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Abstract

The first measurements of production cross sections of polarized same-sign W±W±

boson pairs in proton-proton collisions are reported. The measurements are based
on a data sample collected with the CMS detector at the LHC at a center-of-mass
energy of 13 TeV, corresponding to an integrated luminosity of 137 fb−1. Events are
selected by requiring exactly two same-sign leptons, electrons or muons, moderate
missing transverse momentum, and two jets with a large rapidity separation and a
large dijet mass to enhance the contribution of same-sign W±W± scattering events.
An observed (expected) 95% confidence level upper limit of 1.17 (0.88) fb is set on
the production cross section for longitudinally polarized same-sign W±W± boson
pairs. The electroweak production of same-sign W±W± boson pairs with at least one
of the W bosons longitudinally polarized is measured with an observed (expected)
significance of 2.3 (3.1) standard deviations.
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1 Introduction
Vector boson scattering (VBS) processes probe the electroweak (EW) symmetry breaking mech-
anism at high energy scales. The unitarity of the tree-level amplitude of the scattering of longi-
tudinally polarized gauge bosons at high energies is restored in the standard model (SM) by a
Higgs boson with a mass lower than about 1 TeV [1, 2]. The observation of a Higgs boson with
a mass of about 125 GeV [3–5] provides an explanation that W and Z gauge bosons acquire
mass via the Brout–Englert–Higgs mechanism, but additional Higgs bosons may still play a
role in the EW symmetry breaking. Modifications of the VBS cross section for the longitudi-
nally polarized W and Z bosons are predicted in models of physics beyond the SM through
modifications of the Higgs boson couplings to gauge bosons or through the presence of new
resonances [6, 7]. The measurements of the longitudinally polarized scattering of the W and Z
bosons provide complementary information to direct measurements of the Higgs boson cou-
plings to gauge bosons [8, 9]. Models of beyond SM physics that modify the cross sections of
VBS processes with transversely polarized W and Z bosons are discussed in Ref. [10].

At the CERN LHC, VBS interactions are characterized by the presence of two gauge bosons in
association with two forward jets that have a large rapidity separation. They are part of a class
of processes contributing to the same-sign W±W± production in association with two jets that
proceeds via the EW interaction at tree level, O(α4), where α is the EW coupling, referred to as
EW W±W± production. The leptonic decay mode W±W± → `±ν`′±ν, where both W bosons
decay into electrons or muons, `, `′ = e, µ, is a promising final state to study the polarized
scattering from gauge bosons. The background contribution of the quantum chromodynamics
(QCD) induced production of W±W± boson pairs in association with two jets with tree-level
contributions at O(α2α2

S), where αS is the strong coupling, is small. Figure 1 shows represen-
tative Feynman diagrams of VBS processes involving self-interactions between gauge bosons
through triple and quartic gauge couplings and the t-channel Higgs boson exchange.
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Figure 1: Illustrative Feynman diagrams of VBS processes, where W bosons are radiated from
incoming quarks (q), contributing to the EW-induced production of events containing two for-
ward jets and W±W± boson pairs decaying to leptons. Diagrams with the triple gauge cou-
pling vertex (left), the quartic gauge coupling vertex (center), and the t-channel Higgs boson
exchange (right) are shown.

The unpolarized EW W±W± production has been previously measured at the LHC in the lep-
tonic decay modes at

√
s = 8 and 13 TeV [11–15]. The first differential cross section measure-

ments were reported in Ref. [15]. This Letter presents the first measurement of the EW produc-
tion cross sections for polarized same-sign W±W± boson pairs. The data sample of proton-
proton (pp) collisions at

√
s = 13 TeV corresponds to an integrated luminosity of 137 fb−1 [16–

18], collected with the CMS detector [19] in three LHC operating periods during the years 2016,
2017, and 2018. Candidate events contain exactly two identified same-sign leptons, moderate
missing transverse momentum, and two jets with a large rapidity separation and a high dijet
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mass.

In the W±W± channel, each of the W bosons can be polarized either longitudinally (WL) or
transversely (WT), leading to three distinct contributions W±

L W±
L , W±

L W±
T , and W±

T W±
T . Ide-

ally, we would measure all three contributions separately, but the current data sample size is too
limited. Therefore, two maximum-likelihood fits are performed: one for W±

L W±
L and W±

XW±
T ;

and another for W±
L W±

X and W±
T W±

T . The index X indicates either of the two polarization
states. The event kinematical properties are used to extract the various contributions. Two sets
of results are reported with the helicity eigenstates defined either in the WW center-of-mass
reference frame or in the initial-state parton-parton one.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator
hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters
extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons
are detected in gas-ionization detectors embedded in the steel flux-return yoke outside the
solenoid. A more detailed description of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, is given in Ref. [19].

The first level of the CMS trigger system, composed of custom hardware processors, uses in-
formation from the calorimeters and muon detectors to select events of interest with a latency
of less than 4 µs. The second level, known as the high-level trigger, consists of a farm of proces-
sors running a version of the full event reconstruction software optimized for fast processing,
and reduces the event rate to about 1 kHz before data storage [20].

3 Signal and background simulation
Several Monte Carlo (MC) event generators are used to simulate the signal and background
contributions. Three independent sets of simulated events for each process are needed to match
the data-taking conditions in the various years. All generated events are processed through a
simulation of the CMS detector based on GEANT4 [21] and are reconstructed with the same
algorithms used for data. Additional pp interactions in the same and nearby bunch crossings,
referred to as pileup, are also simulated. The distribution of the number of pileup interactions
in the simulation is adjusted to match the one observed in the data. The average number of
pileup interactions was 23 (32) in 2016 (2017 and 2018).

The SM EW W±
L W±

L , W±
L W±

T , and W±
T W±

T signal processes, where both bosons decay lepton-
ically, are separately simulated using MADGRAPH5 aMC@NLO 2.7.2, with the implementation
of polarized parton scattering [22–24], at leading order (LO) with six EW (O(α6)) and zero
QCD vertices. The NNPDF 3.1 next-to-next-to-leading-order (NNLO) [25] parton distribution
functions (PDFs) are used. Signal processes are simulated with the helicity eigenstates defined
either in the W±W± center-of-mass reference frame or in the initial parton-parton reference
frame. The PHANTOM 1.5.1 generator [26, 27] uses the on-shell projection technique for the
predictions of the signal processes as discussed in Ref. [28]. The MADGRAPH5 aMC@NLO pre-
dictions show satisfactory agreement within the statistical uncertainties with the PHANTOM

predictions in the relevant fiducial region, defined in Section 8, for this analysis. The small
contributions of off-shell and nonresonant production [28] are not included in the simulated
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signal samples and amount to 1–2% in the fiducial region.

The full next-to-leading-order (NLO) QCD and EW corrections for the leptonic unpolarized
W±W± scattering process have been computed [29, 30], and they reduce the LO cross section
for the EW W±W± process by approximately 10–15%, with the correction increasing in mag-
nitude to up to 25% with increasing dilepton and dijet masses. The NLO corrections for the
W±

L W±
L , W±

L W±
T , and W±

T W±
T processes are not known. The corrections for the unpolarized EW

W±W± process at orders ofO(αSα6) andO(α7) are applied to the MADGRAPH5 aMC@NLO LO
cross sections for the W±

T W±
T process. Only the corrections at order of O(αSα6) are applied to

the MADGRAPH5 aMC@NLO LO cross sections for the W±
L W±

L and W±
L W±

T processes because
the corrections at order O(α7) are expected to be smaller for the W±

L W±
L and W±

L W±
T processes

compared to the size of the corresponding corrections for the unpolarized EW W±W± pro-
cess [31]. There is a negligible effect in the measured cross sections from differences in the
event kinematical properties caused by the treatment of the NLO corrections.

The EW WZ background process is simulated with MADGRAPH5 aMC@NLO 2.4.2 at order
O(α6). The QCD-induced WZ process is simulated at LO with up to three additional partons in
the matrix element calculations using the MADGRAPH5 aMC@NLO generator with at least one
QCD vertex at tree level. The different jet multiplicities are merged using the MLM scheme [32]
to match matrix element and parton shower jets. The MADGRAPH5 aMC@NLO generator is
also used to simulate the QCD-induced W±W± process.

The interference between the EW and QCD diagrams for the W±W± and WZ processes is
generated with MADGRAPH5 aMC@NLO including the contributions of order αSα5. The rela-
tive contributions in the fiducial region of the interference term between the EW and the QCD
diagrams for the W±

L W±
L , W±

L W±
T , and W±

T W±
T processes are comparable to the relative con-

tributions of the W±
L W±

L , W±
L W±

T , and W±
T W±

T processes to the EW W±W± cross section. The
interferences between the signal processes are expected to be small [24], and good agreement is
observed between the incoherent sum of the polarized cross sections and the unpolarized cross
sections for the distributions of the observables.

The POWHEG v2 [33–37] generator is used to simulate the tt, tW, and other diboson processes
at NLO accuracy in QCD. Production of ttW, ttZ, ttγ, and triple vector boson (VVV) events
is simulated at NLO accuracy in QCD using the MADGRAPH5 aMC@NLO 2.2.2 (2.4.2) gener-
ator for 2016 (2017 and 2018) [22, 23] samples. The tZq process is simulated at NLO in the
four-flavor scheme using MADGRAPH5 aMC@NLO 2.3.3. The tZq MC simulation is normal-
ized using a cross section computed at NLO with MADGRAPH5 aMC@NLO in the five-flavor
scheme, following the procedure described in Ref. [38]. The double parton scattering W±W±

production is generated at LO using PYTHIA 8.226 (8.230) [39] for 2016 (2017 and 2018) samples.

The NNPDF 3.0 NLO [40] (NNPDF 3.1 NNLO [25]) PDFs are used for generating all 2016 (2017
and 2018) background samples. For all processes, the parton showering and hadronization are
simulated using PYTHIA 8.226 (8.230) for 2016 (2017 and 2018). The modeling of the underlying
event is done using the CUETP8M1 [41, 42] (CP5 [43]) tune for simulated samples correspond-
ing to the 2016 (2017 and 2018) data.

4 Event reconstruction and selection
Events are reconstructed using the CMS particle-flow (PF) algorithm [44] that reconstructs and
identifies each individual particle with an optimized combination of all subdetector informa-
tion. The missing transverse momentum vector ~pmiss

T is defined as the projection onto the plane
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perpendicular to the beam axis of the negative vector sum of the momenta of all reconstructed
PF objects in an event. Its magnitude is referred to as pmiss

T .

Jets are reconstructed by clustering PF candidates using the anti-kT algorithm [45, 46] with a dis-
tance parameter of 0.4. Jets are calibrated in the simulation, and separately in data, accounting
for energy deposits of neutral particles from pileup and any nonlinear detector response [47].
The effect of pileup is mitigated through a charged-hadron subtraction technique, which re-
moves the energy of charged hadrons not originating from the primary vertex (PV) [48] of
the event. Corrections to jet energies to account for the detector response are propagated to
pmiss

T [49]. The PV is defined as the vertex with the largest value of summed physics-object
p2

T. The physics objects are derived from only the tracks assigned to the vertex as inputs by
clustering them into jets, including leptons. The pmiss

T is also recalculated only from those jets
by summing their negative pT vectors.

Electrons and muons are reconstructed by associating a track reconstructed in the tracking
detectors with either a cluster of energy in the ECAL [50, 51] or a track in the muon system [52].
Electron and muon candidates must pass certain identification criteria to be further selected in
the analysis. For the “loose” identification, they must satisfy pT > 10 GeV and |η| < 2.5 (2.4) for
electrons (muons). At the final stage of the lepton selection the “tight” working points criteria
following the definitions provided in Refs. [50, 52] are chosen, including requirements on the
impact parameter of the candidates with respect to the PV and their isolation with respect to
other particles in the event [9].

For electrons, the background contribution coming from a mismeasurement of the track charge
is not negligible. The sign of this charge is evaluated using three observables that measure the
electron curvature applying different methods; requiring all three charge evaluations to agree
reduces this background contribution by a factor of five with an efficiency of about 97% [50].
The charge mismeasurement is negligible for muons [53, 54].

Collision events are collected using single-electron (single-muon) triggers that require the pres-
ence of an isolated lepton with pT > 27 (24) GeV. In addition, a set of dilepton triggers with
lower pT thresholds, with a threshold of 8 GeV for the subleading lepton, are used. This ensures
a trigger efficiency above 99% for events that satisfy the subsequent offline selection.

Several selection requirements are used to isolate the W±W± topology defining the signal re-
gion (SR) while reducing the contributions of background processes. Candidate events contain
exactly two isolated same-sign charged leptons and at least two jets with pj

T > 50 GeV and
|η| < 4.7. Jets that are within ∆R =

√
(∆φ)2 + (∆η)2 < 0.4 of one of the identified leptons are

not used in the analysis. Here ∆φ and ∆η refer to the differences in the azimuthal angle φ and η
of the jet and the charged-lepton candidate, respectively. Because of the presence of undetected
neutrinos in the signal events, pmiss

T is required to exceed 30 GeV.

The W±W± SR selection requires one of the same-sign leptons to satisfy pT > 25 GeV and the
other pT > 20 GeV. The mass of the dilepton pair m`` must be greater than 20 GeV. Candidate
events in the dielectron final state within 15 GeV of the nominal Z boson mass mZ [55] are
rejected to reduce the number of Z boson background events where the charge of one of the
electron candidates is misidentified.

The VBS topology is targeted by requiring the two highest-pT jets to have a dijet mass mjj >
500 GeV and a pseudorapidity separation |∆ηjj| > 2.5. The W bosons in the VBS topologies
are mostly produced in the central rapidity region with respect to the two selected jets. The
candidate W±W± events are required to satisfy max(z∗` ) < 0.75, where z∗` = |η` − (ηj1 +
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ηj2)/2|/|∆ηjj| is the Zeppenfeld variable [56], η` is the pseudorapidity of one of the selected
leptons, and ηj1 and ηj2 are the pseudorapidities of the two candidate VBS jets.

Candidate events with one or more jets with pT > 20 GeV and |η| < 2.4 that are consistent
with the fragmentation of a bottom quark are rejected to reduce the number of top quark back-
ground events. The DEEPCSV b tagging algorithm [57] is used for this selection. For the chosen
working point, the efficiency to select b quark jets is about 70% and the rate for incorrectly tag-
ging jets originating from the hadronization of gluons or u, d, s quarks is about 1%. The rate
for incorrectly tagging jets originating from the hadronization of c quarks is about 10%. The
selection requirements to define the same-sign W±W± SR are summarized in Table 1.

Table 1: Summary of the requirements defining the W±W± SR. The |m`` −mZ | requirement is
applied to the dielectron final state only.

Variable Requirement
Leptons Exactly 2 same-sign leptons, pT > 25/20 GeV
pj

T >50 GeV
|m`` −mZ | >15 GeV (ee)
m`` >20 GeV
pmiss

T >30 GeV
b quark veto Required
Max(z∗` ) <0.75
mjj >500 GeV
|∆ηjj| >2.5

5 Extracting polarization information
In the W±W± channel, the W bosons can each be either longitudinally or transversely polar-
ized leading to different kinematic distributions, reflected in the kinematical properties of the
two leptons, the two jets, and ~pmiss

T . The WL bosons tend to be radiated at a smaller angle
with respect to the incoming quark direction, resulting in a smaller WL boson pT compared to
the radiated WT boson pT. In addition, there are differences in the behavior of the scattering
amplitudes as a function of the W±W± center-of-mass energy and the scattering angle [58].

Multivariate techniques are used to enhance the separation between the different processes. We
implement boosted decision trees (BDTs) with gradient boosting using the TMVA package [59].
Two different BDTs, referred to as the signal BDTs, are trained on simulated events to sepa-
rate either the W±

L W±
L and W±

XW±
T processes or the W±

L W±
X and W±

T W±
T processes. Several

discriminating observables are used as the inputs to the BDTs, including the jet and lepton
kinematical properties and pmiss

T , as summarized in Table 2. The distributions of these observ-
ables are taken from the SM predictions. Hypothetical modifications due to beyond the SM
physics are assumed to impact only the production rates, but not the kinematic distributions
of sensitive variables. Angular variables are included, such as the difference in the azimuthal
angles between the leading and subleading jets (∆φjj) and leptons (∆φ``), and the ∆R between
the leading (subleading) jet and the dilepton system ∆Rj1,`` (∆Rj2,`` ). The dilepton p``T , m``, and

the transverse diboson mass mWW
T as defined in Ref. [15] are also considered. The kinematic

variable (p`1
T p`2

T )/(pj1
T pj2

T ) proposed in Ref. [58] is also included in the BDT inputs. A larger set
of discriminating observables was studied, but only variables that improve the sensitivity and
show some separation are retained. The distributions of ∆φjj (upper), ∆φ`` (middle), and m``

(lower) at the generator level for the W±
L W±

L , W±
L W±

T , and W±
T W±

T processes with the helic-
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ity eigenstates defined in the parton-parton (left) and W±W± (right) center-of-mass reference
frames are shown in Fig. 2. The signal extraction was also compared with a deep neural net-
work using the KERAS [60] deep learning library, interfaced with the TENSORFLOW [61] library,
which led to a consistently good performance.

Table 2: List and description of all the input variables for the signal BDT trainings.

Variables Definitions

∆φjj Difference in azimuthal angle between the leading and subleading jets

pj1
T pT of the leading jet

pj2
T pT of the subleading jet

p`1
T Leading lepton pT

p`2
T Subleading lepton pT

∆φ`` Difference in azimuthal angle between the two leptons

m`` Dilepton mass

p``T Dilepton pT

mWW
T Transverse WW diboson mass

z∗`1
Zeppenfeld variable of the leading lepton

z∗`2
Zeppenfeld variable of the subleading lepton

∆Rj1,`` ∆R between the leading jet and the dilepton system

∆Rj2,`` ∆R between the subleading jet and the dilepton system

(p`1
T p`2

T )/(pj1
T pj2

T ) Ratio of pT products between leptons and jets

pmiss
T Missing transverse momentum

6 Background estimation
A combination of methods based on control samples in data and simulation is used to es-
timate background contributions. Uncertainties related to the theoretical and experimental
predictions are described in Section 7. The electron charge misidentification in simulation is
corrected to reproduce the rate measured in data. Using Z → ee events, the misidentification
rate is about 0.01% (0.3%) in the barrel (endcap) region [50]. Oppositely charged dilepton final
states from tt, tW, W+W−, and Drell–Yan processes contribute to the background from charge
misidentification.

The nonprompt lepton backgrounds originating from leptonic decays of heavy quarks, hadrons
misidentified as leptons, and electrons from photon conversion are suppressed by the identi-
fication and isolation requirements imposed on electrons and muons. The remaining contri-
bution from the nonprompt lepton background is estimated directly from data following the
technique described in Ref. [12], where the yield in a sample of data events dominated by jet
production is extrapolated to the signal region using efficiencies for loosely identified leptons
to pass the standard lepton selection criteria. A normalization uncertainty of 20% is assigned
for the nonprompt lepton background to include possible differences in the composition of jets
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Figure 2: Generator level distributions of ∆φjj (upper), ∆φ`` (center), and m`` (lower) in the
fiducial region for the W±

L W±
L , W±

L W±
T , and W±

T W±
T processes with the helicity eigenstates

defined in the parton-parton (left) and W±W± (right) center-of-mass reference frames. The
error bars represent the uncertainties associated with the limited numbers of simulated events.
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between the data sample used to derive these efficiencies and the data sample in the W±W±

SR [9].

Several background-enriched control regions (CRs), disjoint from one another and from the
SR, are used to select event samples enriched with WZ, nonprompt lepton, tZq, and ZZ back-
ground events. The WZ CR is defined by requiring three leptons where the opposite-sign
same-flavor leptons from the Z boson candidate have pT > 25 and 10 GeV with the dilepton
mass within 15 GeV of the nominal Z boson mass. In events with three same-flavor leptons,
the opposite-sign lepton pair with the dilepton mass closest to mZ is associated with the Z bo-
son. The remaining lepton with pT > 20 GeV is associated with the W boson. In addition, the
trilepton mass m``` is required to be greater than 100 GeV and max(z∗` ) must be less than 1.0.

The nonprompt lepton CR is defined by requiring the same selection as for the W±W± SR, but
with the b jet veto requirement inverted. The selected sample is enriched with events from the
nonprompt lepton background and dominated by semileptonic tt events. Similarly, the tZq CR
is defined by requiring the same selection as the WZ CR, but with the b quark veto requirement
inverted. The selected sample is dominated by the tZq background process. Finally, the ZZ CR
requirements select events with four leptons with the same VBS requirements as the W±W±

SR. The four CRs are used to estimate the normalization of the main background processes from
data. All other background processes are estimated from simulation after applying corrections
to account for small differences between data and simulation as detailed in Section 7.

To distinguish EW W±W± production from the SM background processes before extracting
the individual polarizations, a BDT is trained using the TMVA package [59]. Several discrimi-
nating observables listed in Table 3 are used as inputs to this BDT, which we will refer to as the
inclusive BDT. The values of mjj and |∆ηjj| are powerful because VBS topologies typically have
large values for the dijet mass and pseudorapidity separation [15]. A large training background
sample of simulated events is obtained by using oppositely charged dilepton events.

Table 3: List and description of the input variables for the inclusive BDT training.

Variables Definitions

mjj Dijet mass

|∆ηjj| Difference in pseudorapidity between the leading and subleading jets

∆φjj Difference in azimuth angles between the leading and subleading jets

pj1
T pT of the leading jet

pj2
T pT of the subleading jet

p`1
T Leading lepton pT

p``T Dilepton pT

z∗`1
Zeppenfeld variable of the leading lepton

z∗`2
Zeppenfeld variable of the subleading lepton

pmiss
T Missing transverse momentum
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7 Systematic uncertainties
Several sources of systematic uncertainty in the cross section measurements can affect the rates
and shapes of the distributions for the signal and background processes. For each source of
uncertainty, the impact in different bins of the final distribution is considered as being fully
correlated, whereas different sources of uncertainty are treated as uncorrelated.

The uncertainties in the integrated luminosity measurements for the data used in this analysis
are 2.5, 2.3, and 2.5% for the 2016, 2017, and 2018 data samples [16–18], respectively. The total
integrated luminosity has an uncertainty of 1.8% because of the uncorrelated time evolution of
some systematic effects.

The simulation of pileup events assumes a total inelastic pp cross section of 69.2 mb, with an
associated uncertainty of 5% [62, 63]. The impact of the pileup on the expected signal and
background yields is less than 1%.

Discrepancies in the lepton reconstruction and identification efficiencies between data and sim-
ulation are adjusted by applying corrections to all MC simulation samples. The efficiency cor-
rections, which depend on the pT and η of the lepton, are determined using Z → `` events in
the Z boson peak region [50, 52]. The determination of the trigger efficiency leads to an uncer-
tainty smaller than 1% in the expected signal yield. The lepton momentum scale uncertainty is
computed by varying the momenta of the leptons in the simulation by their uncertainties, and
by repeating the analysis selection. The resulting uncertainties in the event yields are about
1% for both electrons and muons. These uncertainties are treated as correlated across the three
data sets.

The uncertainty in the calibration of the jet energy scale and resolution directly affects the selec-
tion efficiency of the jet multiplicity requirement and the pmiss

T measurement. These effects are
estimated by changing the jet energy in the simulation up- and downwards by one standard
deviation. The uncertainty in the jet energy scale and resolution is 2–5%, depending on the pT
and η [47], and the impact on the expected signal and background yields is 1–4%.

Discrepancies in the b tagging efficiency between data and simulation are adjusted by applying
corrections to the simulated samples [57], which are estimated separately for correctly and
incorrectly identified jets. Each set of values results in uncertainties in the b tagging efficiency
of about 1–4%, and the impact on the expected signal and background yields is about 1%. The
uncertainties in the jet energy scale and b tagging are treated as uncorrelated across the three
data sets.

The theoretical uncertainties corresponding to the choice of the QCD renormalization and fac-
torization scales are estimated by varying these scales independently up and down by a factor
of two from their nominal values. The largest cross section variation, while excluding the two
extreme variations where one scale is varied up and the other one down, is taken as the uncer-
tainty . The PDF uncertainties are evaluated according to the procedure described in Ref. [64].
The scale and PDF uncertainties are treated as fully correlated across bins for the distributions
used to extract the results. The effect of O(α7) correction for the unpolarized EW W±W± pro-
cess on the shapes of the distributions for the W±

L W±
L and W±

L W±
T processes is considered as a

systematic uncertainty. The correction values are used as a symmetric shape uncertainty. The
uncertainties associated with the limited numbers of simulated events and of data events used
to estimate the nonprompt lepton background are also included as systematic uncertainties
with the latter being the dominant contribution. A summary of the systematic uncertainties in
the W±

L W±
L and W±

XW±
T , and in the W±

L W±
X and W±

T W±
T cross section measurements is shown

in Table 4.
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Table 4: Systematic uncertainties of the W±
L W±

L and W±
XW±

T , and W±
L W±

X and W±
T W±

T cross
section measurements in units of percent.

Source of uncertainty W±
L W±

L (%) W±
XW±

T (%) W±
L W±

X (%) W±
T W±

T (%)
Integrated luminosity 3.2 1.8 1.9 1.8
Lepton measurement 3.6 1.9 2.5 1.8
Jet energy scale and resolution 11 2.9 2.5 1.1
Pileup 0.9 0.1 1.0 0.3
b tagging 1.1 1.2 1.4 1.1
Nonprompt lepton rate 17 2.7 9.3 1.6
Trigger 1.9 1.1 1.6 0.9
Limited sample size 38 3.9 14 5.7
Theory 6.8 2.3 4.0 2.3

Total systematic uncertainty 44 6.6 18 7.0

Statistical uncertainty 123 15 42 22

Total uncertainty 130 16 46 23

8 Results
Binned maximum-likelihood fits are performed to discriminate between the signals and the
remaining backgrounds using the W±W± SR and the WZ, nonprompt lepton, tZq, and ZZ
CRs. Two separate fits are performed, one for the simultaneous measurements of the W±

L W±
L

and W±
XW±

T cross sections and a second for the simultaneous measurements of the W±
L W±

X
and W±

T W±
T cross sections. The systematic uncertainties are treated as nuisance parameters

and are profiled [65, 66] with the shape and normalization of each distribution varying within
the respective uncertainties in the fit. The normalization uncertainties are treated as log-normal
nuisance parameters. The small QCD W±W± contribution is normalized to the SM prediction
and allowed to vary within the uncertainties. The normalizations of the tZq, ZZ, and WZ
background processes are free parameters of the maximum-likelihood fits, together with the
signal cross sections. A two-dimensional distribution is used in the simultaneous fits for the
W±W± SR with five bins in the inclusive BDT and five bins in the corresponding signal BDT.
The mjj distribution is used for the remaining CRs in the fit with four bins. The bin boundaries
are chosen to have similar W±

L W±
L and W±

L W±
X contributions across the bins.

The interference contributions between the EW and QCD diagrams for the W±W± and WZ
processes are normalized to the SM predictions within the uncertainties. The impact of treat-
ment of the interference contributions on the results is evaluated by performing a set of alter-
native fits where the interference contributions between the EW diagrams for the W±

L W±
L and

W±
XW±

T or W±
L W±

X and W±
T W±

T processes and QCD diagrams are scaled with the square root of
the measured to the predicted cross section ratios. The two approaches yield consistent results.

The distributions of mjj (upper left), ∆φjj (upper right), ∆φ`` (lower left), and the output score of
the inclusive BDT (lower right) in the W±W± SR are shown in Fig. 3. The distributions of the
two signal BDT output scores are shown in Fig. 4. The predicted yields are shown with their
best fit normalizations from the simultaneous fit. The data yields, together with the SM expec-
tations with the best fit normalizations from the simultaneous fit for the W±

L W±
L and W±

XW±
T

cross sections, are given in Table 5. The background yields with the best fit normalizations
from the simultaneous fit for the W±

L W±
X and W±

T W±
T cross sections are consistent with the

yields shown in Table 5 within a few percent.

The fiducial region for the cross section measurements is defined by requiring two same-sign
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Figure 3: Distributions of the mjj (upper left), ∆φjj (upper right), ∆φ`` (lower left), and of the
output score of the inclusive BDT (lower right) in the W±W± SR. The predicted yields are
shown with their best fit normalizations from the simultaneous fit. The histograms for the
W±W± process include the contributions from the W±

L W±
L , W±

L W±
T , and W±

T W±
T processes

(shown as solid lines), QCD W±W±, and interference. The histograms for other backgrounds
include the contributions from double parton scattering, VVV, and from oppositely charged
dilepton final states from tt, tW, W+W−, and Drell–Yan processes. The overflow is included in
the last bin. The bottom panel in each figure shows the ratio of the number of events observed
in data to that of the total SM prediction. The gray bands represent the uncertainties in the
predicted yields. The vertical bars represent the statistical uncertainties in the data.
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Figure 4: Distributions of the output score of the signal BDT used for the W±
L W±

L and W±
XW±

T
cross section measurements (left) and of the output score of the signal BDT used for the W±

L W±
X

and W±
T W±

T cross section measurements (right). The predicted yields are shown with their best
fit normalizations from the simultaneous fit. The histograms for the W±W± process include
the contributions from the W±

L W±
L , W±

L W±
T , and W±

T W±
T processes (shown as solid lines), QCD

W±W±, and interference. The histograms for other backgrounds include the contributions
from double parton scattering, VVV, and from oppositely charged dilepton final states from tt,
tW, W+W−, and Drell–Yan processes. The bottom panel in each figure shows the ratio of the
number of events observed in data to that of the total SM prediction. The gray bands represent
the uncertainties in the predicted yields. The vertical bars represent the statistical uncertainties
in the data.
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Table 5: Expected yields from various SM processes and observed data events in W±W± SR.
The combination of the statistical and systematic uncertainties is shown. The expected yields
are shown with their best fit normalizations from the simultaneous fit for the W±

L W±
L and

W±
XW±

T cross sections. The W±
L W±

T and W±
T W±

T yields are obtained from the W±
XW±

T yield
assuming the SM prediction for the ratio of the yields. The tVx background yield includes the
contributions from ttV and tZq processes.

Process Yields in W±W± SR
W±

L W±
L 16.0± 18.3

W±
L W±

T 63.1± 10.7
W±

T W±
T 110.1± 18.1

QCD W±W± 13.8± 1.6
Interference W±W± 8.4± 0.6
WZ 63.3± 7.8
ZZ 0.7± 0.2
Nonprompt 213.7± 52.3
tVx 7.1± 2.2
Other background 26.9± 9.9

Total SM 522.9± 60.7

Data 524

leptons with pT > 20 GeV, |η| < 2.5, and m`` > 20 GeV, and two jets with mjj > 500 GeV
and |∆ηjj| > 2.5. The leptons at the generator level are selected at the so-called dressed level
by combining the four-momentum of each lepton after final-state photon radiation with that
of photons found within a cone of ∆R = 0.1 around the lepton. The jets at generator level are
clustered from stable particles, excluding neutrinos, using the anti-kT clustering algorithm with
a distance parameter of 0.4, and are required to satisfy pT > 50 GeV and |η| < 4.7. Jets within
∆R < 0.4 of the selected charged leptons are not included. Electrons and muons produced in
the decay of a τ lepton are not included in the definition of the fiducial region. Nonfiducial
events, i.e., events selected at the reconstructed level that do not satisfy the fiducial require-
ments, are included in the simultaneous fit as background processes.

The fit results are shown in Fig. 5 as scans of the negative profile log-likelihood, −2∆lnL, as a
function of the W±

L W±
L cross section. The expected distributions include the contribution from

the W±
XW±

T process. The corresponding observed (expected) upper limit at 95% confidence
level (CL) is 1.17 (0.88) fb. The fiducial cross section measurements for the W±

L W±
L and W±

XW±
T

processes and the theoretical predictions are shown in Table 6. The measured cross section
values agree with the theoretical predictions within uncertainties.

The fiducial cross section measurements for the W±
L W±

X and W±
T W±

T processes are extracted
from a separate fit including the corresponding signal BDT. The measurements and the theo-
retical predictions are summarized in Table 6. The significance of the measured W±

L W±
X yield is

quantified using background-only hypothesis, i.e., assuming no contribution from the W±
L W±

X
process, under the asymptotic approximation [67] and corresponds to 2.3 standard deviations.
The expected significance is evaluated with an Asimov data set [67] and corresponds to 3.1
standard deviations.

The measurements are also performed for the polarized observables defined using the helicity
eigenstates in the initial state parton-parton center-of-mass reference frame. Defining the po-
larization vectors in the parton-parton center-of-mass reference frame changes the respective
contributions of W±

L W±
L , W±

L W±
X and W±

XW±
T , and the distributions of the input observables
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Figure 5: Profile likelihood scan as a function of the W±
L W±

L cross section. The red (blue) line
represents the expected values in the background-only hypothesis, i.e., assuming no contribu-
tion from the W±

L W±
L process, considering all systematic uncertainties (only statistical ones).

The green line shows the expected values for the signal-plus-background hypothesis. The ob-
served values are represented by the black line.

sensitive to the polarization [68]. The fiducial cross section measurements and the theoreti-
cal predictions are summarized in Table 7. The observed (expected) 95% CL upper limit of
the production cross section is 1.06 (0.85) fb for the W±

L W±
L process. The observed (expected)

significance of the W±
L W±

X process is 2.6 (2.9) standard deviations.

9 Summary
The first measurements of production cross sections for polarized same-sign W±W± boson
pairs are reported. The measurements are based on a sample of proton-proton collisions at a
center-of-mass energy of 13 TeV collected by the CMS detector at the LHC, corresponding to
an integrated luminosity of 137 fb−1. Events are selected by requiring exactly two same-sign
leptons (electrons or muons), moderate missing transverse momentum, and two jets with a
large rapidity separation and a high dijet mass. Boosted decision trees are used to separate be-
tween the polarized scattering processes by exploiting the kinematic differences. An observed
(expected) 95% confidence level upper limit on the production cross section for longitudinally
polarized same-sign W±W± boson pairs of 1.17 (0.88) fb is reported with the helicity eigen-
states defined in the W±W± center-of-mass reference frame. The electroweak production of
the W±W± boson pairs where at least one of the W bosons is longitudinally polarized is mea-
sured with an observed (expected) significance of 2.3 (3.1) standard deviations. Results are also
reported with the polarizations defined in the parton-parton center-of-mass reference frame.
The measured cross section values agree with the standard model predictions.
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Table 6: Measured fiducial cross sections for the W±
L W±

L and W±
XW±

T processes, and for the
W±

L W±
X and W±

T W±
T processes for the helicity eigenstates defined in the W±W± center-of-mass

frame. The combination of the statistical and systematic uncertainties is shown. The theoretical
predictions including the O(αSα6) and O(α7) corrections to the MADGRAPH5 aMC@NLO LO
cross sections, as described in the text, are also shown. The theoretical uncertainties include
statistical, PDF, and LO scale uncertainties; B is the branching fraction for WW → `ν`′ν [55].

Process σB (fb) Theoretical prediction (fb)
W±

L W±
L 0.32+0.42

−0.40 0.44 ± 0.05
W±

XW±
T 3.06+0.51

−0.48 3.13 ± 0.35

W±
L W±

X 1.20+0.56
−0.53 1.63 ± 0.18

W±
T W±

T 2.11+0.49
−0.47 1.94 ± 0.21

Table 7: Measured fiducial cross sections for the W±
L W±

L and W±
XW±

T processes, and for
the W±

L W±
X and W±

T W±
T processes for the helicity eigenstates defined in the parton-parton

center-of-mass frame. The combination of the statistical and systematic uncertainties is
shown. The theoretical predictions including the O(αSα6) and O(α7) corrections to the MAD-
GRAPH5 aMC@NLO LO cross sections, as described in the text, are also shown. The theoretical
uncertainties include statistical, PDF, and LO scale uncertainties; B is the branching fraction for
WW → `ν`′ν [55].

Process σB (fb) Theoretical prediction (fb)
W±

L W±
L 0.24+0.40

−0.37 0.28 ± 0.03
W±

XW±
T 3.25+0.50

−0.48 3.32 ± 0.37

W±
L W±

X 1.40+0.60
−0.57 1.71 ± 0.19

W±
T W±

T 2.03+0.51
−0.50 1.89 ± 0.21
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