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The exact way of treating flux shape uncertainties in unfolded, flux-averaged neutrino cross-section
measurements can lead to subtle issues when comparing the results to model predictions. There is a
difference between reporting a cross section in the (unknown) real flux, and reporting a cross section that
was extrapolated from the real flux to a well-defined, fixed reference flux. Many current analyses do the
former, while the results are compared to model predictions as if they were the latter. This leads to the flux
shape uncertainty being ignored at least partially, potentially leading to wrong physics conclusions. A
somewhat qualitative study of two results from T2K and MINERVA as examples suggests that the size of
the effect is subdominant, but non-negligible for those measurements. This paper describes how the issue

arises and details possible methods for treating the flux shape uncertainties correctly.
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I. INTRODUCTION

Most modern neutrino cross-section measurements are
reported as flux-averaged cross sections, since the incident
neutrino energy is not known on an event-by-event basis.
The average cross section ¢ is reported as the number of
expected events N per total incident neutrino flux ® and
number of targets 7"

c=—. (1)

This reflects the capabilities of the detectors as closely as
possible and avoids making any assumptions about the
neutrino energy dependence of the cross sections one is
trying to measure. This also applies for differential mea-
surements, where N only counts the number of events in
certain kinematic and/or topological bins.

The down side of this approach is that each cross section
is specific for its neutrino beam. Even ignoring all smear-
ing, efficiency, and acceptance issues, the average cross
section will change when the neutrino energy spectrum
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changes, since the nonaveraged cross sections depend non-
trivially on the neutrino energy. It is thus usually not possible
to naively compare the results of different experiments with
one another. Instead one must use the theoretical energy
dependence to calculate expected cross sections from inter-
action models for each flux separately. This is all well
understood and the process of generating the expected cross
sections for multiple fluxes/experiments' has been made
easier by frameworks such as NUISANCE [1].

The issue gets slightly more confusing when considering
flux (and especially flux shape) uncertainties. If one is not
careful, it is easy to confuse two very similar ways of
measuring and reporting the flux-averaged cross section:

(1) reporting the average cross section in the real neu-

trino flux;

(2) reporting the average cross section in a reference

neutrino flux.
These two approaches lead to different uncertainty esti-
mations and different rules when comparing the result to
theoretical predictions, even if the reported central values
for both methods are identical.”

The first case is the conceptually easier one. One takes
the data and a detector model, and then undoes the detector
effects assuming a variety of detector, cross section, and
flux parameters. For each set of parameters one calculates a

'This includes such annoyances as sensitive phase space
constraints.

For example, this would be the case when the chosen
reference flux is the best fit value from a fit to the data.
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flux-averaged cross section according to Eq. (1). The spread
of results yields the reported uncertainty of the measurement.

The second case is slightly more complicated, as it
contains an additional step. After calculating the flux-
averaged cross section in the real detector, one needs to
translate that result to the expected result in a fixed
reference flux. That is, the variation of the assumed real
flux is used to vary the extrapolation from the data to the
reference cross section.

The difference between the two approaches is subtle, and
both approaches yield correct results for what they are.
Problems arise when the result of one approach is treated
like one of the other.

This becomes apparent when comparing the first kind of
result with a theoretical prediction. The predicted flux-
averaged cross section is usually only calculated for a
single flux, and it is assumed that all flux uncertainties are
contained within the covariance matrix of the published
result, i.e., a second-approach result. When the covariance
matrix describes the uncertainties of the flux-average cross
section in the real flux, i.e., a first-approach result, this
assumption is not correct. This leads to the flux shape
uncertainty being ignored at least partially, and possibly
wrong conclusions to be drawn about the compatibility of a
cross-section model with the data. The following examples
will illustrate this issue.

A. Example One

Imagine a very well thought-out experiment that mea-
sures the total cross section of some neutrino interaction
mode. Let us assume that it is so well designed that
efficiencies are perfectly flat for all relevant events, back-
grounds are negligible, and systematic detector and model
uncertainties play no role. Also, the experiment has run for
a very long time, so statistical errors are not an issue either.
This means the only uncertain term in Eq. (1) is the total
neutrino flux ®@. An uncertainty in the total flux will be
reflected in an equivalent relative uncertainty in the cross-
section measurement. Let us assume a total flux uncertainty
of 5%. Flux shape uncertainties on the other hand will not
be reflected in the result, as they do not affect the total flux
®. For example, an uncertainty in the flux energy scale
modifies the assumed differential neutrino flux by propor-
tionally shifting all energies up or down:

do do

d—ED(E”’a) :d_ED(E”/a’ 1)/a. ()
It does not change the total integrated flux though, so if
there was e.g., a 15% uncertainty on the flux energy scale, it
would not affect the cross-section result.

Now imagine a model that predicts a cross section that is
proportional to the neutrino energy. The usual way of
comparing the model to the measurement would be to use
the nominal neutrino flux to calculate the total cross
section. If the model predicts a 15% lower cross section

at the nominal flux, it could be ruled out at the three-sigma
level. This does not consider the flux shape uncertainty
though. A variation of the neutrino flux energy scale by
15% could easily explain the discrepancy, and would
reduce the significance to below one standard deviation.

B. Example Two

Let us now complicate things a bit by introducing a flux
shape dependence in the experimental result. The flux
shape can enter Eq. (1) via the enumerator. The expectation
value of number of true signal events N is rarely directly
accessible, but a function of the number of recorded events
Niec, the estimated background contribution Ngg and the
assumed efficiency of signal event recording e:

Nrec - NBG
76 .

N = (3)
We are again assuming statistical uncertainties are negligible.

Both the efficiency and the expected background can
depend on the assumed flux shape. The background is
straightforward, as the effect of background processes
depends on the flux of neutrinos at energies that contribute
to them. The efficiency can depend on the flux if the
detector performance depends on event properties that
change within the analysis bin, and which in turn depend
on the neutrino energy. It is good practice to minimize
efficiency uncertainties by choosing fine analysis bins, and
by applying phase-space constraints to the signal definition.
The former is limited by the available statistics of the data
and the detector resolution, while the latter adds the
excluded events to the background prediction, so the flux
dependence now enters via that route.”

For this example, let us ignore the efficiency and
concentrate on the background prediction. Imagine a
background process with a cross section antiproportional
to the neutrino energy. This means the “measured” number
of true signal events will depend on the assumed neutrino
flux energy scale. The total uncertainty of the result will be
larger than 5%, depending on the background contribution
in the recorded events. Our test model still predicts 15% too
few events at the nominal flux. With the included flux
shape errors and thus increased total uncertainty, this is now
less than a three-sigma effect. When considering the flux
shape uncertainty in the model prediction—still at 15%—
the significance of the difference again goes down below
even one sigma.

This ignores the fact that the uncertainties of measure-
ment and prediction are now correlated, though. An
assumed increase in real neutrino energy would increase
the model prediction for a better fit to the data, but it would

The flux dependence of the background prediction can of
course be reduced by using data driven background subtraction
methods, like the use of control regions.
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also decrease the background contamination, increasing
the measured number of signal events and thus the cross-
section result. Note that the direction and size of the
correlation effect depends on the assumed background
model. In extreme cases, a correct treatment of the
uncertainty could even increase the significance of the
model to data discrepancy compared to ignoring the flux
shape uncertainty of the prediction.

II. CHALLENGES IN THE FIRST APPROACH

The first approach—reporting a cross section averaged
over the real flux—is easier to measure in a model-
independent way. Depending on the complicating factors
of a real-world experiment and the employed unfolding
algorithms, no assumptions about the neutrino energy
dependence of the cross section need to be made (see
e.g., Sec. [ A).

It does however make it challenging to compare the
result with theoretical predictions. Since the covariance
matrices that go with such a result do not cover all effects of
the flux on the model prediction, it is necessary to calculate
the model prediction uncertainty resulting from the uncov-
ered flux errors. This means that the flux uncertainties must
be propagated through any model in order for it to be
correctly compared with the result.

When doing so, another issue arises though. The
experimental results will have a flux contribution to their
covariance matrix. When the model predictions also gain a
flux error, those should be correlated to calculate correct
goodness of fit scores. Otherwise the correlations can lead
to overcoverage or undercoverage.

In some cases—Ilike the example in Sec. I A—the flux
uncertainty can be cleanly broken up into a part that affects
the measured result, e.g., the normalization, and a part that
affects the model prediction, e.g., the shape. In those cases
it should be possible to have uncorrelated flux errors in data
and model prediction. In general this is not the case though,
and the flux uncertainty cannot be split into an experi-
mental and a theoretical part (see e.g., Sec. [ B). In those
cases the correlations need to be taken into account and the
process of comparing a model to the data becomes a more
involved statistical issue.

Let us assume a cross-section measurement reports the
point estimates for a vector of cross-section values X, a

vector of flux parameters (i) as well as the covariance
matrix S. In general, S describes the uncertainties in the
measurement and the correlations between cross-section
bins and the flux parameters. If the flux and cross-section
uncertainties are uncorrelated, this will simply mean that
the respective off-diagonal elements of S will be 0.
Furthermore let us assume a cross-section model that

4 . . .

Conversely, if an experiment only provides two separate
covariance matrices for the cross-section result and the flux
parameters, one can only treat them as uncorrelated.

can, given a set of flux parameter values, produce a
prediction m(¢) for the values of x.

For an ideal likelihood ratio test of the model, we would
like to calculate the log likelihood ratio,

—2)=-2 sgp[ln(L(m(fﬁ),tﬁ))L (4)

where sup is the supremum function, maximizing over ¢,
and

_21n(L<x,¢)) = (xT —3T ¢T —(iT )S_l (;:2)

(5)

describes the likelihood surface of the parameter space.
If the model is true, —24 will be y;-distributed with k equal to
the number of bins in x. The usual quantiles of y7 can then be
used to judge the goodness of fit of the model to the data.

Unfortunately, depending on the complexity of calculat-
ing m(¢), it might not be feasible to maximize A over the
flux parameter space. In that case one can use the following
likelihood ratio as approximation:

—24' = =2In(L'(m(¢)))
= (m" (§) —£7)S" (m() - %). (6)

Here S’ is not just the cross-section part of S. It is a new
covariance matrix that describes the expected variation of
the distribution of (m”(¢p) — £7) and thus —24', assuming
that the model is correct. It can be calculated from S, x, qAﬁ,

and m(¢) by generating random samples of x and ¢ and
then calculating

A = (m(¢) —x) (7)

for each sample. The sample covariance of A can then be
used as an estimator for S§'. If there is no correlation
between the flux and cross-section parameters, this pro-
cedure is equivalent to calculating the covariance of m(¢)
only and adding it to the cross-section part of S.

Note that we are ignoring the sample mean of A. We
calculate a distribution of differences between data and
prediction at the best-fit point of the data and then apply the
resulting variance to the model prediction. This approach
makes two assumptions:

(1) The covariance matrix S, describing the likelihood
surface of the cross-section and flux parameters, can
be interpreted as the covariance of the expected
spread of maximum likelihood estimators (MLEs).

(i1) The covariance of the MLEs is constant in the
relevant parameter range, while the expectation
value depends on the true parameter value.
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These assumptions should hold well enough for all mea-
surements that make a Gaussian error approximation—as is
implied by reporting the uncertainty as a covariance matrix.
The second assumption might break if the model prediction
m(¢p) and the best fit data result X are very different. But
this should not change the physics conclusions of a model
comparison.5 If all assumptions hold and the model is
actually true, the test statistic —24’ should again be )(%
distributed and the usual critical values apply.

III. CHALLENGES IN THE SECOND APPROACH

The second approach—treporting a cross section aver-
aged over a reference flux—makes it easier to compare the
results to model predictions. The covariance matrix already
includes by construction the uncertainties of extrapolating
the data from the unknown real neutrino flux to the
reference flux. When testing a model, one only needs to
calculate the flux-averaged cross section in that refer-
ence flux.

It is however more difficult to produce a result in this
manner, because the extrapolation to a reference flux is not
trivial. It necessarily requires a cross-section model to do
s0, since only a model can predict the connection between
true neutrino energy and measured variables,’ e. g., neutrino
kinematics, particle multiplicities, etc.

So the extrapolation itself—and with it the cross-section
result—will be subject to cross-section model uncertainties.
This somewhat undermines the aim of producing a model-
independent measurement. If the tested model was not
covered by the assumed model-uncertainties—i.e., if it
requires a different propagation of flux shape uncertainties
compared to the considered models—the method of com-
paring the model with the data at only the reference flux
breaks down again.

To illustrate this, consider the example in Sec. I A. If the
model predicting a cross section proportional to the neutrino
energy was used to extrapolate to the reference flux, the
total uncertainty on the result would be about 16%. Now
consider a second model, which predicts a cross section
proportional to the square of the neutrino energy and
overpredicts the measured value by 50%. With the reported
uncertainty, this would be considered a three-sigma effect,
but the squared neutrino energy dependence means that the
15% energy scale uncertainty should translate to a 30% rate
uncertainty. Again the model is more compatible with the
data than the covariance matrix implies.

This suggests that one should be conservative and cover
as many possible flux propagation models as possible.
Unfortunately this also degrades the power of the

At some point it is no longer important whether the data to
model agreement is bad or terrible.

Measuring a cross section in terms of neutrino energy directly
is of course an exception to this. But in that case this whole paper
becomes a moot point.

measurement. Imagine a third model that predicts a cross
section that is constant over all neutrino energies, and
overestimates the data of the example in Sec. [ A by 15%.
With the assumed flux shape uncertainties, this would not
even be a one-sigma difference. But when considering
that the model does not predict any shape dependence, it
should be refuted at the three-sigma level from the 5%
flux normalization uncertainty.

Overall, the feasibility of the second approach will
depend on the size of the flux shape uncertainty and
how well constrained the neutrino-energy dependence of
the measured cross section is. If the effect is large, and
the energy dependence is uncertain, it might be better to
opt for a first-approach measurement instead.

IV. SIZE OF THE EFFECT

Whichever approach is taken, the effect we consider here
comes from the flux shape dependence of the cross-section
prediction. In order to assess the relevance of this effect for
modern cross-section measurements, the spread of flux-
averaged cross section predictions are evaluated for a fixed
model propagated through an ensemble of flux predictions.
These flux predictions are constructed from T2K [2] and
MINERVA [3] nominal fluxes and accompanying covariance
matrices.” Whilst the flux prediction is varied in both shape
and normalization, the latter plays no role in constructing a
flux-averaged cross section from a model prediction. The
model used is provided by GENIE [4] (Version 3.00.06, tune
G18_10b_00_000). The specific cross sections that are
predicted are MINERvVA’s CCQE-like measurement from
Ref. [5] and T2K’s CCOx Analysis I in Ref. [6]. Both of these
cross sections are double differential in outgoing muon
kinematics. MINERVA measures the momentum broken
down into its transverse (pr) and longitudinal (p|)) compo-
nents, defined with respect to the incoming neutrino direction,
whilst T2K measures the magnitude of the momentum (p,,)
alongside the cosine of the angle between the muon and
neutrino [cos(6,)]. Both measurements also follow the first
approach, i.e., no attempt was made to extrapolate the
measured cross section to a particular reference flux shape.
The model is compared to the cross sections using the
NUISANCE framework [1].

The sampled ensembles of flux predictions are shown
in Fig. 1. The standard deviation of the mean neutrino
energies across the ensemble std({E,)) is ~5.5 MeV for
T2K and ~6.5 MeV for MINERVA. However, it should
be noted that this energy scale uncertainty is not fully
representative of the flux shape uncertainties. The spread

"The MINERVA flux extends up to 100 GeV but the numerical
precision of the provided covariance matrix makes the complete
matrix noninvertible. Here we consider only the first 35 GeV
(containing ~99.4% of the flux). It should also be noted that the
T2K covariance is provided in much coarser bins than the
accompanying flux prediction.
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Histograms showing the ensembles of flux predictions produced for MINERVA (left) and T2K (right) which have each been

renormalized to have the same integral. Note that the actual flux predictions extend up to 35 GeV for MINERVA and 10 GeV for T2K

but for readability the long tails are not shown.

of the cross-section predictions is shown in Fig. 2 alongside
the cross-section measurements from the experiments.
It also shows a bin-by-bin comparison of the spread
of the cross-section predictions compared to the uncer-
tainty on the measurements. Ignoring all correlations, this
gives a qualitative indication of how much of the error
budget of the measurement is consumed by the flux
shape prediction uncertainty, despite not being correctly
included in the error propagation of the results. That is,
this is a rough measure for the “missing” uncertainty
when treating these first-approach measurements like
second-approach ones.

Although the spread in the prediction of the total cross
section integrated across all bins is about 1% for both
MINERVA and T2K, the spread in individual bins of the
differential cross section is much larger. This is especially
the case for bins corresponding to forward going muons
with large momenta which are produced only by inter-
actions of neutrino in the tail end of the flux predictions,
where the flux uncertainty is largest. In these bins, the
spread of the cross-section predictions is sometimes com-
parable to the entire uncertainty in the measured cross
section. This said, it should of course be noted that the
uncertainty on each cross-section result is characterized by
a full covariance matrix describing the correlations between
bins rather than just the error bars. It is therefore difficult to
quantitatively compare the size of the model prediction
variations with the variations allowed by the cross-section
uncertainty from only Fig. 2.

A more quantitative analysis of the relevance of the flux
shape uncertainty can be performed by assessing how the
x* statistic, calculated using the full covariance matrix to
describe the uncertainty on the cross-section measure-
ments, changes across the ensemble of flux predictions.
This y? is defined as

22 = (¥Mci — Xdata) " Sqma(EMC,i — Xdata)- (8)

where Sy, 1 the covariance matrix as reported by the
experiments,8 Xnpc.; 18 the predicted cross section in the ith
flux shape variation and x4, is the cross section measured
by the experiments. Figure 3 shows that this y* is much
larger than the number of cross-section bins and so it is
therefore hard to interpret beyond stating that all of the
predictions from the ensemble of fluxes are in very poor
agreement with the measurements. This would be the case
for the majority of currently available cross-section models.

As discussed in Sec. 11, if potential correlations between
the cross-section uncertainty and the spread of predictions
from the ensemble of fluxes are neglected, an approximate
combined covariance matrix can be formed by adding the
covariance of the ensemble of predictions to the one cross-
section measurement covariance. This y?> = —2/'—calcu-
lated using the combined covariance—is also shown in
Fig. 3. Whilst it is clear there is a notable shift to lower y?
when the combined uncertainty is considered, the model
remains absolutely disfavored by the measurements.

An easier to interpret assessment of the relevance of the
flux shape uncertainty compared to the rest of the cross-
section uncertainty can be constructed by considering a
scenario in which the T2K and MINERVA analyses had
measured exactly the GENIE prediction with the nominal
flux. For simplicity this scenario assumes that the covari-
ance of the data remains unchanged which, whilst unre-
alistic, is a suitable approximation for this illustrative
example. In this scenario, the spread of the y2, calculated
as in Eq. (8) but where xy,, is replaced by the GENIE
model prediction for the nominal flux, should indicate more

¥Note that 12 of the 156 cross-section bins in the MINERVA
data release contain zero measured cross section with zero
uncertainty to reflect the kinematic acceptance of the detector.
The resultant covariance matrix is therefore noninvertible. To
calculate a y? statistic we followed the same approach as
MINERVA and formed a pseudoinverse using a singular value
decomposition approach.
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prediction with an error band taken from the spread (standard deviation) of the predictions generated with the ensemble of flux
predictions. Bottom: the relative uncertainty (i.e., 0.2 means 20% uncertainty) on the cross section measured by MINERVA (left) and
T2K (right) is compared to the spread in the model predictions. The x axis in each plot is simply a bin number. For MINERVA the bins
are ordered in increasing p|| in slices of increasing p7. For T2K the bins are ordered in increasing p,, in slices of increasing cos(6,). The
very forward high momentum bins discussed in the text correspond to around bin 10 for MINERVA and the final few bins for T2K.
The MINERVA analysis has additional high- p; bins which are not shown for readability since they contribute a negligible proportion of
the cross section.
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corresponding to the —24’ statistic introduced in Sec. II.
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calculated using the original covariance matrices provided by T2K and MINERVA.

directly the relative importance of the flux shape uncer-
tainty. This is shown in Fig. 4. The fact that this »* is almost
always less than the number of cross-section bins shows
that the uncertainty from the flux shape is in a sense
“covered” by the other uncertainties on the cross section.
However, the change in the y? is clearly large enough such
that conclusions regarding the suitability of slightly altered
model predictions could be significantly changed if the flux
shape variations were not to be considered. Note that this
study also continues to neglect potential correlations
between the ensemble the flux predictions and the cross-
section covariance. This should not affect the qualitative
conclusions by much though, since the flux shape con-
tribution to the uncertainty of the cross-section results is
relatively small. Overall the relative size of the flux shape
uncertainty appears non-negligible but subdominant in the
analyses considered. A more quantitative statement would
require more in-depth studies in the experiments, following
the recipes from Sec. V.

V. RECIPES

The following sections will describe how to implement
the two approaches within certain unfolding and error
propagation schemes. This is not intended as an endorse-
ment of these schemes, nor can these instructions be blindly
applied to different algorithms. They should, however,
provide examples of how to approach the issue in general.

A. Template fitter

This section concerns the template fitting approach of
unfolding as e.g., described for the “STV” analysis in [7].
In short:

(i) Interaction models and detector simulations are used
to create a prediction function of reconstructed
events N, as a function of multiple parameters,
e.g., by reweighting.

(i) A fitting algorithm is used to determine which
combination of parameter values is or is not com-
patible with the real data. This information could be
encoded in a best-fit point plus a covariance matrix
of the parameters, for example.

(iii) Sets of compatible parameter values are used to
calculate the desired cross sections. The spread of
compatible value sets translates to a spread of cross-
section results, which e.g., can be parametrized as
another covariance matrix.

The choice of parameters to vary and how to implement
that variation is a complicated topic and outside the scope of
this paper. Let us just split the parameters into parameters that
affect the assumed neutrino flux, the flux parameters ¢, and
parameters that do not @. The latter will usually contain
parameters for the detector response, the (background) cross-
section models, and the primary aim of the measurement: the
template weight parameters for the measured cross section,

NO.9)
"= T0)0() ©)

Here N is the predicted number of true events.” Depending on
the fitting algorithm this is either a direct output of the fit, or it
can be calculated from the number of predicted reconstructed
events via a predicted'” efficiency e:

Vo) = a0, (10)

°For simplicity’s sake, we will only consider total cross
sections here. All arguments apply equally to differential mea-
surements though. In fact, the calculations should be identical
modulo a division by the areas of the analysis bins.
Ensuring that the efficiency does not depend too much on
any assumed cross-section or flux model is another can of worms
that shall remain unopened in this paper.
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Like this, the method produces a first-approach result.
The propagated sets of parameter values correspond to
possible real experimental conditions, and thus the calcu-
lated cross sections do the same. It is easy to imagine that
under ideal experimental conditions, the variation of
N(0,¢) will be small as the fitter ensures that the allowed
parameter values fit the number of recorded events, which
is a constant number. In this case, the flux uncertainty will
affect the cross-section result solely via the total flux ®(¢).
Any shape uncertainty would have only a small effect via
N, or no effect at all.

At this point it is also fairly easy to calculate a covariance
matrix that correlates the cross-section result with the flux
parameters. Instead of only calculating the cross-section
values for each throw of parameters, one also treats the
thrown flux parameters themselves as part of the result and
calculates a covariance matrix over the combined cross-
section values and flux parameter values.

To extract a second-approach result from the fitter, one
needs to extrapolate the results of a set of parameter values
to a reference flux. We can specify the reference flux using
a fixed set of flux parameters: ¢p’. Let us call the extrapo-
lation of expected events at that flux N'. The calculated
cross section then becomes

N O.)
" = 1000 (1)

It might seem counterintuitive at first to fix the flux
normalization to the ¢p’ parameter values in this formula,
when the aim is to include more of the flux uncertainty in
the result. This is not a contradiction though, since the flux
uncertainty now enters the result via the extrapolation in N'.

The exact procedure will again depend on the flux
parameters, but let us assume the parameters are—or can
be converted to—event weights binned in neutrino energy.
In this case, N’ can be expressed as

N(0.0) = SN 0.6) %" (12)

with the neutrino energy bin index 7, and the number of true
events in each bin N,. In this form it is clear how the flux
uncertainty enters the result. Under ideal conditions, the
fitter output will ensure that ) _, N;(@, ¢) is compatible with
the number of observed events by correlating the flux
weights and the other parameters, i.e., N; will not vary
much under allowed parameter variations. Then the ratio
of the varied weights ¢ and the constant reference flux
weights ¢’ modifies that number according to the flux
uncertainty.

We can further separate the flux weights from the true
event prediction:

Ni(0.¢) = Ni(0)p:. (13)

where N;(0) is the number of predicted true events in the
ith energy bin in an unweighted, nominal'' flux. So
Eq. (12) becomes

N©O.0) = SN0 5 - N0 (19

This means the extrapolation to the reference flux happens
by simply ignoring the thrown flux weights and calculating
the cross section for the reference flux:

N0
"= T (15)

It might seem, on first glance, like there is no flux error at
all propagated any more, since the only flux parameters in
the equation are the constant reference flux parameters ¢’
The uncertainty does however enter indirectly via the
correlations of the other parameters 6 with the flux.

This also holds true when considering the efficiency
correction as a separate step. Equation (10) can be
expanded to

NO.¢) =

Nreco (0’ ¢) _ Z Nreco.i(0)¢i (16)

€(0.9) @)

where N,.,; is the expected reconstructed number of
events coming from the true energy bin i. In this case,
Eq. (14) becomes

/ o Nreco,i(0>¢i ﬂ o Nreco (07 ¢/)
VO =20 e o) 7

and the cross section

6/ — Nreco (07 ¢/)
€(0.¢)T(0)D(¢')

It seems strange that we would use the efficiency of the
reference flux to correct our real data, but in actuality we
are efficiency correcting the data we would have seen in the
reference flux N, (0, ¢’), not our real data.

Lastly, we need to decide which flux to use as the
reference flux. Since this can be done after the parameter
fit, the most logical choice is probably to use the best fit
point of the flux parameters:

(18)

¢ =9 (19)
The reason for this is not just that this is the best estimate

for the real flux, but it is also the point in the parameter
space where any approximations and linearizations done by

11 . .
This is not necessarily the same as the reference flux!
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the fitter, like e.g., the error treatment as a covariance
matrix, are most valid. Alternatively it should also be valid
to use the experiment’s nominal, or “design” flux. This
would have the benefit of easier comparisons of multiple
measurements done in the same neutrino beam. On the
other hand, that should probably be done with a first-
approach measurement anyway.

B. Multiverse unfolding

This section will deal with the “classical” unfolding

approach. The general procedure is as follows:

(i) Interaction models and detector simulations are used
to create a detector response matrix (also called
“smearing matrix”’) that describes how likely an event
in a certain true kinematic bin is to be reconstructed in
another reconstructed kinematic bin.

(i) Anunfolding algorithm is used with the recorded data
and the matrix to reconstruct an estimator for the true
number of events in each true kinematics bin.

(iii) The smearing matrix is varied according to the
systematic uncertainties of the detector and inter-
action models. Each varied matrix leads to a differ-
ent unfolding and thus a different cross-section
result. The different results can be used to build a
covariance matrix.

A more in-depth example of this is described e.g., in [5,8].

Let us again split the parameters into flux parameters and

nonflux parameters. The equation to calculate the cross
section looks the same as in Eq. (9):

— Moy _ (20)

TO)0(¢)

In this case however, Ny, is the unfolded (and efficiency
corrected) result, which implicitly depends on the recorded
data.'” This corresponds to a first-approach measurement.
Under ideal circumstances, the flux parameters have no
effect on the unfolding procedure, and the flux uncertainty
enters mainly via the integrated flux in the denominator. If
the flux shape does influence the unfolding algorithm in
some way, the correlations of flux and cross sections have
to be taken into account in the model comparisons. For
this—just like in the fitter case—it should be easy to create
a covariance matrix that correlates the flux parameters with
the cross-section values by treating the flux parameters as
part of the result rather than just an input.

To turn this into a second-approach measurement, one
again needs to find an extrapolation function N'(6,¢).
Unlike in the fitter case, this presents a problem though:
The unfolding algorithm will only provide the total number
of events N, but not the relative contribution from the
different neutrino energy bins N,. To get this information

12 .. .. . . . .
We again ignore any indices or bin widths associated with a
differential measurement.

from the unfolding process, one would need to explicitly do
the unfolding of the neutrino energy as well. This is often
deliberately avoided because of insufficient statistics,
limited detector capabilities, and the general impossibility
of measuring the neutrino energy without assuming some
sort of interaction model.

Let us assume that it is possible to modify the measure-
mentin a way to include this information though. In this case,
the extrapolation function will look the same as in Eq. (12):

VOB =S Ny e1)

This time it is not possible to further simplify this though,
since the flux weights are not a direct multiplicative factor in
the unfolding function." The second-approach cross section
then becomes

L Ne.g) Y iNilog %
CT(0)0(¢)  TO)@)

One might wonder, why not just report a differential
cross section over the neutrino energy in this case? A flux-
averaged measurement might still be preferable under
certain circumstances, since any model and detector
uncertainties regarding the neutrino energy reconstruction
only enter the result via the flux error propagation.

If the unfolded result is not available in neutrino energy
bins even as an intermediary step, the only way to extrapolate
the result to a different flux is to assume a certain energy
spectrum in the result. The obvious choice is to use the
Monte Carlo data that is used in the unfolding process:

(22)

N'0.¢) = NM]Z|(”0¢ 7] ZNMC, 0.9) 2/ (23)
NMT% 2 Nl ¢z— (24)
NMC|€9¢¢) ZNMC i(0)9; (25)
NM]Z|T9¢¢ ZNMC, 0.4 (26)

_N|”"”%' (27)

'*As mentioned before, ideally the effect of the flux parameters
on the unfolding should be negligible. A constant flux weight of
200% over all neutrino energy bins does not change the detector
response matrix. Any effect of the flux shape should also be
suppressed by the analysis design.
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Here Nyic(i) (0, ¢) is the number of true events (in the ith
neutrino energy bin) in the simulated data assuming the given
set of nuisance parameters.

So the second-approach cross section becomes

;o N|0.¢ NMC(07 ¢/)
" = T0)0(@) Nyc.6) (28)

In both cases there is no “best fit” set of flux parameters
available, so the logical choice for the reference flux is
the central value of the parameter throws, i.e., the nominal
flux:

¢ = (). (29)

C. Hybrid measurement

Hybrid approaches somewhere in between the classical
multiverse unfolding and template fitting have also been
used, e.g., in [6]. Here the unfolding is repeated multiple
times under differing flux and other systematic assumptions
like in the multiverse approach, but the unfolding in each
case is done by doing a template fit. The fit might or might
not include the freedom to vary the thrown parameters
within varied constraints.

If the fits are not free to vary the flux parameters, this
setup is functionally identical to the classical unfolding
case, as far as the flux uncertainty propagation is con-
cerned. The extrapolation can be simplified though if the
fits all use the same parametrization for the predicted
number of true events (just with different set points):

Nlog = N@log #) = > N.@log)d  (30)

N OF) = YN Blog)t 5 = Ny ). (1

Here 9|0.¢ is the best-fit result of the fit under the
assumptions of the thrown parameters @ and ¢b. Note that
the extrapolation function is not equal to the unfolding
result at the reference flux, as the flux assumptions of the fit
are still the ones for the thrown parameters.

This method of error propagation is not suitable if the
flux parameters are free to vary in the fit. Depending on the
relative constraint from the prior assumption and the fitted
data, the best-fit estimate of the parameters will vary much
less than the data constraint allows."* Thus, using only the
variation of the best fit point as a measure for the
uncertainty will lead to undercoverage. Instead, the post-
fit covariance matrix of the fitted parameters needs to be

YIf the prior constraint is much weaker than the data con-
straint, changing the prior’s central value will not affect the y?
surface of the parameter. The fit will always return virtually the
same result.

taken into account like in the regular template fitter case.
Since the covariance matrix will be different for every fit
under different thrown systematic assumptions, a new set of
post-fit parameters will have to be drawn for each. The
cross-section uncertainty can then be deduced from the
spread of all of these results.

VI. CONCLUSIONS

We have shown the difference between reporting a flux-
averaged cross-section measurement in the real flux—a first-
approach measurement—and reporting a flux-averaged
cross-section measurement in a reference flux—a second-
approach measurement. The difference between the two is
subtle, and even if the central values of the two are identical,
the resulting covariances can be very different.'> When used
carelessly, this can lead to drawing the wrong conclusions
from model comparisons to the data.

It has been shown qualitatively that in the case of the
two exemplary CCQE-like measurements of T2K and
MINERVA and the evaluated Genie model, the flux shape
uncertainty seems to be a subdominant but non-negligible
contribution to the total uncertainty, which is currently
not fully taken into account. It is expected that in future
cross-section measurements the statistical uncertainties
will decrease as more data becomes available and so the
relevance of the flux shape uncertainty will grow. For
these future measurements it is possible that neglecting the
flux shape uncertainty could lead to incorrect physics
conclusions. A rigorous quantitative determination of the
size of the effect would require dedicated studies by the
experimental collaborations.

First-approach measurements are somewhat simpler to
implement and it is possible to perform them without
assuming anything about the cross-section model, at least
in principle. They are, however, more difficult to compare
with model predictions. If the flux shape uncertainty has no
influence on the result, it is possible to vary the model
predictions within those shape uncertainties and treat the
resulting model uncertainty as an additional covariance on
the cross-section result. If the flux shape uncertainty on the
other hand does have an impact on the result, the model
uncertainties would need to be correlated with the reported
data uncertainties.

Second-approach measurements are much simpler to
compare to models. Since they report the cross section and
its uncertainty for a single, well-defined flux, the models
will only need to generate a prediction at that one flux. The
down side to this is that it is necessary to make assumptions
about the neutrino energy dependence of the cross section
to extrapolate from possible real fluxes to the reference
flux. The impact of this can be minimized by choosing the

SThis depends on the size of the flux shape uncertainties
compared to all other uncertainties in the measurement.
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reference flux carefully, e.g., using the best-fit result as
reference. In that case, it should only introduce additional
model dependence in the uncertainty propagation, not in
the central value of the result. To be conservative, the model
uncertainties will have to cover many possible neutrino
energy dependencies. This means the result will lose some
discrimination power when comparing it to a model with a
single explicit energy dependence.

In summary, a first-approach measurement with a
correlated flux uncertainty propagation in the model would
yield the better discrimination power between the two
approaches, but it requires extra effort at the time of model
comparison. The result alone is not the whole story. A
second-approach measurement is easy to compare to
models. The covariance of the result is all there is to it.
Unfortunately one loses some discrimination power due to
the need of covering many potentially different energy
dependencies in a single result. When treating a first-
approach result like a second-approach result by only
comparing a model at a single flux, flux shape errors are
not correctly taken into account and wrong physics con-
clusions could be drawn. The effect in the evaluated
example analyses of T2K and MINERvVA seems to be
not dominant, but not negligible either.
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