, validating, and testing sets.

Particle propagation simulation in the detector
The SuperFGD detector geometry was simulated as de-
scribed in Ref. [14]. The particle propagation and physics

i We used the T2K flux, which peaks at 600 MeV/c, see Ref. [51].

simulation is done by means of GEANT v4-10.6.1 [52].
GEANT is a Monte Carlo based toolkit that provides
realistic propagation of particles through matter. It out-
puts a list of energy deposits.

All energy depositsii occurring in the same detector
cube, including the effect of Birks’ quenching [53], are
summed to form the list of track voxels. To simulate
imperfect cube light-tightness, the 3D voxelized energy
is then shared with the neighboring cubes, creating a
new set of voxels that originally had no energy deposits,
the crosstalk voxels (see Figure 2). For the energy
sharing, a fraction of the energy in the original cube is
leaked into each of its six neighbors. The fraction that
is shared is sampled from a Poisson distribution, with
µ = 2.7%. Given that the probability for the energy to
leak twice is O(µ2), only leakage to immediate neighbors
is considered. The 3D voxelized energy of both track and
crosstalk voxels is projected onto its three orthogonal
planes where the detector 2D signals are simulated,
converting the continuous energy deposit into discretized
photonsiii, weighted by distance-dependent attenuation
factors, which are detected with 35% probability. To
mimic a minimum threshold detection sensitivity, only
2D hits with three or more detected photons are kept.
SuperFGD thresholds at this level are expected to
remove virtually all dark rate hits [17], henceforth we
have not included noise hits in our simulation. Then,
the 2D hits are matched into 3D reconstructed voxels
only if the same XYZ coordinate combination can be
made using two different combinations of 2D planes. In
this process, due to ambiguities some extra voxels are
created, the ghost voxels (see Fig. 3). Finally, those
track and crosstalk voxels not reconstructed after the
3D matching are discarded from the original lists. An
example of the 2D to 3D reconstruction is shown in
Figures 4a and 4b.

Simulation output
The resulting output from the simulation is a list of voxels
and their associated energy deposits in the three planes,
each with one of the following three labels that we want to
classify, as described in Sec. II: track, crosstalk or ghost
voxel. Using the list of voxels of each event, further fea-
tures are computed for each voxel as described in Ap-
pendix B. The correlation matrices of the features for the
GENIE and P-Bomb datasets are presented in Fig. 18 in
Appendix C. The graph’s adjacency matrix is built utiliz-
ing the position of each voxel, as will be detailed below.
Both the new list of expanded voxel features plus the
corresponding adjacency matrix of the event are fed into
the GNN algorithm.

ii Only signals in the first 100 ns are considered. Further delayed
signals, such as decays, can be treated as independent graphs.

iii No waveform processing is simulated. A single conversion factor
is used from energy deposit to number of photons in the WLS
fiber, based on laboratory data [17].
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B. Network architecture

Each graph in GraphSAGE is constructed using the
proximity of two voxels in that graph. If both voxels
are spatially located within a radius of 1.75 cmiv, then
we consider them to be connected in the graph by an
edge; we repeat the same procedure for each pair of vox-
elsv. Additionally, we consider a neighborhood depth
of three, i.e., to produce the embedding of a voxel, we
use the voxel features together with its first neighbors’
features, the features of the neighbors of its neighbors,
i.e, second neighbors’ features, and the features of the
neighbors of the neighbors of its neighbors, i.e., third
neighbors’ features. The aggregator used to combine the
feature of the neighbors is the mean aggregator, which
produces the average of the neighbors’ values. This final
embedding is then passed to an MLP consisting of two
fully connected layers - each followed by a LeakyReLU
activation function - and a final output layer followed by
a softmax activation function. Figure 6 illustrates the
GraphSAGE-based approach used, while Tab. II shows
the architectural parameters chosen. Categorical cross-
entropy is chosen as the loss function to minimize during
training, as it is considered the standard one for multi-
class classification problems, where each training exam-
ple corresponds to a voxel:

J = − 1

m

m∑
i=1

c∑
j=1

y
(i)
j log ŷ

(i)
j , (2)

where:

• y(k): true values corresponding to the kth training
example. y(k) is a vector with all components equal
to zero except for the class j, which is equal to one.

• ŷ(k): predicted values corresponding to the kth

training example. ŷ(k) is a vector with each com-

ponent ŷ
(k)
j denoting the score (continuous value

from 0 to 1) of being of class j.

• m: number of training examples, equal to the total
number of voxels in the training sample.

• c: number of classes/neurons corresponding to the
output. In this case, the three classes are: track,
crosstalk, and ghost.

The output layer of the model consists of three neu-
rons, one for each of the three classes, with values vi
for i = 1, 2, 3. The sum of neuron values is given by

iv To link only those voxels within the 3×3×3 cube of voxels centred
on the target voxel (the maximum diagonal distance from the
center of this cube is

√
12 + 12 + 12 ≈ 1.75).

v If a voxel has no neighbors, it is discarded from the graph and
cannot be classified; this happens for less than 0.6% of the total
number of voxels.

Parameter value

Encoding size 128
Depth 3
Aggregator mean
Fully Connected Layer 1 128 neurons
Fully Connected Layer 2 128 neurons
Fully Connected Layer 3 (output) 3 neurons

TABLE II: Architectural parameters; for more
information about the meaning of the parameters, see

Sec. III C.

∑3
i=1 vi = 1 such that each neuron value gives a frac-

tional score that can be used to classify voxels. In other
words, the model returns scores for each voxel to be one
of the three desired outputs, which can be interpreted as
the probability: track-like, crosstalk-like, or ghost-like.

C. Training

The network was trained for 50 epochsvi using Python
3.6.9 and PyTorch 1.3.0 [54] as the deep-learning frame-
work, on an NVIDIA RTX 2080 Ti GPU. Adam [55] is
used as the optimizer, with a mini-batch size of 32, and
an initial learning rate of 0.001 (divided by 10 when the
error plateaus, as suggested in [56]). The model has a
total of 105,347 parameters. As is standard in machine
learning, the dataset was split into three disjoint sets:
the training set, to optimize the model’s parameters; the
validation set, to avoid overfitting and perform model se-
lection; the test set, to verify the integrity of the model
for new data. Figure 7 shows the validation results during
the training process, measured by the F1-score metric:

F1 = 2
precision · recall

precision + recall
. (3)

The precision and recall are defined as:

precision =
truepositives

truepositives + falsepositives
, (4)

recall =
truepositives

truepositives + truenegatives
, (5)

where the labels are compared as one class (denoted as
positive) vs. all the others (denoted as negative). The
model used later for inference on new data is the one that
maximizes the F1-score for the validation set, as it has
the best generalization for unseen data.

vi Epoch: one forward pass and one backward pass of all the train-
ing examples. In other words, an epoch is one pass over the
entire dataset.
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a depth K = 3. The red node
indicates the target node to be

classified; orange nodes are nodes
taken into account for the

classification given a depth of three;
blue nodes are not taken into

account. Each depth k represents a
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aggregator 1

aggregator 2

aggregator 3

(b) Aggregate feature information
from neighbors. Each node has

features f1, . . . , fN , with purple, blue,
and green nodes information being

aggregated through aggregators 1, 2,
and 3, respectively.
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(c) Use aggregated information as
input for the fully connected layers

and predict the label.

FIG. 6: Visual illustration of the GraphSAGE sample and aggregate approach with a depth of three [42].
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D. Results

The GNN voxel-type predictions are compared against
the true labels to evaluate the network performance and
identify possible areas of improvement. Here, we choose
the output class with the highest score as the predicted
class of each voxel although, depending on the type of
analysis, different selection criteria could be applied in
the future.

The efficiencies and purities of these predictions are
calculated by two methods: per voxel and per event, the
former are given by the following formulas for each type
of voxels:

efficiencyi =
# voxels with labeltrue= labelpred=i

# voxels with labeltrue=i
, (6)

purityi =
# voxels with labeltrue= labelpred=i

# voxels with labelpred=i
. (7)

The efficiencies and purities per event are defined as
the mean of the efficiencies and purities of individual vox-
els for each event. The results of both methods for four
sets of training/testing samples are shown in Tab. III,
giving nearly identical performance that is independent
of the dataset used to train and test the GNN.

As an example, Fig. 8 shows the voxel prediction re-
sults from the GNN when applied to the event shown
in Fig. 4, a GENIE event that features a track almost
completely composed of ghost voxels. Figure 8a shows
the class predicted for each voxel, while Fig. 8b displays
which voxels were correctly/incorrectly classified.

A more in-depth analysis of the GNN performance can
be carried out by studying the effects of different event
properties on the efficiencies and purities of the predic-
tions. For these studies, the results of the GNN trained
and tested on the GENIE dataset are used.

One of the factors expected to affect these predictions
is the number of voxels in the event. Figure 9 shows the
relationship between the mean efficiency and purity per
event for each type of voxel as a function of the total
number of voxels in the event. The figure also shows the
mean number of events in each bin (in light blue). It is
clear that both the efficiencies and purities of the three
types of voxels decrease as the number of voxels in the
event increases. This decrease is coupled with an increase
of the fraction of ghost voxels as the total number of
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GENIE Training P-Bomb Training

GENIE
Testing

Per
Voxel

Track Crosstalk Ghost Track Crosstalk Ghost
Efficiency 93% 90% 84% Efficiency 93% 89% 80%
Purity 93% 87% 91% Purity 91% 86% 89%

Per
Event

Track Crosstalk Ghost Track Crosstalk Ghost
Efficiency 94% 94% 88% Efficiency 94% 93% 88%
Purity 96% 91% 92% Purity 95% 91% 91%

P-Bomb
Testing

Per
Voxel

Track Crosstalk Ghost Track Crosstalk Ghost
Efficiency 94% 93% 87% Efficiency 95% 93% 88%
Purity 95% 90% 92% Purity 95% 91% 92%

Per
Event

Track Crosstalk Ghost Track Crosstalk Ghost
Efficiency 94% 94% 87% Efficiency 95% 93% 88%
Purity 96% 90% 92% Purity 96% 91% 92%

TABLE III: Mean efficiencies and purities of voxel classification, calculated for the whole sample (per voxel) and as
a mean of the event-by-event efficiencies and purities (per event).

voxels increases, which are the hardest for the GNN to
classify.

The number of tracks in the event is an estimate of
the complexity of its topology. According to Fig. 10, the
classification efficiencies and purities drop as the number
of tracks increases. This behaviour is also correlated with
the increasing fraction of ghost voxels in the events.

The region around the interaction vertex is of partic-
ular interest in the event. It is expected that a high
spatial density of voxels within a certain volume of the
detector may pose a challenge for the GNN to correctly
identify the voxel type. This can be observed by studying
the efficiencies and purities as a function of the distance
to the interaction vertex, as shown in Fig. 11. At the
interaction vertex itself, it is clear that there are only
track voxels and the GNN can identify them with over
96% efficiency and 100% purity. The following 2 cm ex-
hibit only a small fraction of ghost voxels, mainly due
to the high spatial density of voxels with real signals
in that volume, which is mainly occupied by track and
crosstalk voxels. As we go further from the vertex, the
spatial density of voxels decreases and the tracks emerg-
ing from the vertex diverge allowing for easier voxel clas-
sification. However, this trend is reversed around 10 cm
from the vertex where the protons emerging from the
CCQE (Charged-Current Quasi-Elastic) interaction ver-
tex would have reached their range and only the low-
ionizing muon tracks remain. The lower average voxel
charge at these distances complicates the process of clas-
sification as most of the variables used as an input to the
GNN are based on charge, which can be observed in the
dropping efficiencies and purities.

As the main goal of this GNN is to identify ghost voxels
in order to eliminate them from the events, it is impor-
tant to make sure that true track and crosstalk voxels are
not lost in the process. According to the GENIE sample
results, only 1.1% of all true track voxels and 3.3% of
crosstalk voxels are incorrectly classified as ghost voxels
by the GNN. In addition, it is important not to miss ghost
voxels: the GNN correctly identified 84.5% of all ghost

voxels, where 72.1% of those classified incorrectly were
predicted as crosstalk. Therefore, although not ideal,
this issue is not critical as crosstalk voxels have a smaller
influence on future studies than track voxels.

Lastly, we compare the results of the GNN against a
conventional method of voxel classification which relies
on a charge cut. As described in Appendix B, each voxel
has three charges that correspond to the signals from the
three fibers passing through it. Since other voxels along
the same fiber may have signals causing a larger ampli-
tude to be recorded, we consider the smallest of these
three charges to be the most accurate estimation of the
true voxel charge. Hence, this minimum charge is used
for the purposes of this charge cut. Since, by definition,
we expect higher energy deposition in track voxels com-
pared to crosstalk and ghost voxels, we set a lower limit
for the minimum charge in a voxel such that any voxels
with a higher minimum charge than the threshold are
classified as track voxels. Figure 12 shows the distribu-
tion of the minimum voxel charge for the three types of
voxels. From this figure, it is clear that it is not possible
to separate ghost from crosstalk voxels. Thus, this classi-
fication is only binary such that we have two categories:
track or other. We decide to place this cut at 12 p.e.,
where the track and non-track voxel curves intersect.

To compare the results of this cut with those of our
GNN, we combine the predictions of the crosstalk and
ghost categories. Table IV shows the efficiency and purity
of the classifications for the two methods. It is evident
that using only a charge cut can still yield a comparable
track voxel classification efficiency to the GNN. However,
it struggles to correctly classify non-track voxels which,
in turn, reduces the purity of the predicted track voxels.

Another advantage of the GNN over the charge cut is
the improved capability of reducing the number of “fake”
tracks, i.e. a cluster of ghost voxels that closely resembles
the structure of a real particle track. Since fake tracks
are usually produced by the shadowing of real tracks,
the corresponding number of p.e. measured in the three
readout views is higher than 12 p.e., hence the charge
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FIG. 8: Example GNN prediction results for the interaction shown in Fig. 4. The axes are in cm.
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(c) Mean fraction of each type of voxel as a function of the
number of voxels in the event (blue = track,

orange = crosstalk, green = ghost).

FIG. 9: Efficiency and purity as a function of the
number of voxels in the event for a sample trained and

tested on GENIE simulated data.

cut cannot reject them easily. The superiority of the
GNN in reducing ghost tracks is shown in Appendix D
for a number of neutrino interactions and compared to
the charge cut method.

GNN Charge Cut

Track Other Track Other
Efficiency 94% 96% Efficiency 93% 80%
Purity 96% 95% Purity 80% 91%

TABLE IV: Mean efficiencies and purities of voxel
classification for the GNN and a simple charge cut.

Figure 13 shows the advantage of the three-fold classi-
fication of the GNN over the binary classification of the
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(b) Purity.
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(c) Mean fraction of each type of voxel as a function of the
number of tracks in the event (blue = track,

orange = crosstalk, green = ghost).

FIG. 10: Efficiency and purity as a function of the
number of tracks in the event for a sample trained and

tested on GENIE simulated data.

charge cut when comparing the fraction of true total de-
posited energy obtained using each method. In the case
of the GNN, the total deposited energy in an event is the
sum of the true energy deposited in all non-ghost voxels.
For the charge cut, only the energy deposited in track
voxels is used. This causes an average energy loss of 5%
per event when using a method that also excludes the
crosstalk voxels, compared to less than 1% when using
the GNN that can isolate ghost voxels.
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(b) Purity.
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(c) Mean fraction of each type of voxel as a function of the
distance to the vertex (blue = track, orange = crosstalk,

green = ghost).

FIG. 11: Efficiency and purity as a function of the
distance to the neutrino interaction vertex for a sample

trained and tested on GENIE data.

V. SYSTEMATIC UNCERTAINTY
CONSIDERATIONS

The results presented in Sec. IV D show that the GNN
is a very powerful technique for removing ghost voxels
and identifying optical crosstalk in 3D-reconstructed neu-
trino interactions. In this section, we investigate poten-
tial sources of systematic uncertainty and test the robust-
ness of this technique.

One of the main limitations in the measurement of
the neutrino oscillation parameters in long-baseline ex-
periments comes from uncertainties in the modeling of
neutrino interactions, not yet fully constrained by data
and partially incomplete for describing all the details of
the interaction final state. For example, the modeling
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FIG. 12: The distribution of the minimum charge
among the three voxel charges for the GENIE sample.
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FIG. 13: The fraction of the true total deposited energy
obtained when using the GNN (trained on GENIE) or

the charge cut as a classification method.

of hadron multiplicity and kinematics may considerably
change the image of the neutrino interaction, particularly
near the neutrino vertex, or the total energy deposited
by all the particles produced by the neutrino interaction.
Hence, it is hard to obtain a data-driven control sample
to train a neural network without making any prior as-
sumptions. Since the GNN is trained only on a subset
of the parameter space, the results could be biased if the
detected neutrino interactions belong to a region of the
parameter space not well covered by the MC generator.
To account for a potentially incomplete sampling of the
parameter space, different training samples (GENIE and
P-Bomb) were generated, as described in Sec. IV D. The
difference in terms of neutrino interaction modeling be-
tween these two datasets, by construction, is expected to
be much larger than the difference between GENIE and
real neutrino interactions, see Appendix A. As presented
in Tab. III the performance is still very good even when
the samples used for training and testing were largely
different in terms of modeling, supporting the safeness of
training using MC events to classify real data.

The robustness of the GNN against model dependen-
cies can be verified by training different neural networks
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on different event samples and applying them to the same
set of neutrino interactions. A difference in the observ-
ables used in the physics measurement, such as particle
momenta, energy deposit, etc., obtained by the differ-
ent training can be assigned as a systematic uncertainty
introduced by the method.

A study was performed to evaluate the impact of the
method on the total true energy deposited in the de-
tector. The difference between the total energy deposit
computed after rejecting the voxels classified as ghosts for
both network trainings was computed. Figure 14 shows
the distribution of the total true deposited energy before
and after discarding the voxels classified as ghosts. Both
GENIE- and P-Bomb- trained GNNs give very similar
results over the full range of total deposited energy. The
total true deposited energy computed with and without
ghost rejection differ on average by less than 1 MeV with
a standard deviation of approximately 5.5 MeV, mainly
due to a few outlier entries, and 68% of the events with
a difference better than 0.192 MeV, as shown in Fig. 15.
Hence, it is expected to be improved by increasing the
statistics of the training samples.

This corresponds to less than 2% of the mean total
deposited energy per event. In Fig. 16 the impact of
the different training sample is shown as a function of
the total deposited energy. The fractional standard de-
viation, defined as the standard deviation of the differ-
ence between deposited energy computed from different
GNN trainings and divided by the true deposited en-
ergy, shown in the bottom panel, is less than 2% and
almost constant as a function of the deposited energy.
This means that the performance of the method is about
the same irrespective of the total deposited energy. This
study confirms that GNN can be used for classifying 3D
voxels potentially with limited systematic uncertainties
in the deposited energy, while drastically improving the
tracking capability.
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FIG. 14: Distribution of the total true deposited energy
after rejecting the ghost voxels classified either with
GENIE- (dashed orange) or P-Bomb- (dotted green)
trained GNNs and without any ghost rejection (solid
blue). The mean total deposited energy per event is

about 288 MeV.
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FIG. 15: Difference between the total true deposited
energy computed after rejecting the ghost voxels

classified with GENIE- and P-Bomb- trained GNNs.
The mean is 0.78 MeV while the standard deviation is

5.5 MeV. About 40% of events show no difference
between P-Bomb and GENIE, 68% have a difference

within ±0.192 MeV, while only 5% of the events have a
difference outside the range ±6.35 MeV.

Another potential issue could be given by a mismodel-
ing of the amount of crosstalk. In addition to the nom-
inal optical crosstalk (2.7%), two further datasets were
simulated using 2% and 5% crosstalk and the voxel clas-
sification was performed using the GNN trained with
nominal crosstalk. As shown in Tab. V, the efficiency
and the purity is relatively stable even in the case where
the crosstalk model is wrong, in particular for identify-
ing track voxels. Whilst a drop in purity for track voxels
is observed with 5% crosstalk, such a large mismodeling
is highly unlikely given that crosstalk can be measured
even with small prototypes to sub-percent precision [17].
Hence, crosstalk mismodeling is not considered to be a
source of additional systematic uncertainty given that the
GNN method is robust to small crosstalk variations.

Nominal
Crosstalk

2.7%

Track Crosstalk Ghost
Efficiency 93% 90% 84%
Purity 92% 87% 91%

Crosstalk
2%

Track Crosstalk Ghost
Efficiency 92% 89% 81%
Purity 94% 83% 89%

Crosstalk
5%

Track Crosstalk Ghost
Efficiency 94% 89% 88%
Purity 86% 91% 93%

TABLE V: Mean efficiencies and purities of voxel
classification, per voxel, for different crosstalk values,

i.e. 2.7% (nominal), 2%, and 5%. The GNN was trained
with GENIE training samples with nominal crosstalk
and tested on the same GENIE sample with different

crosstalk values to study its robustness.
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FIG. 16: Top: difference between the total true
deposited energy computed after rejecting the ghost
voxels classified with GENIE- and P-Bomb- trained

GNNs as a function of the total true deposited energy.
Bottom: fractional standard deviation of the difference

of the total true deposited energy computed after
rejecting the ghost voxels classified with GENIE- and
P-Bomb- trained GNNs as a function of the total true

deposited energy.

VI. CONCLUSIONS

A graph neural network inspired by GraphSAGE was
developed and tested on simulated neutrino interactions
in a 3D voxelized fine-granularity plastic-scintillator de-
tector with three 2D readout views with the same ge-
ometry as SuperFGD, a detector that will be installed in
the near detector (ND280) of T2K. The advantage of this
neural network is that the graph data structures provide
a natural representation of the neutrino interactions.

The neural network was able to identify ambiguities
and scintillation light leakage between neighboring active
scintillator detector volumes as well as real signatures left
by particles with efficiencies and purities in the range of
94-96% per event, with a clear improvement with respect
to less sophisticated methods. In particular, it can reduce
the number of fake tracks produced by the shadowing of
real tracks observed in the 2D readout views. The per-
formance was tested for neutrino events with different
number of voxels, number of tracks and voxels at differ-
ent distances from the vertex, variables that could hint
to interaction model dependencies of the method. Ef-
ficiencies and purities were found to be relatively stable
and the trends were consistent with the expectation. The
robustness of the neural network against possible system-
atic uncertainties introduced by the method was tested.
The results were obtained using neural networks trained

on different samples, produced either with the GENIE
event generator or by randomizing the number of final
state particles and relative momentum to obtain a more
generic sample that does not belong to any particular
theoretical model. It was found that the bias introduced
on the total deposited energy of the event by arbitrarily
choosing a different training sample is, on average, less
than 1 MeV, or less than 2% for true deposited energies in
the range 0.0-1.0 GeV. The impact of potential mismod-
eling of the light leakage between neighboring scintillator
volumes was tested. Results show that the performance
of the neural network is robust to expected changes in
the crosstalk modeling.

To conclude, we showed that a graph neural network
has great potential in assisting a 3D particle-set recon-
struction of neutrino interactions. Similar results may
be expected for other types of detectors that aim to a
3D reconstruction of the neutrino event from 2D projec-
tions and that share analogous features like ambiguities
and leakage of signal between detector voxels, such as the
very similar detector proposed as part of the DUNE near
detector.
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Appendix A: Comparison of GENIE and P-Bomb

Two different types of neutrino interactions have been
studied, as described in Section IV A. The neutrino mod-
elling differences can be easily visualized by comparing
two of the simplest subsets of data from each dataset.
GENIE charge current quasi elastic interactions (CCQE)

vii https://github.com/twjiang/graphSAGE-pytorch

https://github.com/twjiang/graphSAGE-pytorch
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typically produce an outgoing muon and proton in the fi-
nal state. For illustration, we compare this sub-sample
of the GENIE dataset with the µ− + p+ sub-sample in
the P-Bomb dataset in Fig. 17.

(a) Angular distribution of muons.

(b) Momentum distribution of muons.

(c) Total energy deposit.

FIG. 17: Distributions of CCQE GENIE interactions
compared to µ− + p+ interactions in P-Bomb.

Appendix B: Input variables

The list of variables used as features for the graph
nodes is given below. Each node is placed at XYZ co-
ordinates matching the center of a cube, however, these

center coordinates are not node variables by themselves
since the detector response is isotropic. The numbers in
front of each variable match those in Fig. 18.

• 0-2: peXY, peXZ, peYZ
Number of photons detected in the XY, XZ or YZ-
fiber intersecting the cube under consideration cor-
rected by the expected attenuation.

• 3-5: mXY, mXZ, mYZ
Number of active voxels intersected by the fiber
associated to peXY, peXZ or peYZ

• 6: pewav
Average number of detected photons peXY, peXZ,
peYZ, each weighted by the fiber multiplicity mXY,
mXZ, mYZ.

pewav =
peXY
mXY

+ peXZ
mXZ

+ peYZ
mYZ

3

• 7-9: pullX, pullY, pullZ
Relative difference between the light measured in
two different 2D planes.

pullX =
peXY− peXZ

peXY + peXZ

pullY =
peXY− peYZ

peXY + peYZ

pullZ =
peXZ− peYZ

peXZ + peYZ

• 10: residual
Similarity of the light yield measured in the three
2D planes, measured as the squared distance from
each peXY, peXZ, peYZ to the average, weighted
by the squared average.

µ =
peXY + peXZ + peYZ

3

residual =
(peXY− µ)2 + (peXZ− µ)2 + (peYZ− µ)2

µ2

• 11: pullXYZ
Similarity of the light yield measured in the three
2D planes, measured as a combination of 2D pulls
(a1,a2,a3) weighted by pewav.

a1 =
peXY
mXY
− peXZ

mXZ
peXY
mXY

+ peXZ
mXZ

a2 =
peXY
mXY
− peYZ

mYZ
peXY
mXY

+ peYZ
mYZ
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a3 =
peXZ
mXZ
− peYZ

mYZ
peXZ
mXZ

+ peYZ
mYZ

pullXYZ =
a1a2 + a1a3 + a2a3

pewav

• 12: ratioMQ
Ratio between the average voxel multiplicity in the
three fibers and pewav.

ratioMQ =
mXY+mXZ+mYZ

3

pewav

• 13-14: R1, R3
Number of active neighbor voxels in a sphere of
certain radius.
↪→ R1, r=1 cm.
↪→ R2, r=2 cm.
↪→ R3, r=5 cm. R2 was not used as a variable due to
the high correlation with R1, but is used to compute
RR.

• 15-20: x+, x-, y+, y-, z+, z-
Boolean variables representing the existence of im-
mediate neighbors in each of the 6 surrounding
cubes

• 21: orthogonal neighbor
It is 1 if any of x+, x-, y+, y-, z+, z- is 1.

• 22: RR
Ratio between the number of close and far voxels.
The ε = 10−7 prevents numerical problems when
R3=0.

RR =
R2

R3 + ε

• 23: ratioDQ
Ratio between the average voxel distance aveDist
around the voxel and the weighted average light
yield pewav.

ratioDQ =
aveDist

pewav

• 24: aveDist
Average distance from the voxel center C to all fired
voxel centers (Ci) within a sphere of radius 2.5 cm.

aveDist =
1

N

N∑
i

EuclidianDist(C,Ci)

A number of these variables are calculated from the
same underlying properties of the energy deposits. In
theory, an infinitely deep GNN trained on an infinite
amount of training data would be able to extract all of
the information required for classification from the few

underlying properties. In practice, we use a larger num-
ber of derived variables to guide the GNN to allow it
to more easily extract information from the data and to
converge quickly in the training process. Global position
was intentionally not used as a variable to avoid the GNN
to learn neutrino modelling specific behaviours.

Appendix C: Comparison of GENIE and P-Bomb
simulated data samples

Figure 18 shows the correlations of the input variables
defined in Appendix B for the GENIE and P-Bomb data
samples. Differences between the two matrices arise from
the different topologies of interactions produced by the
two generator methods.

Appendix D: Event Gallery

This section contains a number of visualizations to
show the classification performance of the GNN for a
number of neutrino interactions with different complex-
ity and topology. Displays are shown for different events
in Figs 19 - 24: all voxels with their true classification,
only the true track voxels, the classified track voxels us-
ing the charge cut method, and the classified track voxels
using the GNN. The interactions shown here are exam-
ples of interactions containing many ghost voxels in order
to showcase the GNN performance.

The track voxel classification ability of the charge cut
and GNN methods can be seen by comparing subfigures
(c) and (d) with (b), respectively, for each interaction.
The GNN is able to reject ghost voxels very well, as
shown in Figs 20, 22, 23 and 24 where ghost tracks re-
main using the charge cut method. In general, the per-
formance improvement from the GNN increases with the
complexity of the interactions. For simple interactions
with only a single muon in the final state both methods
perform similarly.
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FIG. 18: Correlation matrices for the input variables of
the GENIE and P-Bomb datasets used. Appendix B
gives the mapping between the numbers on the axes

and the variable names.
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(a) The 3D voxels labelled as track (red), crosstalk (blue) and
ghost (yellow) according to the truth information from the

simulation are shown.
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(b) Only the 3D voxels labelled as track according to the
truth information from the simulation are shown.
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(c) The 3D voxels labelled as track according to the charge
cut classification are shown.
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(d) The 3D voxels labelled as track according to the GNN
classification are shown.

FIG. 19: 3D visualization of a neutrino interaction in a finely segmented 3D scintillator detector after the 3D
matching of the three 2D views. The GNN cut is able to almost entirely reject the fake track traveling on the XZ
plane and stopping near to the vertex at X∼160 cm and Z∼70 cm, while the charge cut cannot. The energy of the

incoming neutrino is 4.754 GeV. The axes are in cm.
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(a) The 3D voxels labelled as track (red), crosstalk (blue) and
ghost (yellow) according to the truth information from the

simulation are shown.
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(b) Only the 3D voxels labelled as track according to the
truth information from the simulation are shown.
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(c) The 3D voxels labelled as track according to the charge
cut classification are shown.
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(d) The 3D voxels labelled as track according to the GNN
classification are shown.

FIG. 20: 3D visualization of a neutrino interaction in a finely segmented 3D scintillator detector after the 3D
matching of the three 2D views. The charge cut is not able to reject two fake tracks, one coming from a vertex a

X<50 cm Z<50 cm traveling on the XZ plane and stopping near to the vertex at X∼160 cm and Z∼70 cm,.
Moreover, the charge cut leave a bump of ghost voxels around the vertex that could mimic the interaction of a few
low-energy protons, an effect that could bias the reconstruction of the neutrino energy. The energy of the incoming

neutrino is 760 MeV. The axes are in cm.
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(a) The 3D voxels labelled as track (red), crosstalk (blue) and
ghost (yellow) according to the truth information from the

simulation are shown.
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(b) Only the 3D voxels labelled as track according to the
truth information from the simulation are shown.
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(c) The 3D voxels labelled as track according to the charge
cut classification are shown.
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(d) The 3D voxels labelled as track according to the GNN
classification are shown.

FIG. 21: 3D visualization of a neutrino interaction in a finely segmented 3D scintillator detector after the 3D
matching of the three 2D views. In this even the performance of GNN and the charge cut is quite similar because

the ghost voxels are mainly given by the overlap of crosstalk hits in the 2D readout views. The energy of the
incoming neutrino is 5.076 GeV. The axes are in cm.
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(a) The 3D voxels labelled as track (red), crosstalk (blue) and
ghost (yellow) according to the truth information from the

simulation are shown.
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(b) Only the 3D voxels labelled as track according to the
truth information from the simulation are shown.
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(c) The 3D voxels labelled as track according to the charge
cut classification are shown.
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(d) The 3D voxels labelled as track according to the GNN
classification are shown.

FIG. 22: 3D visualization of a neutrino interaction in a finely segmented 3D scintillator detector after the 3D
matching of the three 2D views. This neutrino event has a quite high multiplicity and tracks are quite close each

other. This produce relatively big clusters of ghost voxels that produce at least two fake tracks even after the charge
cut. Instead GNN allows to classify ghosts more precisely and correctly visualize the correct number of tracks.

Moreover, the charge cut makes true tracks more fat making their separation harder and, potentially, less precise the
particle momentum reconstruction. The energy of the incoming neutrino is 1.064 GeV. The axes are in cm.
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(a) The 3D voxels labelled as track (red), crosstalk (blue) and
ghost (yellow) according to the truth information from the

simulation are shown.
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(b) Only the 3D voxels labelled as track according to the
truth information from the simulation are shown.
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(c) The 3D voxels labelled as track according to the charge
cut classification are shown.
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(d) The 3D voxels labelled as track according to the GNN
classification are shown.

FIG. 23: 3D visualization of a neutrino interaction in a finely segmented 3D scintillator detector after the 3D
matching of the three 2D views. Although this is a relatively simple neutrino event, the charge cut is not able to

reject a fake track stopping near the neutrino interaction vertex while GNN can provide a much cleaner
reconstruction. The energy of the incoming neutrino is 1.132 GeV. The axes are in cm.
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(a) The 3D voxels labelled as track (red), crosstalk (blue) and
ghost (yellow) according to the truth information from the

simulation are shown.
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(b) Only the 3D voxels labelled as track according to the
truth information from the simulation are shown.
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(c) The 3D voxels labelled as track according to the charge
cut classification are shown.
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(d) The 3D voxels labelled as track according to the GNN
classification are shown.

FIG. 24: 3D visualization of a neutrino interaction in a finely segmented 3D scintillator detector after the 3D
matching of the three 2D views. In the neutrino event GNN can easily reject the relatively big cluster of ghost
voxels that would make difficult a proper reconstruction of the number of tracks and corresponding energy, in

particular near to the interaction vertex. The energy of the incoming neutrino is 1.897 GeV. The axes are in cm.
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