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Abstract

The exact way of treating flux shape uncertainties in unfolded, flux-averaged neutrino cross-section measurements can
lead to subtle issues when comparing the results to model predictions. There is a difference between reporting a cross
section in the (unknown) real flux, and reporting a cross section that was extrapolated from the real flux to a well
defined, fixed reference flux. Many current analyses do the former, while the results are compared to model predictions
as if they were the latter. This leads to the flux shape uncertainty being ignored at least partially, potentially leading to
wrong physics conclusions. A somewhat qualitative study of two results from T2K and MINERvA as examples suggests
that the size of the effect is sub-dominant, but non-negligible for those measurements. This paper describes how the
issue arises and details possible methods for treating the flux shape uncertainties correctly.
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1. Introduction

Most modern neutrino cross-section measurements are
reported as flux-averaged cross sections, since the incident
neutrino energy is not known on an event-by-event basis.
The average cross section σ is reported as the number of
expected events N per total incident neutrino flux Φ and
number of targets T :

σ =
N

TΦ
. (1)

This reflects the capabilities of the detectors as closely as
possible and avoids making any assumptions about the
neutrino energy dependence of the cross-sections one is
trying to measure. This also applies for differential mea-
surements, where N only counts the number of events in
certain kinematic and/or topological bins.

The down-side of this approach is that each cross sec-
tion is specific for its neutrino beam. Even ignoring all
smearing, efficiency, and acceptance issues, the average
cross section will change when the neutrino energy spec-
trum changes, since the non-averaged cross sections de-
pend non-trivially on the neutrino energy. It is thus usu-
ally not possible to naively compare the results of different
experiments with one another. Instead one must use the
theoretical energy dependence to calculate expected cross
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sections from interaction models for each flux separately.
This is all well understood and the process of generating
the expected cross sections for multiple fluxes/experiments1

has been made easier by frameworks such as NUISANCE [1].
The issue gets slightly more confusing when considering

flux (and especially flux shape) uncertainties. If one is
not careful, it is easy to confuse two very similar ways of
measuring and reporting the flux-averaged cross section:

1. Reporting the average cross section in the real neu-
trino flux;

2. Reporting the average cross section in a reference
neutrino flux.

These two approaches lead to different uncertainty esti-
mations and different rules when comparing the result to
theoretical predictions, even if the reported central values
for both methods are identical2.

The first case is the conceptually easier one. One takes
the data and a detector model, and then undoes the de-
tector effects assuming a variety of detector, cross-section,
and flux parameters. For each set of parameters one calcu-
lates a flux-averaged cross section according to Equation 1.
The spread of results yields the reported uncertainty of the
measurement.

1including such annoyances as sensitive phase space constraints
2e.g. when the chosen reference flux is the best fit value from a

fit to the data
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The second case is slightly more complicated, as it
contains an additional step. After calculating the flux-
averaged cross section in the real detector, one needs to
translate that result to the expected result in a fixed refer-
ence flux. I.e. the variation of the assumed real flux is used
to vary the extrapolation from the data to the reference
cross section.

The difference between the two approaches is subtle,
and both approaches yield correct results for what they
are. Problems arise when the result of one approach is
treated like one of the other.

This becomes apparent when comparing the first kind
of result with a theoretical prediction. The predicted flux-
averaged cross section is usually only calculated for a sin-
gle flux, and it is assumed that all flux uncertainties are
contained within the covariance matrix of the published
result, i.e. a second-approach result. When the covariance
matrix describes the uncertainties of the flux-average cross
section in the real flux, i.e. a first-approach result, this is
assumption is not correct. This leads to the flux shape
uncertainty being ignored at least partially, and possibly
wrong conclusions to be drawn about the compatibility of
a cross-section model with the data. The following exam-
ples will illustrate this issue.

1.1. Example A

Imagine a very well though-out experiment that mea-
sures the total cross section of some neutrino interaction
mode. Let us assume that it is so well designed that ef-
ficiencies are perfectly flat for all relevant events, back-
grounds are negligible, and systematic detector and model
uncertainties play no role. Also, the experiment has run
for a very long time, so statistical errors are not an issue
either. This means the only uncertain term in Equation 1
is the total neutrino flux Φ. An uncertainty in the total
flux will be reflected in an equivalent relative uncertainty
in the cross-section measurement. Let us assume a total
flux uncertainty of 5%. Flux shape uncertainties on the
other hand will not be reflected in the result, as they do
not affect the total flux Φ. For example, an uncertainty in
the flux energy scale α modifies the assumed differential
neutrino flux by proportionally shifting all energies up or
down:

dΦ

dEν
(Eν , α) =

dΦ

dEν
(Eν/α, 1)/α. (2)

It does not change the total integrated flux though, so if
there was e.g. a 15% uncertainty on the flux energy scale,
it would not affect the cross-section result.

Now imagine a model that predicts a cross section that
is proportional to the neutrino energy. The usual way
of comparing the model to the measurement would be to
use the nominal neutrino flux to calculate the total cross-
section. If the model predicts a 15% lower cross section at
the nominal flux, it could be ruled out at the 3 sigma level.
This does not consider the flux shape uncertainty though.
A variation of the neutrino flux energy scale by 15% could

easily explain the discrepancy, and would reduce the sig-
nificance to below one standard deviation.

1.2. Example B

Let us now complicate things a bit by introducing a
flux shape dependence in the experimental result. The
flux shape can enter Equation 1 via the enumerator. The
expectation value of number of true signal events N is
rarely directly accessible, but a function of the number
of recorded events Nrec, the estimated background con-
tribution NBG and the assumed efficiency of signal event
recording ε:

N =
Nrec −NBG

ε
. (3)

We are again assuming statistical uncertainties are negli-
gible.

Both the efficiency and the expected background can
depend on the assumed flux shape. The background is
straight forward, as the effect of background processes de-
pends on the flux of neutrinos at energies that contribute
to them. The efficiency can depend on the flux if the detec-
tor performance depends on event properties that change
within the analysis bin, and which in turn depend on the
neutrino energy. It is good practice to minimise efficiency
uncertainties by choosing fine analysis bins, and by apply-
ing phase-space constraints to the signal definition. The
former is limited by the available statistics of the data and
the detector resolution, while the latter adds the excluded
events to the background prediction, so the flux depen-
dence now enters via that route.3

For this example, let us ignore the efficiency and con-
centrate on the background prediction. Imagine a back-
ground process with a cross section anti -proportional to
the neutrino energy. This means the “measured” number
of true signal events will depend on the assumed neutrino
flux energy scale. The total uncertainty of the result will
be larger than 5%, depending on the background contribu-
tion in the recorded events. Our test model still predicts
15% too few events at the nominal flux. With the included
flux shape errors and thus increased total uncertainty, this
is now less than a three-sigma effect. When considering
the flux shape uncertainty in the model prediction – still
at 15% – the significance of the difference again goes down
below even one sigma.

This ignores the fact that the uncertainties of mea-
surement and prediction are now correlated, though. An
assumed increase in real neutrino energy would increase
the model prediction for a better fit to the data, but it
would also decrease the background contamination, in-
creasing the “measured” number of signal events and thus
the cross-section result. Note that the direction and size of
the correlation effect depends on the assumed background

3The flux dependence of the background prediction can of course
be reduced by using data driven background subtraction methods,
like the use of control regions.
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model. In extreme cases, a correct treatment of the un-
certainty could even increase the significance of the model
to data discrepancy compared to ignoring the flux shape
uncertainty of the prediction.

2. Challenges in the first approach

The first approach – reporting a cross section aver-
aged over the real flux – is easier to measure in a model-
independent way. Depending on the complicating factors
of a real-world experiment and the employed unfolding
algorithms, no assumptions about the neutrino energy de-
pendence of the cross section need to be made (see e.g.
Example A).

It does however make it challenging to compare the
result with theoretical predictions. Since the covariance
matrices that go with such a result do not cover all effects
of the flux on the model prediction, it is necessary to cal-
culate the model prediction uncertainty resulting from the
uncovered flux errors. This means that the flux uncertain-
ties must be propagated through any model in order for it
to be correctly compared with the result.

When doing so, another issue arises though. The ex-
perimental results will have a flux contribution to their
covariance matrix. When the model predictions also gain
a flux error, those should be correlated to calculate correct
goodness of fit scores. Otherwise the correlations can lead
to over- or under-coverage.

In some cases – like Example A – the flux uncertainty
can be cleanly broken up into a part that affects the mea-
sured result, e.g. the normalisation, and a part that af-
fects the model prediction, e.g. the shape. In those cases
it should be possible to have uncorrelated flux errors in
data and model prediction. In general this is not the case
though, and the flux uncertainty cannot be split into an
experimental and a theoretical part (see e.g. Example B).
In those cases the correlations need to be taken into ac-
count and the process of comparing a model to the data
becomes a more involved statistical issue.

Let us assume a cross-section measurement reports the
point estimates for a vector of cross-section values x̂, a vec-
tor of flux parameters φ̂, as well as the covariance matrix
S. In general, S describes the uncertainties in the mea-
surement and the correlations between cross-section bins
and the flux parameters. If the flux and cross-section un-
certainties are uncorrelated, this will simply mean that the
respective off-diagonal elements of S will be 0.4 Further-
more let us assume a cross-section model that can, given
a set of flux parameter values, produce a prediction m(φ)
for the values of x.

For an ideal likelihood ratio test of the model, we would

4Conversely, if an experiment only provides two separate covari-
ance matrices for the cross-section result and the flux parameters,
one can only treat them as uncorrelated.

like to calculate the log likelihood ratio

−2λ = −2 sup
φ

[
ln
(
L(m(φ),φ)

)]
, (4)

where sup is the supremum function, maximising over φ,
and

− 2 ln(L(x,φ)) =xT − x̂T φT − φ̂T
S−1x− x̂

φ− φ̂

 (5)

describes the likelihood surface of the parameter space. If
the model is true, −2λ will be χ2

k-distributed with k equal
to the number of bins in x. The usual quantiles of χ2

k can
then be used to judge the goodness of fit of the model to
the data.

Unfortunately, depending on the complexity of calcu-
lating m(φ), it might not be feasible to maximise λ over
the flux parameter space. In that case one can use the
following likelihood ratio as approximation:

−2λ′ = −2 ln
(
L′(m(φ̂))

)
=
(
mT (φ̂)− x̂T

)
S′−1

(
m(φ̂)− x̂

)
.

(6)

Here S′ is not just the cross-section part of S. It is a new
covariance matrix that describes the expected variation of
the distribution of (mT (φ̂)−x̂T ) and thus −2λ′, assuming
that the model is correct. It can be calculated from S, x̂,
φ̂, and m(φ) by generating random samples of x and φ
and then calculating

∆ = (m(φ)− x) (7)

for each sample. The sample covariance of ∆ can then
be used as an estimator for S′. If there is no correlation
between the flux and cross-section parameters, this proce-
dure is equivalent to calculating the covariance of m(φ)
only and adding it to the cross-section part of S.

Note that we are ignoring the sample mean of ∆. We
calculate a distribution of differences between data and
prediction at the best-fit point of the data and then ap-
ply the resulting variance to the model prediction. This
approach makes two assumptions:

• The covariance matrix S, describing the likelihood
surface of the cross-section and flux parameters, can
be interpreted as the covariance of the expected spread
of maximum likelihood estimators (MLEs).

• The covariance of the MLEs is constant in the rel-
evant parameter range, while the expectation value
depends on the true parameter value.

These assumptions should hold well enough for all mea-
surements that make a Gaussian error approximation –
as is implied by reporting the uncertainty as a covariance
matrix. The second assumption might break if the model

3



prediction m(φ) and the best fit data result x̂ are very
different. But this should not change the physics conclu-
sions of a model comparison.5 If all assumptions hold and
the model is actually true, the test statistic −2λ′ should
again be χ2

k distributed and the usual critical values apply.

3. Challenges in the second approach

The second approach – reporting a cross section aver-
aged over a reference flux – makes it easier to compare
the results to model predictions. The covariance matrix
already includes by construction the uncertainties of ex-
trapolating the data from the unknown real neutrino flux
to the reference flux. When testing a model, one only
needs to calculate the flux-averaged cross section in that
reference flux.

It is however more difficult to produce a result in this
manner, because the extrapolation to a reference flux is
not trivial. It necessarily requires a cross-section model
to do so, since only a model can predict the connection
between true neutrino energy and measured variables6, e.g.
neutrino kinematics, particle multiplicities, etc.

So the extrapolation itself – and with it the cross-
section result – will be subject to cross-section model un-
certainties. This somewhat undermines the aim of pro-
ducing a model-independent measurement. If the tested
model was not covered by the assumed model-uncertainties
– i.e. if it requires a different propagation of flux shape
uncertainties compared to the considered models – the
method of comparing the model with the data at only the
reference flux breaks down again.

To illustrate this, consider Example A. If the model
predicting a cross section proportional to the neutrino en-
ergy was used to extrapolate to the reference flux, the
total uncertainty on the result would be about 16%. Now
consider a second model, which predicts a cross section
proportional to the square of the neutrino energy and over-
predicts the measured value by 50%. With the reported
uncertainty, this would be considered a three-sigma effect,
but the squared neutrino energy dependence means that
the 15% energy scale uncertainty should translate to a 30%
rate uncertainty. Again the model is more compatible with
the data then the covariance matrix implies.

This suggests that one should be conservative and cover
as many possible flux propagation models as possible. Un-
fortunately this also degrades the power of the measure-
ment. Imagine a third model that predicts a cross section
that is constant over all neutrino energies, and overesti-
mates the data of Example A by 15%. With the assumed
flux shape uncertainties, this would not even be a one
sigma difference. But when considering that the model

5At some point it is no longer important whether the data to
model agreement is bad or terrible.

6Except when measuring a cross section in terms of neutrino en-
ergy directly, of course. But in that case this whole paper becomes
a moot point.

does not predict any shape dependence, it should be re-
futed at the three sigma level from the 5% flux normalisa-
tion uncertainty.

Overall, the feasibility of the second approach will de-
pend on the size of the flux shape uncertainty and how
well constrained the neutrino-energy dependence of the
measured cross section is. If the effect is large, and the
energy dependence is uncertain, it might be better to opt
for a first-approach measurement instead.

4. Size of the effect

Whichever approach is taken, the effect we consider
here comes from the flux shape dependence of the cross-
section prediction. In order to assess the relevance of this
effect for modern cross-section measurements, the spread
of flux-averaged cross section predictions are evaluated for
a fixed model propagated through an ensemble of flux
predictions. These flux predictions are constructed from
T2K [2] and MINERvA [3] nominal fluxes and accompa-
nying covariance matrices7. Whilst the flux prediction is
varied in both shape and normalisation, the latter plays
no role in constructing a flux-averaged cross section from
a model prediction. The model used is provided by GE-
NIE [4] (Version 3.00.06, tune G18 10b 00 000). The spe-
cific cross sections that are predicted are MINERvA’s CCQE-
like measurement from Ref. [5] and T2K’s CC0π Analy-
sis I in Ref. [6]. Both of these cross sections are double-
differential in outgoing muon kinematics. MINERvA mea-
sures the momentum broken down into its transverse (pT )
and longitudinal (p||) components, defined with respect to
the incoming neutrino direction, whilst T2K measures the
magnitude of the momentum (pµ) alongside the cosine of
the angle between the muon and neutrino (cos(θµ)). Both
measurements also follow the first approach, i.e. no at-
tempt was made to extrapolate the measured cross section
to a particular reference flux shape. The model is com-
pared to the cross sections using the NUISANCE frame-
work [1].

The sampled ensembles of flux predictions are shown
in Figure 1. The standard deviation of the mean neutrino
energies across the ensemble std(〈Eν〉) is ∼ 5.5 MeV for
T2K and ∼ 6.5 MeV for MINERvA. However, it should be
noted that this energy scale uncertainty is not fully rep-
resentative of the flux shape uncertainties. The spread of
the cross-section predictions is shown in Figure 2 alongside
the cross-section measurements from the experiments. It
also shows a bin-by-bin comparison of the spread of the
cross-section predictions compared to the uncertainty on
the measurements. Ignoring all correlations, this gives

7The MINERvA flux extends up to 100 GeV but, the numeri-
cal precision of the provided covariance matrix makes the complete
matrix non-invertible. Here we consider only the first 35 GeV (con-
taining ∼ 99.4% of the flux). It should also be noted that the T2K
covariance is provided in much coarser bins than the accompanying
flux prediction.
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Figure 1: Histograms showing the ensembles of flux predictions produced for MINERvA (left) and T2K (right) which have each been
re-normalised to have the same integral. Note that the actual flux predictions extend up to 35 GeV for MINERvA and 10 GeV for T2K but
for readability the long tails are not shown.
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Figure 2: Top: The differential cross sections measured by MINERvA (left) and T2K (right) are shown alongside the GENIE model
prediction with an error band taken from the spread (standard deviation) of the predictions generated with the ensemble of flux predictions.
Bottom: The relative uncertainty (i.e. 0.2 means 20% uncertainty) on the cross section measured by MINERvA (left) and T2K (right) is
compared to the spread in the model predictions. The x-axis in each plot is simply a bin number. For MINERvA the bins are ordered in
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momentum bins discussed in the text correspond to around bin 10 for MINERvA and the final few bins for T2K. The MINERvA analysis
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a qualitative indication how much of the error budget of
the measurement is consumed by the flux shape predic-
tion uncertainty, despite not being correctly included in
the error propagation of the results. I.e., this is a rough
measure for the “missing” uncertainty when treating these
first-approach measurements like second-approach ones.

Although the spread in the prediction of the total cross
section integrated across all bins is about 1% for both
MINERvA and T2K, the spread in individual bins of the
differential cross section is much larger. This is especially
the case for bins corresponding to forward going muons
with large momenta which are produced only by interac-
tions of neutrino in the tail end of the flux predictions,
where the flux uncertainty is largest. In these bins, the
spread of the cross-section predictions are sometimes com-
parable to the entire uncertainty in the measured cross sec-
tion. This said, it should of course be noted that the un-
certainty on each cross-section result is characterised by a
full covariance matrix describing the correlations between
bins rather than just the error bars. It is therefore difficult
to quantitatively compare the size of the model prediction
variations with the variations allowed by the cross section
uncertainty from only Figure 2.

A more quantitative analysis of the relevance of the
flux shape uncertainty can be performed by assessing how
the χ2 statistic, calculated using the full covariance matrix
to describe the uncertainty on the cross-section measure-
ments, changes across the ensemble of flux predictions.
This χ2 is defined as:

χ2 = (xMC,i − xdata)TS−1data(xMC,i − xdata), (8)

where Sdata is the covariance matrix as reported by the
experiments8, xMC,i is the predicted cross section in the
ith flux shape variation and xdata is the cross section mea-
sured by the experiments. Figure 3 shows that this χ2 is
much larger than the number of cross-section bins and so
it is therefore hard to interpret beyond stating that all of
the predictions from the ensemble of fluxes are in very poor
agreement with the measurements. This would be the case
for the majority of currently available cross-section mod-
els.

As discussed in section 2, if potential correlations be-
tween the cross-section uncertainty and the spread of pre-
dictions from the ensemble of fluxes are neglected, an ap-
proximate combined covariance matrix can be formed by
adding the covariance of the ensemble of predictions to
the one cross-section measurement covariance. This χ2 =
−2λ′ – calculated using the combined covariance – is also
shown in Figure 3. Whilst it is clear there is a notable

8Note that 12 of the 156 cross-section bins in the MINERvA data
release contain zero measured cross section with zero uncertainty to
reflect the kinematic acceptance of the detector. The resultant co-
variance matrix is therefore non-invertible. To calculate a χ2 statistic
we followed the same approach as MINERvA and formed a pseudo-
inverse using a Singular Value Decomposition (SVD) approach.

shift to lower χ2 when the combined uncertainty is con-
sidered, the model remains absolutely disfavoured by the
measurements.

An easier to interpret assessment of the relevance of the
flux shape uncertainty compared to the rest of the cross-
section uncertainty can be constructed by considering a
scenario in which the T2K and MINERvA analyses had
measured exactly the GENIE prediction with the nom-
inal flux. For simplicity this scenario assumes that the
covariance of the data remains unchanged which, whilst
unrealistic, is a suitable approximation for this illustrative
example. In this scenario, the spread of the χ2, calculated
as in Equation 8 but where xdata is replaced by the GE-
NIE model prediction for the nominal flux, should indicate
more directly the relative importance of the flux shape un-
certainty. This is shown in Figure 4. The fact that this χ2

is almost always less than the number of cross-section bins
shows that the uncertainty from the flux shape is in a sense
“covered” by the other uncertainties on the cross section.
However, the change in the χ2 is clearly large enough such
that conclusions regarding the suitability of slightly altered
model predictions could be significantly changed if the flux
shape variations were not to be considered. Note that
this study also continues to neglect potential correlations
between the ensemble the flux predictions and the cross-
section covariance. This should not affect the qualitative
conclusions by much though, since the flux shape contri-
bution to the uncertainty of the cross-section results is
relatively small. Overall the relative size of the flux shape
uncertainty appears non-negligible but subdominant in
the analyses considered. A more quantitative statement
would require more in-depth studies in the experiments,
following the recipes from section 5.

5. Recipes

The following sections will describe how to implement
the two approaches within certain unfolding and error prop-
agation schemes. This is not intended as an endorsement
of these schemes, nor can these instructions be blindly ap-
plied to different algorithms. They should, however, pro-
vide examples of how to approach the issue in general.

5.1. Template fitter

This section concerns the template fitting approach of
unfolding as e.g. described for the “STV” analysis in [7].
In short:

• Interaction models and detector simulations are used
to create a prediction function of reconstructed events
Nreco as a function of multiple parameters, e.g. by
re-weighting.

• A fitting algorithm is used to determine which com-
bination of parameter values is or is not compatible
with the real data. This information could be en-
coded in a best-fit point plus a covariance matrix of
the parameters, for example.
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• Sets of compatible parameter values are used to cal-
culate the desired cross sections. The spread of com-
patible value sets translates to a spread of cross-
section results, which e.g. can be parameterised as
another covariance matrix.

The choice of parameters to vary and how to imple-
ment that variation is a complicated topic and outside the
scope of this paper. Let us just split the parameters into
parameters that affect the assumed neutrino flux, the flux
parameters φ, and parameters that do not θ. The latter
will usually contain parameters for the detector response,
the (background) cross-section models, and the primary
aim of the measurement: the template weight parameters
for the measured cross section,

σ =
N(θ,φ)

T (θ)Φ(φ)
. (9)

Here N is the predicted number of true events.9 Depend-
ing on the fitting algorithm this is either a direct output
of the fit, or it can be calculated from the number of pre-
dicted reconstructed events via a predicted10 efficiency ε:

N(θ,φ) =
Nreco(θ,φ)

ε(θ,φ)
. (10)

Like this, the method produces a first-approach result.
The propagated sets of parameter values correspond to
possible real experimental conditions, and thus the calcu-
lated cross sections do the same. It is easy to imagine
that under ideal experimental conditions, the variation of
N(θ,φ) will be small as the fitter ensures that the allowed
parameter values fit the number of recorded events, which
is a constant number. In this case, the flux uncertainty
will affect the cross-section result solely via the total flux
Φ(φ). Any shape uncertainty would have only a small
effect via N , or no effect at all.

At this point it is also fairly easy to calculate a covari-
ance matrix that correlates the cross-section result with
the flux parameters. Instead of only calculating the cross-
section values for each throw of parameters, one also treats
the thrown flux parameters themselves as part of the re-
sult and calculates a covariance matrix over the combined
cross-section values and flux parameter values.

To extract a second-approach result from the fitter,
one needs to extrapolate the results of a set of parameter
values to a reference flux. We can specify the reference
flux using a fixed set of flux parameters: φ′. Let us call
the extrapolation of expected events at that flux N ′. The
calculated cross section then becomes

σ′ =
N ′(θ,φ)

T (θ)Φ(φ′)
. (11)

9For simplicity’s sake, we will only consider total cross sections
here. All arguments apply equally to differential measurements
though. In fact, the calculations should be identical modulo a di-
vision by the areas of the analysis bins.

10Ensuring that the efficiency does not depend too much on any
assumed cross-section or flux model is another can of worms that
shall remain unopened in this paper.

It might seem counter-intuitive at first to fix the flux nor-
malisation to the φ′ parameter values in this formula,
when the aim is to include more of the flux uncertainty
in the result. This is not a contradiction though, since the
flux uncertainty now enters the result via the extrapolation
in N ′.

The exact procedure will again depend on the flux pa-
rameters, but let us assume the parameters are – or can
be converted to – event weights binned in neutrino energy.
In this case, N ′ can be expressed as

N ′(θ,φ) =
∑
i

Ni(θ,φ)
φ′i
φi

, (12)

with the neutrino energy bin index i, and the number of
true events in each bin Ni. In this form it is clear how the
flux uncertainty enters the result. Under ideal conditions,
the fitter output will ensure that

∑
iNi(θ,φ) is compati-

ble with the number of observed events by correlating the
flux weights and the other parameters, i.e. Ni will not
vary much under allowed parameter variations. Then the
ratio of the varied weights φ and the constant reference
flux weights φ′ modifies that number according to the flux
uncertainty.

We can further separate the flux weights from the true
event prediction:

Ni(θ,φ) = Ni(θ)φi, (13)

where Ni(θ) is the number of predicted true events in the
i-th energy bin in an unweighted, nominal11 flux. So Equa-
tion 12 becomes

N ′(θ,φ) =
∑
i

Ni(θ)φi
φ′i
φi

= N(θ,φ′). (14)

This means, the extrapolation to the reference flux hap-
pens by simply ignoring the thrown flux weights and cal-
culating the cross section for the reference flux:

σ′ =
N(θ,φ′)

T (θ)Φ(φ′)
. (15)

It might seem, on first glance, like there is no flux error at
all propagated any more, since the only flux parameters
in the equation are the constant reference flux parameters
φ′. The uncertainty does however enter indirectly via the
correlations of the other parameters θ with the flux.

This also holds true when considering the efficiency cor-
rection as a separate step. Equation 10 can be expanded
to

N(θ,φ) =
Nreco(θ,φ)

ε(θ,φ)
=
∑
i

Nreco,i(θ)φi
εi(θ)

, (16)

whereNreco,i is the expected reconstructed number of events
coming from the true energy bin i. In this case, Equa-
tion 14 becomes

N ′(θ,φ) =
∑
i

Nreco,i(θ)φi
εi(θ)

φ′i
φi

=
Nreco(θ,φ′)

ε(θ,φ′)
, (17)

11not necessarily the same as the reference!
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and the cross section

σ′ =
Nreco(θ,φ′)

ε(θ,φ′)T (θ)Φ(φ′)
. (18)

It seems strange that we would use the efficiency of the
reference flux to correct our real data, but in actuality we
are efficiency correcting the data we would have seen in
the reference flux Nreco(θ,φ′), not our real data.

Lastly, we need to decide which flux to use as the ref-
erence flux. Since this can be done after the parameter
fit, the most logical choice is probably to use the best fit
point of the flux parameters:

φ′ = φ̂. (19)

The reason for this is not just that this is the best es-
timate for the real flux, but it is also the point in the
parameter space where any approximations and linearisa-
tions done by the fitter, like e.g. the error treatment as a
covariance matrix, are most valid. Alternatively it should
also be valid to use the experiment’s nominal, or “design”
flux. This would have the benefit of easier comparisons of
multiple measurements done in the same neutrino beam.
On the other hand, that should probably be done with a
first-approach measurement anyway.

5.2. Multiverse unfolding

This section will deal with the “classical” unfolding
approach. The general procedure is as follows:

• Interaction models and detector simulations are used
to create a detector response matrix (also called “smear-
ing matrix”) that describes how likely an event in a
certain true kinematic bin is to be reconstructed in
another reconstructed kinematic bin.

• An unfolding algorithm is used with the recorded
data and the matrix to reconstruct an estimator for
the true number of events in each true kinematics
bin.

• The smearing matrix is varied according to the sys-
tematic uncertainties of the detector and interaction
models. Each varied matrix leads to a different un-
folding and thus a different cross-section result. The
different results can be used to build a covariance
matrix.

A more in-depth example of this is described e.g. in [5, 8].
Let us again split the parameters into flux parameters

and non-flux parameters. The equation to calculate the
cross section looks the same as in Equation 9:

σ =
N |θ,φ

T (θ)Φ(φ)
. (20)

In this case however, N |θ,φ is the unfolded (and efficiency
corrected) result, which implicitly depends on the recorded

data.12 This corresponds to a first-approach measurement.
Under ideal circumstances, the flux parameters have no ef-
fect on the unfolding procedure, and the flux uncertainty
enters mainly via the integrated flux in the denominator.
If the flux shape does influence the unfolding algorithm
in some way, the correlations of flux and cross sections
have to be taken into account in the model comparisons.
For this – just like in the fitter case – it should be easy
to create a covariance matrix that correlates the flux pa-
rameters with the cross-section values by treating the flux
parameters as part of the result rather than just an input.

To turn this into a second-approach measurement, one
again needs to find an extrapolation function N ′(θ,φ).
Unlike in the fitter case, this presents a problem though:
The unfolding algorithm will only provide the total num-
ber of events N , but not the relative contribution from the
different neutrino energy bins Ni. To get this information
from the unfolding process, one would need to explicitly
do the unfolding of the neutrino energy as well. This is of-
ten deliberately avoided because of insufficient statistics,
limited detector capabilities, and the general impossibility
of measuring the neutrino energy without assuming some
sort of interaction model.

Let us assume that it is possible to modify the mea-
surement in a way to include this information though. In
this case, the extrapolation function will look the same as
in Equation 12:

N ′(θ,φ) =
∑
i

Ni|θ,φ
φ′i
φi

. (21)

This time it is not possible to further simplify this though,
since the flux weights are not a direct multiplicative factor
in the unfolding function.13 The second-approach cross
section then becomes:

σ′ =
N ′(θ,φ)

T (θ)Φ(φ′)
=

∑
iNi|θ,φ

φ′
i

φi

T (θ)Φ(φ′)
. (22)

One might wonder, why not just report a differential
cross section over the neutrino energy in this case? A
flux-averaged measurement might still be preferable under
certain circumstances, since any model and detector uncer-
tainties regarding the neutrino energy reconstruction only
enter the result via the flux error propagation.

If the unfolded result is not available in neutrino en-
ergy bins even as an intermediary step, the only way to
extrapolate the result to a different flux is to assume a
certain energy spectrum in the result. The obvious choice

12We again ignore any indices or bin widths associated with a
differential measurement.

13As mentioned before, ideally the effect of the flux parameters on
the unfolding should be negligible. A constant flux weight of 200%
over all neutrino energy bins does not change the detector response
matrix. Any effect of the flux shape should also be suppressed by
the analysis design.
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is to use the Monte Carlo data that is used in the unfolding
process:

N ′(θ,φ) =
N |θ,φ

NMC(θ,φ)

∑
i

NMC,i(θ,φ)
φ′i
φi

(23)

=
N |θ,φ

NMC(θ,φ)

∑
i

NMC,i(θ)φi
φ′i
φi

(24)

=
N |θ,φ

NMC(θ,φ)

∑
i

NMC,i(θ)φ′i (25)

=
N |θ,φ

NMC(θ,φ)

∑
i

NMC,i(θ,φ
′) (26)

= N |θ,φ
NMC(θ,φ′)

NMC(θ,φ)
. (27)

Here NMC(,i)(θ,φ) is the number of true events (in the
i-th neutrino energy bin) in the simulated data assuming
the given set of nuisance parameters.

So the second-approach cross section becomes:

σ′ =
N |θ,φ

T (θ)Φ(φ′)

NMC(θ,φ′)

NMC(θ,φ)
. (28)

In both cases there is no “best fit” set of flux parameters
available, so the logical choice for the reference flux is the
central value of the parameter throws, i.e. the nominal
flux:

φ′ = 〈φ〉 . (29)

5.3. Hybrid measurement

Hybrid approaches somewhere in between the “classi-
cal” multiverse unfolding and template fitting have also
been used, e.g. in [6]. Here the unfolding is repeated
multiple times under differing flux and other systematic
assumptions like in the multiverse approach, but the un-
folding in each case is done by doing a template fit. The
fit might, or might not include the freedom to vary the
thrown parameters within varied constraints.

If the fits are not free to vary the flux parameters, this
setup is functionally identical to the classical unfolding
case, as far as the flux uncertainty propagation is con-
cerned. The extrapolation can be simplified though if the
fits all use the same parametrisation for the predicted num-
ber of true events (just with different set points):

N |θ,φ = N(θ̂|θ,φ,φ) =
∑
i

Ni(θ̂|θ,φ)φi, (30)

N ′(θ,φ) =
∑
i

Ni(θ̂|θ,φ)φi
φ′i
φi

= N(θ̂|θ,φ,φ′). (31)

Here θ̂|θ,φ is the best-fit result of the fit under the as-
sumptions of the thrown parameters θ and φ. Note that
the extrapolation function is not equal to the unfolding
result at the reference flux, as the flux assumptions of the
fit are still the ones for the thrown parameters.

This method of error propagation is not suitable if the
flux parameters are free to vary in the fit. Depending on
the relative constraint from the prior assumption and the
fitted data, the best-fit estimate of the parameters will
vary much less than the data constraint allows.14 Thus,
using only the variation of the best fit point as a measure
for the uncertainty will lead to undercoverage. Instead, the
post-fit covariance matrix of the fitted parameters needs
to be taken into account like in the regular template fitter
case. Since the covariance matrix will be different for every
fit under different thrown systematic assumptions, a new
set of post-fit parameters will have to be drawn for each.
The cross-section uncertainty can then be deduced from
the spread of all of these results.

6. Conclusions

We have shown the difference between reporting a flux-
averaged cross-section measurement in the real flux – a
first-approach measurement – and reporting a flux-averaged
cross-section measurement in a reference flux – a second-
approach measurement. The difference between the two is
subtle, and even if the central values of the two are iden-
tical , the resulting covariances can be very different.15

When used carelessly, this can lead to drawing the wrong
conclusions from model comparisons to the data.

It has been shown qualitatively that in the case of
the two exemplary CCQE-like measurements of T2K and
MINERvA and the evaluated Genie model, the flux shape
uncertainty seems to be a subdominant but non-negligible
contribution to the total uncertainty, which is currently
not fully taken into account. It is expected that in fu-
ture cross-section measurements the statistical uncertain-
ties will decrease as more data becomes available and so
the relevance of the flux shape uncertainty will grow. For
these future measurements it is possible that neglecting
the flux shape uncertainty could lead to incorrect physics
conclusions. A rigorous quantitative determination of the
size of the effect would require dedicated studies by the
experimental collaborations.

First-approach measurements are somewhat simpler to
implement and it is possible to perform them without as-
suming anything about the cross-section model, at least
in principle. They are, however, more difficult to compare
with model predictions. If the flux shape uncertainty has
no influence on the result, it is possible to vary the model
predictions within those shape uncertainties and treat the
resulting model uncertainty as an additional covariance on
the cross-section result. If the flux shape uncertainty on
the other hand does have an impact on the result, the

14If the prior constraint is much weaker than the data constraint,
changing the prior’s central value will not affect the χ2 surface of the
parameter. The fit will always return virtually the same result.

15depending on the size of the flux shape uncertainties compared
to all other uncertainties in the measurement
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model uncertainties would need to be correlated with the
reported data uncertainties.

Second-approach measurements are much simpler to
compare to models. Since they report the cross section
and its uncertainty for a single, well-defined flux, the mod-
els will only need to generate a prediction at that one flux.
The down-side to this is that it is necessary to make as-
sumptions about the neutrino energy dependence of the
cross-section to extrapolate from possible real fluxes to the
reference flux. The impact of this can be minimised by
choosing the reference flux carefully, e.g. using the best-fit
result as reference. In that case, it should only introduce
additional model dependence in the uncertainty propaga-
tion, not in the central value of the result. To be con-
servative, the model uncertainties will have to cover many
possible neutrino energy dependencies. This means the re-
sult will lose some discrimination power when comparing
it to a model with a single explicit energy dependence.

In summary: A first-approach measurement with a cor-
related flux uncertainty propagation in the model would
yield the better discrimination power between the two ap-
proaches, but it requires extra effort at the time of model
comparison. The result alone is not the whole story. A
second-approach measurement is easy to compare to mod-
els. The covariance of the result is all there is to it. Unfor-
tunately one loses some discrimination power due to the
need of covering many potentially different energy depen-
dencies in a single result. When treating a first-approach
result like a second-approach result by only comparing a
model at a single flux, flux shape errors are not correctly
taken into account and wrong physics conclusions could
be drawn. The effect in the evaluated example analyses of
T2K and MINERvA seems to be not dominant, but not
negligible either.
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