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Abstract. Cosmological parameter estimation from forthcoming experiments promise to
reach much greater precision than current constraints. As statistical errors shrink, the re-
quired control over systematic errors increases. Therefore, models or approximations that
were sufficiently accurate so far, may introduce significant systematic biases in the param-
eter best-fit values and jeopardize the robustness of cosmological analyses. We generalize
previously proposed expressions to estimate a priori the systematic error introduced in pa-
rameter inference due to the use of insufficiently good approximations in the computation
of the observable of interest or the assumption of an incorrect underlying model. Although
this methodology can be applied to measurements of any scientific field, we illustrate its
power by studying the effect of modeling the angular galaxy power spectrum incorrectly.
We also introduce Multi CLASS, a new, public modification of the Boltzmann code CLASS,
which includes the possibility to compute angular cross-power spectra for two different trac-
ers. We find that significant biases in most of the cosmological parameters are introduced if
one assumes the Limber approximation or neglects lensing magnification in modern galaxy
survey analyses, and the effect is in general larger for the multi-tracer case, especially for the
parameter controlling primordial non-Gaussianity of the local type, fNL.
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1 Introduction

An unprecented experimental and theoretical effort during the last decades has established
the Λ-Cold Dark Matter (ΛCDM) model as the standard model of cosmology, because of
its striking precision in fitting most of the available observations. This effort has brought
forward percent-level constraints on some of the parameters of the model (see e.g., [1–4]).
Nonetheless, there are still some remaining tensions between experiments (see e.g., [5–8])
that, in the absence of non-accounted for systematic errors, might hint at the need for
an extension of ΛCDM. Forthcoming and future galaxy surveys are expected to push the
envelope of observational cosmology on the large scale structure side [9–14], but significant
improvements are also expected for CMB experiments [15–17]. Moreover, the advent of
line-intensity mapping experiments [18, 19] with its potential for cosmology (see e.g., [20])
promises to open a window to explore the Universe at higher redshift and close the gap
between CMB and galaxy surveys observations (see e.g., [21, 22]).

The aim of these experiments is to achieve subpercent-level precision for parameter in-
ference within ΛCDM and to further constrain (and possibly even detect) deviations from
ΛCDM. The promising capabilities of these experiments will make possible a dramatic re-
duction of the statistical errors: expected statistical uncertainties are well below the current
systematic error budget. Therefore, it is of crucial importance to maintain systematic biases
below the statistical errors as well as a correct assessment of the final, true uncertainties.
Accurate modeling of the target observables is one of the key ingredients needed in order
to succeed in this challenge. However, higher accuracy often requires more complicated and
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expensive modeling. This can be mitigated by introducing careful approximations in the
modeling of the signal and their covariances to speed up calculations without significant
reductions in accuracy.

Using insufficiently accurate approximations in the analysis affects the inferred model
parameters in two ways. First, it may shift the point in parameter space where the posterior
distribution peaks, which would introduce a systematic bias in the best-fit parameters. Sec-
ond, the shape of the posterior distribution may be affected, yielding a misestimate of the
uncertainties. In summary, these two effects can be understood as errors in the parameters
values and in their error-bars. Therefore, the effects on the posterior (in terms of potential
shifts of the best-fit parameters and their errors) of any approximation to be adopted must
be estimated quantitatively in light of the forecasted experimental performance. Moreover,
a theoretical systematic error might be introduced even if the modeling of the observable is
accurate enough, when the underlying cosmological model assumed is incorrect: the inferred
cosmological parameters assuming ΛCDM will be most likely biased if the Universe is better
described by a different model.

We approach the estimation of the bias in the best-fit parameters in the same spirit
of previous works focusing on specific problems in cosmology. Some studies focused on the
bias introduced by assuming an incorrect cosmological model M1 instead of the correct one
M0, where M1 and M0 are nested models [23]. The general expression for nested models can
be found in Refs. [24, 25], where it was used to estimate the impact of not marginalizing
over a subset of nuisance parameters. Others investigated the bias arising from an incorrect
modeling of the target observable for several specific cases, including the impact of inhomoge-
neous reionization on CMB anisotropies [26], the effect on weak lensing measurements from
incorrect modeling of the non linear power spectrum and galaxy redshift distribution [27, 28],
observational systematics [29, 30] or baryonic feedback [31], SN magnitudes [32], the modeling
of redshift-space distortions of the galaxy power spectrum [33], emission-line galaxy power
spectrum measurements without including the contamination due to line interlopers [34],
the contribution of relativistic effects on galaxy surveys [35–38], and the neutrino-induced
scale-dependence of the galaxy bias [39]. There are also studies focused on how parameter
inference is affected by misestimations of the covariance matrices (see e.g., [40, 41]) or the
use of an invalid likelihood (see e.g., [42, 43]).

Instead, in this work we aim to generalize the methodology to be applicable to any ob-
servable, not necessarily in cosmology. There are two different causes that lead to parameter
biases: the assumption of an incorrect model (e.g., assuming a cosmological constant in the
case dark energy is dynamical) and the use of an incorrect or incomplete modeling of the
observable considered (e.g., using an inaccurate modeling of the redshift-space distortions).
Although the previous studies mentioned above considered only one of them, these two causes
may be interdependent. Our approach treats both of them on the same footing, accounting
for any possible interaction between them.

Our approach can be summarized as follows. We consider data drawn from an underly-
ing model. Then, we expand the theoretical prediction of the observable, computed according
to a given model under study, around a fiducial set of parameters. Note that the model under
study is not necessarily the same model the data are drawn from. Subsequently, we apply
this expansion to the likelihood of the observable, maximize such likelihood, and obtain the
best-fit value of the parameters. We follow this procedure in two cases: a correct description
of the observable and an approximated one. From here, we estimate the systematic bias
comparing the best-fit parameters obtained in both cases.
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This technique, as is the case for Fisher matrix analyses, is conceived to be used prior
to obtaining data. In this case, it is required to choose a model as a good representation of
reality and compute the data according to it. Employing our approach before the data is
obtained will allow for the determination of the level of accuracy needed in the data analysis
of an experiment during its design. Moreover, it will help to quantify the significance of
new contributions or corrections to the theoretical modeling of the signal in light of the
potential of future experiments. Nonetheless, the methodology can also be applied to actual
observations to ascertain whether a more numerically intensive modeling is needed.

We demonstrate the power of our approach by applying it to the angular galaxy power
spectrum. We primarily focus on the systematic shifts of the best-fit parameters, whereas
the misestimation of the uncertainties in parameter inference is studied in a companion
paper [44], hereinafter Paper I. Besides traditional, single-tracer analysis, we also consider
multi-tracer analyses of the galaxy clustering. We present two practical examples: we ex-
plore how neglecting cosmic magnification or using the Limber approximation may introduce
significant systematic biases (& 1− 2σ in most of the parameters and cases under study) in
the analyses of next-generation galaxy surveys.

We also present and publish Multi CLASS. 1 Multi CLASS is a modification of the public
Boltzmann code CLASS [45, 46] that allows for the computation of the angular cross-power
spectra of two different tracers of the underlying density field, with their corresponding differ-
ent redshift dependence of the tracer characteristics (bias, magnification bias, evolution bias
and number density distribution). This possibility enables comprehensive theoretical multi-
tracer analyses. Furthermore, it includes an implementation for primordial non-Gaussianities
of the local type, parametrized by the fNL parameter, on the clustering observables. More
details about the options and implementation of Multi CLASS can be found in Appendix B
of Paper I.

This paper is organized as follows: we generalize the methodology to estimate the bias
introduced in best-fit parameters by an inaccurate modeling of a given measurement in Sec-
tion 2; introduce our test-case, the angular galaxy power spectrum, and our assumptions
for the demonstration of the potential of our approach in Section 3; show the estimated
systematic bias introduced in cosmological parameter inference by using the angular galaxy
power spectrum without modeling lensing magnification or applying the Limber approxima-
tion in Section 4; and conclude in Section 5. Appendix A contains an evaluation of the
performance of the estimation of the bias, the derivation of the estimated bias expanding
the observable up to second order on the model parameters, and a discussion of likelihoods
of Wishart-distributed variables. Appendix B quantifies the dependence of the bias in the
best-fit parameters on the largest scales included in the angular galaxy power spectrum
analysis.

2 Systematic shift of the best-fit parameters due to incorrect modeling

We begin by defining notation and conventions. We use vector operators for quantities
in parameter space; operations involving the observable space (e.g., the data vector or its
covariance) are explicitly written down as sums over the matrix elements. Unless otherwise
stated, all vectors are column vectors. For the sake of clarity, the meaning of all symbols,
superscripts and subscripts used in this section can be consulted in Table 1.

1Multi CLASS will be publicly available in https://github.com/nbellomo/Multi_CLASS upon the accep-
tance of this work.
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Symbol Meaning Super/sub-script Meaning

M Underlying model d Data

θ Set of model’s parameters ˆ Theoretical prediction

Ψ Observable i/j Components of the observable’s vector

Cov Observable’s covariance ? Generic point in parameter space

L Likelihood θ In parameter space

∆θ Finite difference in parameter space 0 Related to the true underlying model

F Fisher matrix tr Actual value in reality

∆syst Systematic bias on parameters fid Assumed fiducial value

bf Best-fit value

a/b Components of the parameter’s vector

C Computed under correct assumptions/approximations

I Computed under incorrect assumptions/approximations

α Related to an individual likelihood

Table 1: Table for reference with the meaning of each of the symbols, subscripts and super-
scripts used in Section 2.

Let us consider a generic model M specified by a set of parameters θ that, according
to some theoretical modeling, determine the observable Ψ and its covariance Cov. While in
principle there is no need to distinguish between model and modeling, this is useful in some
cases, like for instance, cosmology, where ‘model’ usually refers to the cosmological model
(e.g., ΛCDM) and ‘modeling’ refers to the practical application of the model to describe the
observables under study. In the case of cosmology, for example, there is a much wider variety
of modeling approaches than of models. Assuming a Gaussian likelihood for Ψ (which usually
is a good approximation close to its maximum, or in case the central limit theorem applies),
the logarithm of the likelihood given M depends on θ as

−2 logL
(

Ψd|M,θ
)

=

=
∑
i,j

(
Ψd
i − Ψ̂i(θ)

) (
Cov−1(θ)

)
ij

(
Ψd
j − Ψ̂j(θ)

)∗
+ log |Cov(θ)| ,

(2.1)

where Ψd and Ψ̂(θ) ≡ Ψ̂(θ|M) are the data vector and the corresponding theoretical pre-
diction of the observable, respectively, i and j denote vector and matrix indices, and the
superscript ‘*’ indicates the complex conjugate operation. The constant terms in logL,
which are not included in Equation (2.1), do not affect parameter inference, hence we neglect
them throughout this work. In the following, we assume real quantities for Ψ in order to drop
the notation referring to the complex conjugate. Nonetheless, we stress that our derivation
is equally valid to complex observables.

Equation (2.1) considers the general case in which the covariance is not fixed but varies
as function of the model parameters. For simplicity, in what follows we assume a fixed
covariance (i.e., computed for a fiducial model with a specific choice of parameter values).
Hence, the second term of the right hand side of Equation (2.1) is constant, and can be
removed from the equation. It is straightforward to extend the methodology to the case of
a parameter-dependent covariance matrix following the steps detailed below. Hereinafter we
drop the explicit notation for the dependence on the parameters of the model.
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For a specific set of parameters θ? within a given model, our target observable is Ψ̂? =
Ψ̂(θ?). We can approximate the value of the observable under any small variation of the
model parameters around θ? expanding to linear order as

Ψ̂i(θ
? + ∆θ) ≈ Ψ̂?

i +
(
∇θΨ̂

?
i

)T
∆θ, (2.2)

where ∇θ denotes the gradient operator with respect to the model parameters, the superscript
‘T ’ denotes the transpose operator, and ∆θ is a small finite difference in the parameters space.
This approximation is exact when Ψ̂ depends linearly on θ; otherwise, its accuracy decreases
as ∆θ increases.

Let us assume that M0, with parameters θ0, is the true underlying model for the
phenomenon of interest. Then, Ψd corresponds to a realization of M0 given θtr

0 , with
Ψ̂(θtr

0 ) = 〈Ψd〉, where the superscript ‘tr’ refers to the parameter values corresponding to
reality and the brackets 〈·〉 refer to the ensemble average. 2 This is true in practice only if
Ψd is not contaminated with unaccounted-for systematics and an exact theoretical modeling
is used to compute Ψ̂(θtr

0 ) and its covariance. On the other hand, we can consider a fiducial
set of parameters θfid within M guessed to be close to the point in parameter space where
the likelihood peaks (e.g., inferred from prior or complementary experiments). Note that M
and θfid do not need to be the same model and parameters as M0 and θtr

0 ; then, in the most
general case, we have Ψ̂(θfid|M) = Ψ̂fid 6= Ψd. We can expand Ψ̂fid using Equation (2.2),
apply it to Equation (2.1) and maximize the likelihood to obtain the best-fit parameters θbf

for the model M . After the maximization, we have∑
i,j

(
∇θΨ̂

fid
i

) (
Cov−1

)
ij

[
Ψd
j − Ψ̂fid

j −
(
∇θΨ̂

fid
j

)T
∆θ

]
= 0 −→

∑
i,j

(
∇θΨ̂

fid
i

) (
Cov−1

)
ij

(
Ψd
j − Ψ̂fid

j

)
=
∑
i,j

(
∇θΨ̂

fid
i

) (
Cov−1

)
ij

(
∇θΨ̂

fid
j

)T
∆θ,

(2.3)

where we have neglected all derivatives of order higher than one. Solving Equation (2.3)
for ∆θ returns the step in parameter space needed in order to maximize the likelihood:
∆θ ≡ θbf − θfid. The factor multiplying ∆θ in the right-hand side of Equation (2.3) can be
identified as the Gaussian Fisher information matrix, whose elements are given by [47]

Fa,b =

〈
∂2 logL
∂θa∂θb

〉
=
∑
i,j

(
∂Ψ̂fid

i

∂θa

)(
Cov−1

)
ij

(
∂Ψ̂fid

j

∂θb

)
, (2.4)

where a and b refer to indices of the parameters vector. Therefore, we can estimate the
difference between the best-fit parameters and the fiducial parameters initially assumed as

∆θ ≡ θbf − θfid = F−1
∑
i,j

(
∇θΨ̂

fid
i

) (
Cov−1

)
ij

(
Ψd
j − Ψ̂fid

j

)
. (2.5)

Of course, if M is a good approximation of M0 and the modeling used to compute Ψ̂fid is
accurate, θbf will be very close to θtr

0 .

2In certain cases, like in cosmology, it is not always possible to obtain a meaningful ensemble average. In
this scenario, we assume that θtr represent a faithful reproduction of the observed realization.
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We can apply the same procedure to a joint analysis of several likelihoods, corresponding
to different observables, experiments or independent data sets. However, it is important to
note that in general the global best-fit parameters θbf are different than the best-fit values
θbf
α for each independent likelihood. Let us consider independent likelihoods, so that the

joint likelihood is the product of the individual likelihoods Lα (i.e., logL =
∑

α logLα). In
this scenario, Equation (2.5) is generalized as

∆θ =

(∑
α

Fα

)−1
∑
α,i,j

(
∇θΨ̂

fid
α;i

) (
Covα

−1
)
ij

(
Ψd
α;j − Ψ̂fid

α;j

) , (2.6)

where we denote quantities referred to individual likelihoods with the subscript α (i.e., Ψα;i

refers to the i-th element of the observable corresponding to the α-th likelihood). If the
likelihoods involved in the joint analysis have different nuisance parameters, Fα should be
marginalized over the nuisance parameters not common between likelihoods, which will not
be included in the parameters vector θα. Equation (2.6) can be straightforwardly generalized
to non-independent likelihoods accounting for their covariance in the computation of both
the Fisher matrix and the factor in square brackets.

Taking all this into account, we are now ready to compare the performance of a correct
and an incorrect modeling of the observable, as well as the effects of assuming an incorrect
underlying model. We assume, as before, that Ψd is drawn from model M0, but this model is
unknown. We also consider two theoretical predictions of the observable, Ψ̂C and Ψ̂I, which
differ in the set of assumptions and approximations made for its modeling and in the model
assumed: Ψ̂C (correct) uses an accurate and precise modeling assuming a correct model
MC, while insufficiently good approximations are implemented, incorrect assumptions are
adopted, or an imperfect model M I is used to compute Ψ̂I (incorrect). We can estimate the
systematic error ∆syst induced by using Ψ̂I instead of Ψ̂C as

∆syst ≡ θbf,I − θbf,C, (2.7)

where θbf,I and θbf,C are obtained using Equation (2.3) for the correct and incorrect cases
introduced above.

Our approach to estimate the bias in the inferred parameters can be applied both to
real measurements and before they are obtained. As said above, the latter case requires the
assumption of a model M0 with true parameters θtr

0 as the perfect description of reality; in
most forecasts, the assumed fiducial model for the analysis is considered to perfectly describe
future observations, hence Ψd = Ψ̂fid,C.

To make Equation (2.7) consistent, if MC and M I are nested models, the parameter
space of the model with less parameters should be considered as a hyperplane of the parameter
space of the other model, with the values of the extra parameters being kept fixed. Consider
that θa is the extra parameter. In this case, for the model with less parameters we have
∂Ψ̂/∂θa = 0. In order to model that this parameter is fixed in the Fisher matrix (and
have the same number of parameters in the vectors that enter Equation (2.7)), we enforce
F∗,a = Fa,∗ →∞, where the subscript ∗ refer to all indices of the parameters vector. This is
equivalent to have a perfect prior on θa.

Equations (2.5), (2.6) and (2.7) are a generalization of other expressions that have been
introduced before for specific cases (see e.g. [23–39]). Our expressions, on the contrary, can
be applied to the analysis of any given observable, also prior to its measurement. These
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expressions allows one to estimate the impact of modeling assumptions and approximations
as well as incorrect choices of the underlying model on the inferred parameters. We envision
that it will also be useful to single out possible sources of systematic errors affecting new or
unexpected findings.

As stated above, the expansion of the observable up to linear order on ∆θ (Equa-
tion (2.2)) is less and less accurate as ∆θ increases (unless the observable is actually linear
on ∆θ). Therefore, in the case the bias introduced on parameter inference is very large,
Equation (2.5) provides only rough estimations. Of course the estimate of a large bias, even
if quantitatively not accurate, is a clear ‘red flag’ for the adoption of the approximation under
consideration, hence the approach is still useful. Nevertheless we further quantify the accu-
racy of the shift in the parameters estimated with Eqs. (2.5), (2.6), (2.7). In Appendix A,
we evaluate the performance of the approach outlined in the main text here for a specific
case of our case example, the angular galaxy power spectrum. Moreover, we also discuss how
this approach can be made even more accurate in this appendix. Although we use the linear
expansion discussed in this section in the main body of the text, we derive the estimation of
∆θ for an expansion of Ψ̂ up to second order in ∆θ. Finally, we also discuss the estimation
of ∆θ assuming a likelihood of Wishart-distributed variables, as it is the case of the angular
galaxy power spectrum.

3 Observable and cosmological model considered

Although the methodology described above is valid for any measurement, here we focus on
its application to cosmology. Given the vast amount of observed data and the complexity of
some theoretical calculations, theoretical and numerical approximations are very common.
Assessing the reliability of different assumptions might be challenging, but not doing it might
have unacceptable consequences. Concretely, we consider the angular galaxy power spectrum
as our target observable. The dramatic improvement in the quality of the observations will
require a much better modeling in order to fully exploit coming galaxy surveys. Therefore,
approximations that were commonly used in studies about galaxy clustering might not be
accurate anymore. Some of these approximations include, but are not limited to: neglecting
relativistic corrections, the Limber approximation, an incorrect estimation of the covariance
matrix, a poor modeling of non-linear clustering and specific approximations used to model
observational effects. For illustrative purposes, in this work we focus on the two first approx-
imations of this list. In Paper I, where the focus is set on the misestimation of the parameter
uncertainties, we also study the consequences of neglecting the covariance between different
redshifts bins. However, this is expected to have limited impact on the best-fit parameter
values; hence, we do not consider this approximation in this study.

The modeling of the angular power spectrum and of the associated likelihood is dis-
cussed with detail in Paper I; here we describe it only briefly, and encourage the reader to
refer to Paper I for a full description. The observed galaxy number count perturbations
receive contributions from the intrinsic galaxy overdensities as well as from other effects,
such as redshift-space distortions due to peculiar velocities or lensing effects caused by den-
sity perturbations along the line of sight. 3 All these effects can be modeled in harmonic
space introducing several transfer functions, the combined effect of which is given by the

3Observational effects (e.g., the observational mask) also modify the observed galaxy overdensity. However,
their modeling is extremely case dependent, and will be presented elsewhere. Since we are interested in
differential effects, neglecting this is not expected to affect our findings.
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total transfer function ∆X
` (k, z) as function of wave number k and redshift z, where ` is

the corresponding multipole and X refers to the tracer considered. The explicit form of the
contributions from intrinsic clustering, peculiar velocities and relativistic corrections to ∆X

`

can be found in Appendix A of Paper I. ∆X
` can be restricted to a given redshift bin applying

a window function W (z, zX ,∆zX) centered at zX , the width of which is controlled by ∆zX .
For instance, ∆zX often refers to the half-width or the standard deviation of a top-hat or a
Gaussian window function, respectively. Accounting for the number density of galaxies per
redshift dNX/dz, the transfer function for a specific redshift bin can be expressed as

∆X,zX
` (k) =

∫ ∞
0

dz
dNX

dz
W (z, zX ,∆zX)∆X

` (k, z), (3.1)

where the integral of W (z, zX ,∆zX)dNX/dz is equal to unity. Spectroscopic galaxy surveys
provide very precise redshifts for each galaxy included in the catalog. On the contrary, pho-
tometric galaxy surveys sacrifice the precision in the redshift measurements for the sake of
observing more galaxies. This uncertainty in the radial position of the galaxies is usually
modeled as a smoothing in the radial component of the three-dimensional clustering in con-
figuration space at small scales. However, the modeling of photometric redshift uncertainties
for the angular clustering statistics can be embedded in the choice of window function, given
that the radial clustering is projected. Photometric redshifts make impossible to use sharp
and narrow redshift bins: the most common choice is to use Gaussian window functions.

With these conventions, the linear angular galaxy power spectrum for tracers X and Y
and redshift bins zX and zY , respectively, is given by

CXY` (zX , zY ) = 4π

∫
dk

k
P0(k)∆X,zX

` (k)∆Y,zY
` (k), (3.2)

where P0(k) = k3P0(k)/2π2 is the adimensional, almost scale-invariant, power-law primordial
power spectrum of scalar curvature perturbations.

Galaxies are discrete tracers of the underlying density fluctuations, and therefore their
power spectra are affected by shot noise. We assume a Poissonian scale-independent shot
noise contribution to be added to the theoretical angular galaxy power spectrum computed
in Equation (3.2), hence the total angular power spectrum can be defined as

C̃XY` (zX , zY ) = CXY` (zX , zY ) +
δKzXzY δ

K
XY

dNX(zX)/dΩ
, (3.3)

where dNX(zX)/dΩ is the mean number density per steradian for tracer X in the redshift
bin centered at zX , and δK is a Kronecker delta. Note that with these assumptions the shot
noise term only contributes to the total power spectrum for the auto-power spectrum (i.e.,
same redshift bin and same tracer). Nonetheless, the shot noise might have non-Poissonian
contributions (see e.g. [48, 49]). Furthermore, theoretical uncertainties can be added as noise,
especially those regarding non-linear scales (see e.g., [50]).

We want to consider all possible combinations of tracers and redshift bins, and denote
the number of redshift bins for tracer X and Y with NX and NY , respectively. As explained
in detail in Paper I, one can consider the angular power spectra or the spherical harmonics
coefficients of the galaxy number count fluctuations as the data vector. Depending on the
choice, the theoretical C̃` are used in different manners. For the first option, the power
spectra between different redshift bins and tracers at a given multipole are placed in a vector

– 8 –



C` of size NX(NX + 1)/2 + NY (NY + 1)/2 + NXNY . In turn, for the second option, they
form matrices C` of size (NX +NY )× (NX +NY ) which represent the covariance between the
spherical harmonic coefficients. Hence, there is a C` vector and a C` matrix for each multipole
`. This choice also determines how the elements of the Fisher matrix are computed [51]:

Fab =
∑
`,i,j

(
∂C`
∂θa

)
i

(
M−1

`

)
ij

(
∂C`
∂θb

)
j

=

=fsky

∑
`

2`+ 1

2

∑
p,q,r,s

(
∂C`
∂θa

)
pq

(
C−1
`

)
qr

(
∂C`
∂θb

)
rs

(
C−1
`

)
sp
,

(3.4)

where fsky is the fraction of the sky probed by the survey, M` is a matrix representing the
covariance between the elements of C`, indicated by the indices i and j. In the second line
of Equation (3.4), p, q, r and s refer to the indices of C`; in the sum over these indices, one
can recognise the trace of the product of the four matrices involved. We refer the interested
reader to Appendix A of Ref. [52] for further details on the derivation of this expression

and the matrix properties used. The index i of C` corresponds to C̃
(i1,i2)
` ≡ C̃XY` (zX , zY ),

where i1 and i2 specify each unique combination of X and zX and Y and zY , respectively, of
the transfer functions involved in Equation (3.2). Then, each element i, j of the covariance
matrix M` is given by

(M`)ij =
1

fsky (2`+ 1)

(
C̃

(i1j1)
` C̃

(i2j2)
` + C̃

(i1j2)
` C̃

(i2j1)
`

)
. (3.5)

Now that we have specified the target observable, its covariance, and its Fisher matrix,
we can explicitly apply the formalism described in Section 2. In this case, we can identify the
data and theory vector Ψ as C`, and its covariance is given by M`. Specifying the general
expression in Equation (2.5) to the case of the angular galaxy power spectra we obtain that
the difference between the best-fit parameters and the initially assumed fiducial parameters
within a general model is

∆θ =θbf − θfid = F−1
∑
`,i,j

(
∇θC

fid
`

)
i

(
M−1

`

)
ij

(
Cd
` − Cfid

`

)
j

=

=F−1fsky

∑
`

2`+ 1

2

∑
p,q,r,s

(
∇θCfid

`

)
pq

[(
Cfid
`

)−1
]
qr

(
Cd
` − Cfid

`

)
rs

[
(Cfid
` )−1

]
sp
.

(3.6)

Equation (3.6) can be applied to the correct description of the angular galaxy power spectra
and to an approximated one. The substitution of these results in Equation (2.7) yields
the systematic bias introduced in parameter inference due to the approximated description,
∆syst.

As pointed out in Paper I, Equation (3.4) is only valid in the case that the same mul-
tipole range is used for all redshift bins. This is because both M` and C` would be singular
otherwise: the matrices corresponding to the multipoles that are not used in all redshift
bins would contain complete rows and columns filled with zeros. Therefore, Equation (3.4)
cannot be applied when the maximum multipole used depends on redshift. This would be
the case, for instance, of modeling the redshift dependence of the scales for which non-linear
clustering becomes significant. However, one can consider different likelihoods using a dif-
ferent multipole range for each of them in order to overcome this limitation. Each of these
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likelihoods includes only the power spectra between the redshift bins that cover the corre-
sponding multipole range. We refer the interested reader to Paper I for more details. Taking
this into account, it is straightforward to generalize Equation (3.6) to this case comparing
Equations (2.5) and Equation (2.6).

3.1 Cosmological model under study and straw-man survey examples

Given the promising prospects of future galaxy surveys to constrain primordial non-Gaussianities
(see e.g., [11, 13, 53–57]), we choose ΛCDM+fNL to be the cosmological model under study,
where fNL parametrizes the amplitude of primordial non-Gaussianity of the local type con-
trolling the amplitude of the quadractic contributions of a Gaussian random field to the
Bardeen potential. The effect of this type of non-Gaussianity on the clustering of halos can
be modeled with a strong scale-dependence of the galaxy bias on large scales [58–61]. De-
noting the standard, scale-independent Gaussian galaxy bias as bG and using the large-scale
structure convention for fNL, the total galaxy bias is given by

btot(k, z) = bG + (bG − 1)fNLδcrit
3ΩmH

2
0

c2k2T (k, z)
, (3.7)

where δcrit = 1.68 is the critical density related with spherical gravitational collapse in an
Einstein-de Sitter cosmology, Ωm is the matter density parameter today, H0 is the Hubble
constant, c is the speed of light, and T (k, z) is the transfer function of matter.4

Including the Gaussian galaxy bias of each tracer as a model parameter, the set of pa-
rameters considered in this work to model ΛCDM+fNL is θ =

{
h, ωb, ωcdm, ns, b

X
G , b

Y
G, fNL

}
,5

where ωb and ωcdm are the physical densities of baryons and cold dark matter, respectively,
ns is the spectral index of P0(k), and bXG (bYG) is the Gaussian galaxy bias for the tracer X
(Y ). Note that for analyses with only one tracer, bXG and bYG become simply bG.

As done in Paper I, we consider three straw-man galaxy surveys to study if the system-
atic biases depend qualitatively on the survey parameters, as well as to study the multi-tracer
case. First, we consider a survey with galaxies uniformly distributed in redshift and a galaxy
density per unit redshift and square degree d2Ng/dzdΩ = 1070 gal/deg2. We also consider
two other more realistic surveys, inspired by the galaxy redshift distribution expected for
Euclid [11] (in a pessimistic scenario) and SPHEREx [14], which we approximate by

d2N

dzdΩ
= A

(
z

z0

)α
e−(z/z0)1.5 gal/deg2 , (3.8)

with AEu−l = 2.4 × 103, zEu−l
0 = 0.54, and αEu−l = 4.0 for Euclid; and ASP−l = 2.93 × 104,

zSP−l
0 = 0.53 and αSP−l = 1.1. We denote these two galaxy distributions as Euclid-like and

SPHEREx-like, respectively, with corresponding related superscripts ‘Eu-l’ and ‘SP-l’. We
normalize the number density of the uniformly sampled survey to contain the same number
of galaxies as our Euclid-like survey.

We consider a full redshift range 0.1 ≤ z ≤ 2.1(2.2), split into five redshift bins centered
at z = 0.3, 0.7, 1.1, 1.5, and 1.9 for the three galaxy surveys considered. All redshift bins

4Detailed comparison with N-body simulations indicate that there might be a correction factor of order
unity to Equation (3.7) (see e.g., [62, 63]), which for simplicity we omit here. Hence, fNL in Equation (3.7)
should be considered as an effective primordial non-Gaussianity parameter of about the same magnitude of
the true underlying fNL.

5We do not consider the amplitude of P0 as a free parameter in our analysis because it is almost completely
degenerate with bXG and bYG, although we are aware that it should be included in an analysis of real observations.
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have a top-hat window function with half-widths of 0.2 or 0.3 (so that the redshift window
functions of adjacent redshift bins overlap only in the second case); we refer to these two cases
as ‘non-overlap’ and ‘overlap’ cases, respectively. The overlapping case with top-hat window
functions can be understood as a worst-case scenario for limited photometric redshift uncer-
tainties. While Gaussian window functions overlap with each other, it is the non-overlapping
intervals which contribute the most to the angular power spectrum (see Equation (3.1)). On
the other hand, top-hat window functions give equal weight to all redshifts within the bin.
Therefore, the results for a photometric survey would correspond to a very survey-dependent
intermediate case between our overlapping and non-overlapping cases. In all cases considered,
as in Paper I, we consider fsky = 1. It is straightforward to rescale our results for different
values of fsky.

Finally, we need to set the multipole range that will be used. We explore two different
scenarios. First, we consider ` ∈ [2, `max(z)] unless otherwise stated, where `max is the
multipole corresponding to the smallest scale kmax for which non-linear clustering can be
neglected: `max = kmaxχ(z), where χ(z) is the comoving distance to the mean redshift of
the redshift bin of interest. We assume kmax = R−1

max, where Rmax is the radius of a top-hat
window in configuration space for which the variance of the matter fluctuations within a given
radius in configuration is unity: σm(Rmax) = 1. We use `max = {180, 550, 1100, 1900, 3000}
for z = {0.3, 0.7, 1.1, 1.5, 1.9}, respectively. In addition, we consider a conservative case in
which `max = 200 for all redshift bins.

4 Systematic bias induced by different approximations

The results shown in this section aim to be an example of the performance of the methodology
described in Section 2, but also to act as a warning for future measurements. For illustration
purposes, we choose to apply the methodology to a case where the bias introduced in the best-
fit parameters arises only from incorrect modeling. Therefore, in what follows we consider
that the only model under study matches the true cosmology, so that MC = M0, while M I

refers to the same underlying model but when an incorrect modeling of the observable is
used. Furthermore, we take θfid,I = θfid,C = θtr

0 . This means that the data drawn from
M0 is equal to the prediction for MC using the correct modeling: Cd

` ≡ ĈC
` (θfid,C|MC).

We choose M0 to be ΛCDM+fNL, with parameter values θtr
0 : h = 0.6727, ωb = 0.02225,

ωcdm = 0.1198, ns = 0.9645, fNL = 0, an amplitude of the primordial power spectrum
ln 1010As = 3.0940, and we consider three massive degenerate neutrinos with mass mν = 0.02
eV each. We assume scale- and redshift-independent Gaussian galaxy bias for the sake of
simplicity: bunif

G = bEu−l
G = 2 for the uniform and Euclid-like surveys and bSPx

G = 1.4 for
the SPHEREx-like survey; this assumption does not change the qualitative results of the
examples under study.

The modeling we use to compute CC
` and Cd

` includes relativistic corrections and
redshift-space distortions due to peculiar velocities and lensing magnification, and does not
use the Limber approximation. In turn, CI

` differs from them in one aspect of the model-
ing: in Section 4.1 CI

` does not include the contribution from lensing magnification, while in
Section 4.2 CI

` uses the Limber approximation. Both cases are explored using a multi-tracer
analysis of the angular galaxy power spectra in Section 4.3.

In all cases considered below, the estimated systematic biases correspond to the full
vector of the shift in the multidimensional parameter space. Afterwards, we assess the signif-
icance of the estimated biases in the marginalized constraints on each of the parameters by
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comparing them with the 68% confidence level of their respective marginalized uncertainties,
obtained using the same approximations. As a general rule of thumb, the parameter θa would
be considered significantly biased if the corresponding component of ∆syst, ∆syst,a, is larger
than the 68% confidence level marginalized uncertainty in the inference of θa: ∆syst,a/σθa & 1.
We refer the interested reader to Paper I for a detailed discussion on the effects of approxi-
mations on the parameter uncertainties.

4.1 Ignoring lensing magnification

Matter density perturbations along the line of sight affect how we observe the galaxy density
distribution [64]. Therefore, the observed galaxy number count perturbations are determined
by the intrinsic clustering, redshift-space distortions due to peculiar velocities and relativistic
corrections. These corrections can be separated into contributions from lensing magnification,
doppler, and gravitational potential effects such as time-delays and integrated Sachs-Wolfe
effect [65–70].

Lensing magnification is a subdominant contribution to the observed galaxy overdensi-
ties except when the redshift separation between bins is large enough so that the correlation
due to intrinsic clustering is negligible. However, it is normally the largest relativistic cor-
rection, especially when cross-correlating two different redshift bins using the angular power
spectrum [71]. Some arguments against including lensing magnification include its subdom-
inant relative contribution to the galaxy power spectrum at the scales explored so far, the
large computational expenses required for its calculation and the difficulties in obtaining an
accurate determination of the magnification bias parameter (see e.g., [72]). Nonetheless, the
magnification contribution contains cosmological information complementary to weak-lensing
shear [25, 73, 74].

To understand and model the effect of lensing magnification consider that the gravita-
tional lensing contribution to the galaxy overdensity consists of two competing effects: on
the one hand, it stretches the volume behind the lens; on the other, it magnifies individ-
ual sources and promotes faint galaxies above the magnitude limit of the survey [75]. This
changes the observed galaxy number density nobs in a flux-limited survey:

nobs = n [1 + (5s− 2)κ] , (4.1)

where n is the intrinsic galaxy number density, s is the magnification bias parameter, and
κ is the convergence [76]. Note that s = 0.4 corresponds to a vanishing contribution from
lensing magnification. Since the magnification bias parameter depends on the tracer used,
we distinguish between sX and sY . We do not consider s as a nuisance parameter (as should
be done in a more quantitative analysis of actual observations); instead, we study several
cases with different constant values of s in order to study the dependence of the systematic
biases on this parameter.

We show the significance of the estimated biases when lensing magnification is neglected
as a function of the magnification bias parameter in Figure 1. Considering only single-tracer
analyses, we show results for the uniform and Euclid-like galaxy surveys, and normalize the
estimated biases with the forecasted 68% confidence level marginalized constraints in order
to show the bias significance. We find that the size of the systematic bias grows as |s− 0.4|
increases, and that it grows faster for magnified populations (i.e., s > 0.4), than for de-
magnified. Results for different redshift distributions are qualitatively very similar. The only
difference is that, for `max = 200, the estimated biases are larger for the uniform survey than
for the Euclid-like survey when the redshift bins overlap, and viceversa when the redshift
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Figure 1: Ratio of the estimated bias in the model parameters over the forecasted 68%
confidence level marginalized constraints for cases when the lensing magnification is included
(blue) and not as a function of the assumed magnification bias parameter. We show results for
uniform (green) and Euclid-like (red) galaxy redshift distributions, and with non-overlapping
(top) and overlapping (bottom) redshift bins; note the change of scale in the y-axis between
them. In all cases, the case for `max(z) is shown with wide solid lines with circle markers,
while thin solid lines without markers correspond to the case with constant `max = 200.
Dotted lines mark |∆syst,a/σθa |= 1.

bins do not overlap. While for the Euclid-like survey the biases are always larger when the
redshift bin do not overlap, this is only true for the uniform survey when s > 0.4.

In general, the significance of the bias is much larger for the case in which `max = 200
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than when `max varies with redshift (reaching higher values). This may be counter-intuitive,
since the signal-to-noise ratio of the magnification contribution increases at smaller scales.
However, the higher-` part is computed only for the highest-z bins (see Section 3.1), so
that the relative contribution of lensing magnification is smaller at these scales (remember
that lensing magnification dominates the angular power spectra for very separated redshift
bins). Moreover, the constraints on the cosmological parameters also improve for increasing
`max, and ∆θ ∝ F−1. The reduction of the significance of the bias with higher `max can be
understood as the information beyond lensing magnification encoded in the angular galaxy
power spectra having more weight in the final parameters constraints, with respect to the
`max = 200 case.

Assessing the significance of the biases exploring only one-dimensional marginalized
parameter constraints might be misleading. The bias might be much more significant for
systematic shifts in perpendicular directions to parameter degeneracies than what would be
inferred from one-dimensional projections. We show forecasted two-dimensional marginalized
constraints for all parameter combinations from a single-tracer Euclid-like survey in the
`max(z) case including the estimated biases with respect to the fiducial cosmology in Figure 2.
We compare the case including magnification (with s = 0.8) and the case without including
magnification (shown in blue and red, respectively). We show results for the non-overlap
(overlap) redshift bin configuration in dark (light) colors. As found in Paper I, the parameter
degeneracies obtained neglecting lensing magnification are not necessarily the same as for the
correct analysis. Furthermore, we find the systematic bias to be aligned with the degeneracies
of the incorrectly estimated constraints. Whether the alignment is general or depends on the
observable is beyond the scope of this work. As expected from Figure 1, the biases shown
in Figure 2 are larger for the case with non-overlapping redshift bins. Finally, while the
correct uncertainties do not depend on whether the redshift bins overlap or not, the resulting
incorrect confidence level regions (i.e., neglecting magnification) are slightly larger when the
redshift bins overlap (which further reduces the significance of the bias). The results using
`max = 200 are qualitatively similar (with a higher significance of the bias, as shown in
Figure 1).

4.2 Using the Limber approximation

As shown in Equation (3.2), the angular power spectrum is the projection along the line-
of-sight of the spatial, three-dimensional power spectrum. The transfer functions that drive
this projection include spherical Bessel functions. Therefore, integration over two spherical
Bessel functions is needed to compute C` for each multipole. Given the oscillatory nature of
the spherical Bessel functions, it is very computationally expensive to ensure the convergence
of these integrals, which slows down the calculation of C`. The Limber approximation [77–
79] aims to alleviate this problem by approximating the spherical Bessel functions as Dirac
delta functions. However, the transformation of low-order spherical Bessel functions (i.e., low
`) into Dirac delta functions is not accurate, which means that the Limber approximation
breaks down for C` at large scales. Using the Limber approximation to compute the galaxy
power spectrum may introduce significant biases in cosmological parameters, even when
combined with galaxy weak lensing observations, for which the Limber approximation is
accurate enough (see e.g. [80]).

We show two-dimensional forecasted marginalized constraints on the cosmological pa-
rameters from the angular power spectrum of a single-tracer Euclid-like galaxy survey in
Figure 3. We show results using `max(z) both with and without the Limber approximation
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Figure 2: 68% and 95% confidence level estimated marginalized constraints on the model
parameters for a Euclid-like survey with a single tracer with s = 0.8 using `max(z). We
compare the results including cosmic magnification (blue) and without including it (red),
assuming that the fiducial cosmology assumed coincides with the actual one, marked with a
star. Dark colors (blue and red) refer to the case with non-overlapping redshift bins, while
light colors (light blue, orange), refer to the case with overlapping redshift bins.

(red and blue, respectively), and show the results with overlapping redshift bins in lighter col-
ors. We assume s = 0.4 in order to avoid contributions from lensing magnification. As noted
in Paper I, parameter uncertainties are underestimated when the Limber approximation is
used, especially for non-overlapping redshift bins. This makes the (generally) small shifts in
the best-fit values more significant when compared to the small forecasted errors. The bias
is especially worrisome for fNL, the only example where the shift in the best fit is very large.
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Figure 3: Same as Figure 2, but comparing the results with and without using the Limber
approximation and assuming s = 0.4.

This is because the signature of local primordial non-Gaussianities manifests at large scales,
which is where the Limber approximation breaks down. The estimated systematic bias in
fNL is & 18(14)σ for the case with non-overlapping (overlapping) redshift bins. This result
indicates that using the Limber approximation at large scales potentially leads to a false
positive detection of primordial non-Gaussianity. In general, biases are smaller when the
redshift bins overlap, as it was the case for the non-inclusion of lensing magnification of the
signal. The results using `max = 200 are qualitatively similar, with the weaker constraints
(due to the use of a narrower multipole range) but with a comparable significance of the
bias due to the use of the Limber approximation. This is because the Limber approximation
breaks down at low `, which is a regime covered in both cases.
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4.3 Multi-tracer galaxy power spectrum

One of the most exciting prospects offered by the next-generation galaxy surveys is the
possibility to perform multi-tracer analyses [81, 82]. Instead of using all galaxies as a
single tracer, using various tracers of the underlying density field at the same time and
fully accounting for their cross-correlations, provides additional information. The gain comes
from probing the same volume more than once, each time with a different galaxy bias,
which reduces the cosmic variance for quantities that are related to the galaxy bias. Besides
tightening the constraints on all cosmological parameters, especially those related with the
galaxy bias, the use of multi-tracer approaches are expected to be especially effective to
constrain physics that affect the large scales, such as local primordial non-Gaussianities.

Given the reduced cosmic variance, systematic errors may produce more significant
biases in parameter inference than for single-tracer studies. We apply the methodology
described in Section 2 to multi-tracer analyses of the angular galaxy clustering in order to
asses the impact of the approximations discussed above. We use Multi CLASS to compute the
angular cross-power spectrum of two different tracers (with their own redshift distribution,
galaxy bias and magnification bias parameter). We consider two different galaxy surveys (or
galaxy populations observed by the same survey) following a Euclid-like and a SPHEREx-like
redshift distribution and with different galaxy bias as specified in Section 3.1.

We show forecasted two-dimensional marginalized constraints of the cosmological pa-
rameters under study with and without modeling lensing magnification and using `max(z) in
the signal and covariance in Figure 4. For illustrative purposes, we focus just on the case
with magnification bias parameters sEu−l = sSP−l = 0.6 for the Euclid-like and SPHEREx-
like surveys. The figure also includes the estimated bias in the best-fit parameters. We
can appreciate that, as reported in Paper I, ignoring lensing magnification overestimates the
uncertainties in the parameters, except for fNL (and ωb, for which there is practically no
effect). Moreover, there are still significant biases (∼ 1 − 2σ) in all parameters when the
redshift bins do not overlap (shown in darker colors). Surprisingly, the systematic bias is
much less significant (. 1σ) when the redshift bins do overlap. As in Figure 2, the esti-
mated bias is aligned with the degeneracy between the parameters, which almost does not
change whether lensing magnification is included or not. The alignment between the bias
and the parameter degeneracies is most likely not generic, but very population selection (and
thus, survey) dependent. With a slightly different set up (or different fiducial s for the two
populations) this alignment may not hold. Such scenario may lead to great impact in final
results: a change in the degeneracies would greatly exacerbate the effect of the systematic
bias introduced by approximations when combining the angular galaxy power spectra with
other cosmological probes.

Similarly to the single-tracer case, the estimated bias found when using `max = 200 is
larger than using `max(z), but the degeneracies and direction of the shifts remain unchanged.
The increase of the significance of the bias using `max = 200 instead of `max(z) is smaller
than for the single-tracer case. This is because the multi-tracer approach reduces the cosmic
variance, so that the relative contribution to the constraints from large scales in the `max(z)
case is higher than in the single-tracer case and the effect of using `max = 200 is smaller.

Figure 5 shows the analogous results for using or not the Limber approximation (and
considering lensing magnification in both cases). The uncertainties of the parameters are
underestimated at approximately the same level as for the single-tracer case, but the esti-
mated biases are larger in this case. Note also that in some cases the biases is not aligned
with the parameter degeneracies. As for the Euclid-like only analysis shown in the previous
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Figure 4: Same as Figure 2, but for a multi-tracer analysis of the Euclid-like and SPHEREx-
like surveys considered in this work, assuming s = 0.6 for both surveys.

section, the biases are smaller for overlapping bins (lighter colors) than for non-overlapping
bins, because when the redshift bins overlap biases are smaller and incorrect uncertainties are
larger. In this case fNL is again by far the most affected parameter, with biases of 19σ (14σ)
for non-overlapping (overlapping) redshift bins. In this case, as for the single-tracer case, the
results using `max = 200 are very similar to those shown in Figure 5.

Finally, we can compare the estimated marginalized biases for the Euclid-like only analy-
ses and for the multi-tracer analysis combining the Euclid-like and the SPHERE-like surveys.
We show the ratio of the estimated biases over the forecasted 68% confidence level marginal-
ized constraints for both cases (using both `max(z) and `max = 200) in Figure 6. We show
results both for overlapping and non-overlapping bins, and using separately the two approxi-
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Figure 5: Same as Figure 3, but for a multi-tracer analysis of the Euclid-like and SPHEREx-
like surveys considered in this work, assuming s = 0.6 for both surveys.

mations considered in this work: neglecting lensing magnification (left panel), and using the
Limber approximation (right panel). Figure 6 shows in clearer way the comparison between
the single-tracer and multi-tracer cases and using different criteria for `max discussed above.
When lensing magnification is not included the biases are approximately the same for both
single- and multi-tracer analyses if `max(z), while they are larger for a single-tracer analysis
if `max = 200. In all cases, the estimated biases are larger for non-overlapping redshift bins.
Regarding the use of the Limber approximation, the biases are larger for all parameters for
the multi-tracer case. The dependence of the estimated biases on the criterion used for `max

is not significant, except for ωb and fNL. Finally, the estimated biases are again always larger
for the non-overlapping redshift bins, with a special mention to fNL, the difference of which
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Figure 6: Ratio of the estimated bias in the cosmological parameters over the forecasted
68% confidence level marginalized constraints for cases when the lensing magnification is not
modeled (upper panel) and the Limber approximation is used (bottom panel). We show
results considering an Euclid-like survey (diamonds), and its combination with a SPHEREx-
like survey performing a multi-tracer analysis (circles), both for overlapping (orange) and non-
overlapping (red) redshift bins. In all cases we consider s = 0.6 for both galaxy populations.
Filled (hollow) markers refer to results using `max(z) (`max = 200), respectively. Note the
different scale in the y-axis in each panel, and that the y-axis in the right panel is broken.
Dotted lines mark |∆syst,a/σθa |= 1.

is more than 4σ.
Although exploiting higher multipoles of the angular galaxy power spectra returns

smaller biases for the specific sources of theoretical systematic errors explored in this work,
we emphasize that there are other key features in the modeling of the observable suscep-
tible to induce a bias in the best-fit parameters. The modeling of non-linear clustering is
probably the most important one, and it arises at small scales. Therefore, we advocate for
a comprehensive estimation of potential biases in the inferred best-fit parameters using the
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methodology described in this work, accounting for all possible sources of systematics or
approximations adopted, before freezing the analysis pipeline.

5 Conclusions

Cosmology needs to transition from the precision to the accuracy era. Reducing the sys-
tematic error budget below the statistical uncertainties represents a crucial step in that
direction. Besides controlling observational systematics, improved theoretical models of cos-
mological observables will be needed. Approximations that have been accurate enough so
far, may introduce significant systematic errors for forthcoming experiments.

There are two kind of errors that can be introduced into an analysis: a modification of
the shape of the posterior distribution and a shift of the location of its peak. These produce
a misestimation of the model parameters covariance and a systematic bias on their best-fit
values. While the former has been studied on a companion paper [44], here we have focused
on the latter.

Expanding upon previous works, we have completely generalized the methodology to
estimate the systematic bias introduced in parameter inference when the theoretical model for
a given measurement is not accurate enough or the assumed underlying model is not incorrect.
The generalized methodology is equally applicable to any measurement, even beyond the field
of cosmology. Given the complete flexibility and easy to use of Equations (2.5) and (2.7) , we
advocate their implementation whenever different approximations are under consideration.

This methodology can also be useful to optimize analyses that rely on an assumed fidu-
cial cosmology. Since this may introduce a systematic bias (see e.g., [83] for a detailed study
in the case of the BAO analysis), our methodology can be iteratively applied to find a fidu-
cial cosmology with a prediction more concordant with the measurements. The methodology
used in this work assumes Gaussian posteriors since it is based on the Fisher matrix formal-
ism, but this assumption can be relaxed, following [84–87]. This assumption is also dropped
when expanding the observable up to higher order on the model parameters. We derive the
estimation of the bias when doing a second order expansion in Appendix A.

To show the performance of the generalized methodology, we have applied it to the
angular galaxy power spectra as observed by next generation galaxy surveys. Instead of con-
sidering specific examples, we have used straw-man, yet realistic, galaxy-survey specifications
and have shown how neglecting lensing magnification or using the Limber approximation can
bias cosmological parameter inference. We have found significant biases (most of them & 1σ)
in all the cases explored in this work. Moreover, we have also included examples of multi-
tracer analyses, using Multi CLASS, a modified version of CLASS which allows to compute the
angular cross-power spectra for two different tracers of the matter distribution. In general,
we have found that the estimated systematic biases due to the considered approximations
are more significant for multi-tracer analyses.

We stress that our results cannot be taken quantitatively at face value because the
significance of the biases are expected to be very dependent on the survey and galaxy pop-
ulation specifications. Nonetheless, the risk of introducing significant systematic biases in
the results is general, and our work must be considered as a warning for analyses of future
experiments. Although, for illustration, we have focused in just two sources of theoretical
systematic errors, there are many other potential origins of systematic errors, both observa-
tional and theoretical. Therefore, it is of crucial importance that any source of systematics is
reduced well below the 1σ statistical uncertainty to ensure the robustness of the results. This
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is because the joint contribution of small systematic errors can significantly bias the inferred
constraints otherwise, even if the sources of systematics are unrelated between them.

Considering the dramatic experimental upgrades that many fields of physics will expe-
rience in the coming years, it is of paramount importance to fully exploit the potential of
new experiments and to obtain unbiased results. To do so, we need to estimate potential
biases introduced by approximations under consideration. In this work, we have provided a
methodology to do that and estimate the significance of systematic biases introduced in pa-
rameter inference. Finally, we envision that our generalized methodology will also be useful
to single out possible sources of systematic errors affecting new or unexpected findings.
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A Evaluation of the estimation of the systematic shift and higher order
approximations

In Section 2, we have presented a general expression to estimate systematic shifts on the best-
fit parameters due to incorrect modeling. Equation (2.5) is obtained assuming a Gaussian
likelihood and expanding the response of the observables to small variations in the model
parameters up to linear order. In this appendix we evaluate the performance of this approxi-
mation, and extend the discussion of Section 2 considering the expansion up to second order
and for a common non-Gaussian likelihood corresponding to variables following a Wishart
distribution.

A.1 Accuracy of the estimation

According to the Fisher forecast approach, the results for the systematic shift on the best-
fit parameters shown in the main text rely on a linear expansion of the observable on the
model parameters (see Equation (2.2)). However, this expansion is not accurate for large
displacements ∆θ in parameter space, unless the observable is linear on the model parameters.
Moreover, the approach intrinsically assumes a Gaussian posterior.

Here we compare the shift on the best-fit parameters estimated in that way to those
found from a numerical evaluation of the Gaussian likelihood for the angular galaxy power
spectrum. For the sake of simplicity and clarity, we consider a simplified case, in which the
only free parameters are ns and fNL, and all other parameters are kept fixed. We focus
on the bias introduced by ignoring the contribution of lensing magnification for an Euclid-
like survey with overlapping redshift bins, `max = 200, and representative fiducial values for
the magnification bias parameter s = {0.4, 0.6, 0.8}. We generate mock data (i.e. angular
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Figure 7: Estimated and numerically evaluated shifts induced by neglecting lensing mag-
nification with s = 0.4, 0.6 and 0.8 (left, middle and right panel, respectively). Comparison
of the forecasted constraints and estimated bias in the best-fit values using the formalism
explained in Section 2 (orange) to the results obtained by a numerical evaluation of the like-
lihood (pink). We show 68% and 95% confidence level constraints for an Euclid-like survey
and using `max = 200 for all redshift bins. Dashed grey lines mark the values used to compute
the mock data. In the left panel the small discrepancy in the best-fit values is due to the
discrete grid adopted in the numeric evaluation.

power spectra) assuming the fiducial cosmology and including lensing magnification. We do
not include sample variance in the mock data, to ease the comparison. We compute the
likelihood of the angular galaxy power spectra for values of fNL and ns in a two-dimensional
grid, without including lensing magnification (i.e., assuming s = 0.4).

The comparison is shown in Figure 7. This figure demonstrates that the estimate of
Equation (2.5) (Equation (3.6) for this specific case) and the formalism discussed in Section 2
are qualitatively correct. However, as expected, the accuracy of the estimate decreases as
the modelling error (and hence the bias introduced in the best-fit parameters) increases. In
this case, our approach with a linear-order expansion underestimates the bias on the model
parameters. Nonetheless, this is very likely to be very case-dependent. For the relevant cases
where the bias in the parameter inference is small, the linear approximation provides a good
estimates. For other cases, it is possible to use a second order approximation, as explained
below.

It is however important to note that, in general, if the simple estimate (2.5) predicts
a negligile shift, it is safe to adopt the approximation considered. On the other hand, if
the simple estimate (2.5) predicts a large shift, even if the shift amplitude is not estimated
precisely, it is still a clear indication that the approximation considered should not be adopted.

A.2 Systematic shift using a second order expansion

Let us consider a second order expansion of the response of the observable Ψ to a variations
of the model parameters around their fidicual values θfid:

Ψ̂i(θ
fid + ∆θ) ≈ Ψ̂fid

i +
(
∇θΨ̂

fid
i

)T
∆θ +

1

2
∆θT

(
HθΨ̂fid

i

)
∆θ, (A.1)
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where Hθ is the Hessian operator (with derivatives with respect to the model parameters),
applied to the observable Ψ̂i and evaluated at θfid. This expansion adds the last term to the
linear expansion shown in Equation (2.2). Now we can proceed as explained in Section 2: if
we substitute this expansion in the logarithm of the likelihood (Equation (2.1)) and maximize
it, we find ∑

i,j

[
∇θΨ̂

fid
i +

(
HθΨ̂fid

i

)
∆θ
] (

Cov−1
)
ij[

Ψd
j − Ψ̂fid

j −
(
∇θΨ̂

fid
j

)T
∆θ − 1

2
∆θT

(
HθΨ̂fid

j

)
∆θ

]
= 0 .

(A.2)

After some algebra we can simplify this expression to∑
i,j
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j

)
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(A.3)

where each line in the right hand side of the expression corresponds to terms linear, quadratic
and cubic on ∆θ, respectively, and we define the difference between the data and the predic-
tion at θfid as ∆Ψ̂fid ≡ Ψd − Ψ̂fid. Equation (A.3) does not have an analytic solution (which
instead exists for a linear expansion, see Equation (2.5)), but can be used if a more accurate
estimate is needed, as it may be the case for large ∆θ. Note that the presence of Hθ involves
further computation of second derivatives. Finally, Equation (A.3) can be manipulated as
described in Section 2 in order to consider the combination of likelihoods.

A.3 Shift for a non-Gaussian likelihood: Wishart distribution

Although the procedure followed in Section 2 to estimate the systematic bias introduced
in the best-fit parameters is general for any likelihood, the results given in Equations (2.5)
and (A.3) assume a Gaussian likelihood. While in many applications the adoption of a
Gaussian likelihood is well justified, this is not always the case. Given that the actual
expression for ∆θ can differ depending on the likelihood, it is important to explore non-
Gaussian cases.

As discussed in Paper I, using a Gaussian likelihood for the angular galaxy power
spectra is an approximation based on the central limit theorem: the true Gaussian6 random
variables are the spherical harmonics coefficients associated to the galaxy number density
perturbations. Hence, the angular power spectra follow a Wishart distribution. Since we
have used the angular galaxy power spectra in this work, here we derive ∆θ for a likelihood
of variables following a Wishart distribution.

Let us consider a Gaussian variable ϕ (e.g., the galaxy number density fluctuations), the
covariance of which is given by the quantity Φ, considered Gaussian throughout this work,

6Non-linear clustering induces small deviations from Gaussianity, but these are significant only at small
(i.e., non-linear) scales.
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but actually following a Wishart distribution. In most of the real cases analogous to this
situation, ϕ is given by the data, and the dependence on the model is encoded in Φ̂. Ψ (i.e.,
the observable considered in Section 2) is the half-vectorization of Φ; this is analogous to C`
and C`, discussed in Section 3. If we consider a Gaussian likelihood for ϕ, neglecting constant
terms, we have

−2 logL
(
ϕd|M,θ

)
=
∑
i,j

ϕd
i

(
Φ̂−1(θ)

)
ij

(
ϕd
j )
)∗

+ log
∣∣∣Φ̂(θ)

∣∣∣ =

=
∑
p,q

[
Φd
pq

(
Φ̂−1(θ)

)
qp

]
+ log

∣∣∣Φ̂(θ)
∣∣∣ , (A.4)

where the last equality yields the likelihood for Φd, following a Wishart distribution with
the parameter dependence encoded in the matrix Φ̂. The maximization condition for this
likelihood is (dropping the explicit dependence on the parameters and model for the sake of
conciseness)
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(A.5)

where for any square matrix A,
∑

i,j AijAji = Tr [AA] (with ‘Tr’ denoting the trace operator),
and we have used the following properties:

∇θ|A|=
∑
i,j

[adj(A)ij∇θAji] = |A|
∑
i,j

[(
A−1

)
ij
∇θAji

]
,

∇θA−1 = −A−1∇θAA−1 ,

(A.6)

where adj(A) is the adjugate of the matrix A. Using the same matrix properties as in
Equation (3.4), we can write the maximization condition as

− 2∇θ logL ∝
∑
i,j

∇θΨ̂i

(
Cov−1

)
ij

(
Ψd
j − Ψ̂j

)
= 0 , (A.7)

which is the same condition as for the Gaussian likelihood of Equation (2.1). Therefore,
at any order in the expansion of the observable on the parameters, the results found in
Equation (2.5) also apply for the likelihood of Wishart distributed variables. This is because
the two likelihoods share the same best-fit parameters, even if the distributions are different.

B Systematic bias as function of the largest scales included

In our analysis, we have found that, in most cases, the bias due to neglecting lensing magnifi-
cation or using the Limber approximation is more significant when `max = 200 is set (see e.g.,
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Figure 8: Ratio of the estimated bias in the cosmological parameters over the forecasted
68% confidence level marginalized constraints (solid lines, left side y-axis) compared to the
relative forecasted 68% confidence level marginalized constraints – except for fNL, for which
we show the absolute forecasted constraint – (dashed lines, right side y-axis), both of them as
function of the minimum multipole `min included in the analysis. We show results for the case
when the lensing magnification is not modeled (upper panel) and the Limber approximation is
used (bottom panel), considering the combination of an Euclid-like survey and a SPHEREx-
like survey performing a multi-tracer analysis. In all cases we consider s = 0.6 for both
galaxy populations, and `max(z). Note that in the lower panel, the result corresponding to
∆syst,fNL

/σfNL
is divided by a factor 10 for visualization purposes.

Figures 1 and 6). This is because these two approximations are increasingly less accurate at
low `. Although we advocate the use of accurate approximations throughout and exploit the
whole set of observations (instead of limiting the extent of the analysis to a regime where
approximations hold), it is interesting to explore how the significance of the bias decreases as
we reduce the multipole range included in the analysis by increasing the minimum multipole
`min. The expected reduction of the significance of the bias is due to a smaller ∆syst,a –
because the data for which the approximation is less accurate are not included – and due to
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an increase in σa – given that we are using less data –.
In Figure 8, we compare ∆syst,a/σa and σa/a (y-axis legend on the left and right side of

each panel, respectively) as a function `min for our default choice of `(z). We show estimations
for the five cosmological parameters considered, for the multi-tracer case, and both for the
case where lensing magnification is neglected (upper panel) and the Limber approximation
is used (bottom panel). For the case in which lensing magnification is neglected, increasing
`min does not reduce significantly the biases in the inferred parameters, while for the case in
which the Limber approximation is used, the systematic errors are below ∼ 0.5σ for `min & 60.
However, in both cases, the constraining power on fNL (one of the main scientific targets of
the next-generation galaxy surveys) quickly degrades as we increase `min.

We want to emphasize that this discussion is mostly for illustration purposes, and that
it is certainly desirable to adopt accurate approximations for the data available, rather than
discarding data to be able to use inferior approximations. Moreover, in the case of pursuing
a constraint on fNL, using as much data as possible on the largest scales is key.
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contributions to galaxy correlations”, General Relativity and Gravitation 48 (July, 2016) 84.

[72] H. Hildebrandt, “Observational biases in flux magnification measurements”, MNRAS 455
no. 4, (Feb., 2016) 3943–3951, arXiv:1511.01352 [astro-ph.GA].

[73] L. van Waerbeke, “Shear and magnification: cosmic complementarity”, MNRAS 401 no. 3,
(Jan., 2010) 2093–2100, arXiv:0906.1583 [astro-ph.CO].

[74] B. Casaponsa, A. F. Heavens, T. D. Kitching, L. Miller, R. B. Barreiro, and
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