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Abstract

We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive ω meson
muoproduction on the proton at COMPASS using 160 GeV/c polarised µ+ and µ− beams impinging
on a liquid hydrogen target. The measurement covers the range 5.0 GeV/c2 < W < 17.0 GeV/c2,
with the average kinematics 〈Q2〉 = 2.1 (GeV/c)2, 〈W 〉 = 7.6 GeV/c2, and 〈p2

T〉 = 0.16 (GeV/c)2.
Here, Q2 denotes the virtuality of the exchanged photon, W the mass of the final hadronic system
and pT the transverse momentum of the ω meson with respect to the virtual-photon direction. The
measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitu-
dinally polarised vector mesons (γ∗T → VL) indicate a violation of s-channel helicity conservation.
Additionally, we observe a sizeable contribution of unnatural-parity-exchange (UPE) transitions that
decreases with increasing W . The results provide important input for modelling Generalised Parton
Distributions (GPDs). In particular, they may allow to evaluate in a model-dependent way the contri-
bution of UPE transitions and assess the role of parton helicity-flip GPDs in exclusive ω production.
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1 Introduction

In this paper, exclusive ω meson muoproduction is studied in the process

µ + p→ µ
′+ p′+ω, (1)

which in the one-photon-exchange approximation is described by the interaction of a virtual photon γ∗

with the target proton p:
γ
∗+ p→ p′+ω. (2)

This process, which at high virtuality Q2 of the photon is known as Hard Exclusive Meson Production
(HEMP), serves at low values of the squared four-momentum transfer t as an important tool to access
Generalised Parton Distributions (GPDs) [1–5] that contain a wealth of new information on the parton
structure of the nucleon.

The amplitude for Hard Exclusive Meson Production by longitudinally polarised virtual photons was
proven to factorise into a hard-scattering part, which is calculable in perturbative QCD (pQCD), and a
soft part [4, 6]. The soft part contains GPDs that describe the structure of the probed nucleon and a dis-
tribution amplitude that accounts for the structure of the produced meson. The factorisation is referred to
as collinear because parton transverse momenta are neglected. No similar proof of collinear factorisation
exists for transversely polarised virtual photons. However, phenomenological pQCD-inspired models
have been proposed [7–10] that go beyond the collinear factorisation by postulating the so called k⊥
factorisation, where k⊥ denotes parton transverse momentum. In the Goloskokov-Kroll model [8–12],
hereafter referred to as GK model, cross sections, Spin Density Matrix Elements (SDMEs) as well as
target and beam-spin asymmetries for HEMP by both longitudinally and transversely polarised virtual
photons can be described simultaneously.

At leading twist, longitudinally polarised vector-meson production by longitudinally polarised virtual
photons is described by the chiral-even GPDs H f and E f , where f denotes a quark of a given flavour or a
gluon. When higher-twist effects are included in the three-dimensional light-cone wave function, the pro-
duction of longitudinally polarised vector mesons by transversely polarised virtual photons is described
by the chiral-odd GPDs H f

T and Ē f
T , which allow a helicity flip of the “active” quark. Unnatural-parity

exchange (UPE) contributes also to transitions from transversely polarised virtual photons to transversely
polarised vector mesons or from longitudinally polarised virtual photons to transversely polarised vector
mesons. These contributions are described by the GPDs H̃ f and Ẽ f . Besides these UPE contributions,
there is a sizeable pion-pole contribution that is treated as a one-boson exchange in the GK model.

The SDMEs describe the spin structure of the reaction shown in Eq. (1). They are related to helicity am-
plitudes that describe transitions between specified spin states of virtual photon, target proton, produced
vector meson and recoil proton. For an unpolarised nucleon target, after summing over initial and final
spin states of the proton, SDMEs only depend on the helicities of virtual photon and produced meson.
The measured SDME values can be used to establish a hierarchy of helicity amplitudes, to test the hypoth-
esis of s-channel helicity conservation (SCHC), to evaluate the contribution of unnatural-parity-exchange
transitions and to assess the role of chiral-odd, i.e. parton helicity-flip GPDs in exclusive ω production.
They also allow to determine the phase difference between helicity amplitudes as well as the longitudinal-
to-transverse cross-section ratio. The measurements of SDMEs can provide further constraints on GPD
parameterisations beyond those from measurements of cross sections and spin asymmetries for HEMP.

The HERMES measurements of SDMEs for exclusive electroproduction of ω mesons [13] in the kine-
matic region 1.0 (GeV/c)2 < Q2 < 10 (GeV/c)2, 3.0 GeV/c2 <W < 6.3 GeV/c2 and |t|< 0.2 (GeV/c)2,
where t is the squared four-momentum transfer to the target, indicate a sizeable contribution of UPE
transitions that can be described by GPDs H̃ f and Ẽ f related to quark helicity distributions. Here, Q2

denotes the virtuality of the exchanged virtual photon and W is the mass of the final hadronic system. In
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the framework of the GK model it turns out [12] that the pion-pole exchange, which is treated as one-
boson exchange, is an important contribution required to reproduce the HERMES results. The effect of
such a t-channel π0 exchange decreases with W while it is predicted still to be measurable at COMPASS.
The HERMES results on SDMEs for exclusive ω production, as well as those for exclusive ρ0 produc-
tion [13, 14], indicate a violation of the SCHC hypothesis, which in the framework of the GK model is
attributed to a contribution of chiral-odd GPDs.

Also, an early paper on exclusive ω electroproduction [15] contains results on SDMEs obtained at DESY
for 0.3 (GeV/c)2 < Q2 < 1.4 (GeV/c)2 and 0.3 GeV/c2 <W < 2.8 GeV/c2. The SDMEs in exclusive ω

electroproduction were also studied [16] at CLAS in the range 1.6 (GeV/c)2 < Q2 < 5.2 (GeV/c)2 and
1.9 GeV/c2 <W < 2.8 GeV/c2. It was found that the exchange of the pion Regge trajectory dominates
exclusive ω production, even for Q2 values as large as 5 (GeV/c)2.

The present COMPASS results on SDMEs for exclusive ω muoproduction, which supplement the pub-
lished COMPASS results on azimuthal asymmetries for transversely polarised protons [17], have the
potential to further constrain GPDs. In the framework of the GK model it may become possible to assess
the role of chiral-odd GPDs in the mechanism of SCHC violation and to shed light onto the mechanism
of UPE transitions.

2 Theoretical formalism

Adopting the notation from Ref. [13], the theoretical formalism of SDMEs and helicity amplitudes in-
troduced by K. Schilling and G. Wolf [18] is used throughout this paper.

2.1 Definition of Spin Density Matrix Elements

The helicity amplitudes FλV λ ′Nλγ λN describe the transition of a virtual photon with helicity λγ to a vector
meson with helicity λV , where λN (λ ′N) is the nucleon helicity in the initial (final) state. The helicity
amplitudes depend on W , Q2, and t ′ ≡ |t| − t0 ≈ p2

T, where t0 represents the smallest kinematically
allowed value of |t| for given Q2 and meson mass, and p2

T is the square of the vector-meson transverse
momentum with respect to the direction of the virtual photon. In the centre-of-mass (CM) system of
virtual photon and nucleon, the vector-meson spin density matrix ρ

λV λ
′
V

is related to the helicity amplitude
FλV λ ′Nλγ λN as [18]

ρλV λ ′V
=

1
2N ∑

λγ λ ′γ λNλ ′N

FλV λ ′Nλγ λN ρ
U+L
λγ λ ′γ

F∗
λ ′V λ ′Nλ ′γ λN

, (3)

where N is a normalisation factor [14, 18]. The virtual-photon spin density matrix ρ
U+L
λγ λ ′γ

[14] describes

the subprocess µ → µ ′+ γ∗, which is calculable in quantum electrodynamics. It can be decomposed as

ρ
U+L
λγ λ ′γ

= ρ
U
λγ λ ′γ

+Pb ρ
L
λγ λ ′γ

, (4)

where the matrix with superscript L (U) contains elements that are coupled (not coupled) to the beam
polarisation Pb. In the following the corresponding vector-meson SDMEs, which are related to these
elements, will be referred to as “polarised” (“unpolarised”).

The vector-meson spin density matrix can be decomposed into a set of nine matrices ρα

λV λ ′V
corresponding

to different virtual-photon polarisation states: transverse polarisation (α=0, ..., 3), longitudinal polari-
sation (α=4), and their interference (α=5, ..., 8) [18]. If it is experimentally not possible to separate
the contributions from longitudinally and transversely polarised photons, SDMEs are usually defined as
follows:

r04
λV λ ′V

= (ρ0
λV λ ′V

+ εRρ
4
λV λ ′V

)(1+ εR)−1,
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rα

λV λ ′V
=

{
ρα

λV λ ′V
(1+ εR)−1, α = 1,2,3,

√
Rρα

λV λ ′V
(1+ εR)−1, α = 5,6,7,8.

(5)

Here, R = dσL/dσT is the differential longitudinal-to-transverse cross-section ratio of virtual photons
and ε is the virtual-photon polarisation parameter, see Eq. (15). The relations between the 23 SDMEs
defined in Eq. (5) and the helicity amplitudes are given in Appendix A of Ref. [14].

2.2 Properties of Helicity Amplitudes

As detailed in Refs. [14, 18], each helicity amplitude can be linearly decomposed into a natural-parity-
exchange (NPE) amplitude T and an unnatural-parity-exchange (UPE) amplitude U ,

FλV λ ′Nλγ λN = TλV λ ′Nλγ λN +UλV λ ′Nλγ λN , (6)

with the following relations [18]:

TλV λ ′Nλγ λN =
1
2
[FλV λ ′Nλγ λN +(−1)λV−λγ F−λV λ ′N−λγ λN ], (7)

UλV λ ′Nλγ λN =
1
2
[FλV λ ′Nλγ λN − (−1)λV−λγ F−λV λ ′N−λγ λN ]. (8)

Using the notation

∑̃TλV λγ
T ∗

λ ′V λ ′γ
≡ 1

2 ∑
λNλ ′N

TλV λ ′Nλγ λN T ∗
λ ′V λ ′Nλ ′γ λN

. (9)

and the symmetry properties [14, 18] of the amplitudes T , Eq. (9) becomes

∑̃TλV λγ
T ∗

λ ′V λ ′γ
= T

λV
1
2 λγ

1
2
T ∗

λ ′V
1
2 λ ′γ

1
2
+T

λV− 1
2 λγ

1
2
T ∗

λ ′V−
1
2 λ ′γ

1
2
. (10)

Here, both products on the right-hand side represent the contribution of NPE amplitudes, the first without
and the second with nucleon-helicity flip. The relations for the UPE amplitudes can be written in an
analogous way. In the abbreviated notation used in the text, the nucleon-helicity indices will be omitted
for amplitudes with λN = λ ′N , i.e.

TλV λγ
≡ T

λV
1
2 λγ

1
2

= T
λV− 1

2 λγ− 1
2
,

UλV λγ
≡U

λV
1
2 λγ

1
2

=−U
λV− 1

2 λγ− 1
2
. (11)

The hypothesis of s-channel helicity conservation implies that there exist only diagonal γ∗→ V transi-
tions (λV = λγ ).

3 Experimental access to SDMEs

Spin density matrix elements are extracted from experimental data on exclusive muoproduction of ω

mesons. The SDMEs are fitted as parameters of the three-dimensional angular distribution W U+L(Φ,φ ,
cosΘ) to the corresponding experimental distribution. Here, Φ is the azimuthal angle of the produced ω

meson, while the polar angle Θ and the azimuthal angle φ describe the three-pion decay of the ω meson,
see Eqs. (16 - 21). The angular distribution W U+L is decomposed into contributions that are not coupled
(W U ) or coupled (W L) to the beam polarisation:

W U+L(Φ,φ ,cosΘ) = W U(Φ,φ ,cosΘ)+PbW
L(Φ,φ ,cosΘ). (12)
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Using the data, which were collected with a longitudinally polarised beam, 15 “unpolarised” SDMEs are
extracted from W U :

W U(Φ,φ ,cosΘ) =
3

8π2

[
1
2
(1− r04

00)+
1
2
(3r04

00−1)cos2
Θ

−
√

2Re{r04
10}sin2Θcosφ − r04

1−1 sin2
Θcos2φ

− ε cos2Φ

(
r1

11 sin2
Θ+ r1

00 cos2
Θ−
√

2Re{r1
10}sin2Θcosφ − r1

1−1 sin2
Θcos2φ

)
− ε sin2Φ

(√
2Im{r2

10}sin2Θsinφ + Im{r2
1−1}sin2

Θsin2φ

)
+

√
2ε(1+ ε)cosΦ

(
r5

11 sin2
Θ+ r5

00 cos2
Θ−
√

2Re{r5
10}sin2Θcosφ

− r5
1−1 sin2

Θcos2φ

)
+

√
2ε(1+ ε)sinΦ

(√
2Im{r6

10}sin2Θsinφ + Im{r6
1−1}sin2

Θsin2φ

)]
, (13)

and 8 “polarised” SDMEs from W L:

W L(Φ,φ ,cosΘ) =
3

8π2

[√
1− ε2

(√
2Im{r3

10}sin2Θsinφ + Im{r3
1−1}sin2

Θsin2φ

)
+

√
2ε(1− ε)cosΦ

(√
2Im{r7

10}sin2Θsinφ + Im{r7
1−1}sin2

Θsin2φ

)
+

√
2ε(1− ε)sinΦ

(
r8

11 sin2
Θ+ r8

00 cos2
Θ−
√

2Re{r8
10}sin2Θcosφ

− r8
1−1 sin2

Θcos2φ

)]
. (14)

Here, the virtual-photon polarisation parameter ε represents the ratio of fluxes of longitudinal and trans-
verse virtual photons,

ε =
1− y− y2 Q2

4ν2

1− y+ 1
4 y2(Q2

ν2 +2)
, (15)

where y = p ·q/p · k lab
= ν/E. The symbols p, q and k denote the four-momenta of target proton, virtual

photon and incident lepton respectively. The energy of virtual photon and incident lepton in the target
rest frame is denoted by ν and E, respectively.

Angles and reference frames are defined in Fig. 1.

The directions of axes of the “hadronic CM system” and the ω-meson rest frame coincide with the
directions of axes of the helicity frame [14, 15, 18]. Following Ref. [18], the right-handed hadronic CM
system of virtual photon and target nucleon, with coordinates XY Z, is defined such that the Z-axis is
aligned along the virtual-photon three-momentum q and the Y -axis is parallel to q× v, where v is the
three-momentum of the ω meson.

For the convenience of the reader, we give in the following the explicit definitions of angles [13]. The
angle Φ between ω production plane and lepton scattering plane in the hadronic CM system is given by

cosΦ =
(q×v) · (k×k′)
|q×v| · |k×k′|

(16)
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n

π+

π-

π0

Θϕ
X

Y

Z



ω

p
γ*



 ω production plane

ω decay plane

helicity frame
(ω at rest)

Y

.

Fig. 1: Definition of angles in the process µN→ µNω with ω → π+π−π0. Here, Φ is the angle between the ω

production plane and the lepton scattering plane in the centre-of-mass system of the virtual photon and the target
nucleon. The variables Θ and φ are respectively the polar and azimuthal angles of the unit vector normal to the
decay plane in the ω meson rest frame.

and

sinΦ =
[(q×v)× (k×k′)] ·q
|q×v| · |k×k′| · |q|

. (17)

Here k, k′, q = k− k′ and v are the three-momenta of the incoming and outgoing lepton, the virtual
photon and the ω meson respectively.
The unit vector normal to the decay plane in the ω rest frame is defined by

n =
pπ+×pπ−

|pπ+×pπ− |
, (18)

where pπ+ and pπ− are the three-momenta of the positive and negative decay pion in the ω rest frame,
respectively.

The polar angle Θ of the unit vector n in the ω meson rest frame, with the z-axis aligned opposite to the
outgoing nucleon momentum p′ and the y-axis directed along p′×q, is defined by

cosΘ =−p′ ·n
|p′|

. (19)

The azimuthal angle φ of the unit vector n is given as follows:

cosφ =
(q×p′) · (p′×n)
|q×p′| · |p′×n|

, (20)

sinφ =− [(q×p′)×p′] · (n×p′)
|(q×p′)×p′| · |n×p′|

. (21)

4 Experimental setup and data selection

The main component of the COMPASS setup is the two-stage magnetic spectrometer. Each spectrometer
stage comprises a dipole magnet complemented by a variety of tracking detectors, a muon filter for muon
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identification and an electromagnetic as well as a hadron calorimeter. A detailed description of the setup
can be found in Refs. [20–22].

The data used for this analysis were collected within four weeks in 2012. In this period the COMPASS
spectrometer was complemented by a 2.5 m long liquid-hydrogen target surrounded by a time-of-flight
(TOF) system for the detection of recoiling protons and by a third electromagnetic calorimeter placed
directly downstream of the target. The recoil detector restricts the kinematic coverage towards the region
of small squared transverse momentum of the ω-meson with respect to the virtual-photon direction.
Hence it was used only for an additional check of the background correction procedure as explained in
Sec. 5.3 and not for the determination of SDMEs.

Data with µ+ and µ− beams were taken separately. The natural polarisation of the muon beam provided
by the CERN SPS originates from the parity-violating decay-in-flight of the parent meson, which implies
opposite polarisations for µ+ and µ− beams. Within regular time intervals during data taking, charge
and polarisation of the muon beam were swapped simultaneously. In order to equalise the spectrometer
acceptance for the two beam charges, also the polarities of the two spectrometer magnets were changed
accordingly. For both beams, the absolute value of the average beam polarisation is about 0.8 with an
uncertainty of about 0.04.

An event to be accepted for analysis is required to have a topology as that of the observed process

µ p→ µ ′p′ω

π+π−π0

γγ BR≈ 99%.

BR≈ 89%

The selected events should have one reconstructed vertex inside the liquid-hydrogen target associated
with the incoming and the outgoing muon, and two hadron tracks of opposite charge. The outgoing
muon has to have the same charge as the incoming muon and is required to traverse more than 15
radiation lengths to be identified as a muon. The charged hadron tracks are selected by requiring the
traversed path to be shorter than 10 radiation lengths.

4.1 π0 reconstruction

A neutral pion is reconstructed via its dominant decay into two photons that are registered as neutral
clusters in the electromagnetic calorimeters. As neutral cluster we denote a reconstructed calorimeter
cluster that is not associated to a charged track, thereby including any cluster for the most upstream
calorimeter that had no tracking system upstream of it. The method of π0 reconstruction is similar to the
one used in the analysis of azimuthal asymmetries for exclusive ω production on a transversely polarised
target [23].

In Fig. 2 the distribution of the reconstructed two-photon invariant mass is shown. The π0 peak is
prominent. The distribution is fitted by a superposition of the signal, which is described by a Gaussian
function, and a linear background. After selection of an event with a π0, the energies of the decay photons
are scaled by the factor MPDG

π0 /Mγγ in order to improve the experimental resolution of the reconstructed
three-pion invariant mass. Here MPDG

π0 ≈ 0.135 GeV/c2 is the nominal π0 mass. This scaling does not
affect the angular distributions of neutral pions.

4.2 Kinematic selections

The following kinematic selections are applied to select exclusively produced ω mesons:

– 1.0 (GeV/c)2 < Q2 < 10.0 (GeV/c)2, where the lower limit ensures applicability of pQCD and the
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Fig. 2: Distribution of the two-photon invariant mass fitted by a Gaussian function and a linear background. The
dashed vertical line denotes the PDG value of the π0 mass. The black arrows indicate the selection window.

upper one suppresses background due to hadrons produced in DIS, which hereafter is referred to
as “SIDIS background”.

– 0.1 < y < 0.9, where the lower limit suppresses events with poorly reconstructed kinematics and
the upper one removes events with large radiative corrections.

– W > 5.0 GeV/c2 to remove the kinematic region where the cross section changes rapidly due to the
production of resonances.

– 0.01 (GeV/c)2 < p2
T < 0.5 (GeV/c)2, where pT is the transverse momentum of the ω meson with

respect to the virtual-photon direction. The lower limit removes events with a poorly determined
azimuthal angle of the produced meson and the upper one suppresses SIDIS background.

– 0.1 GeV/c2 < Mγγ <0.17 GeV/c2, where Mγγ is the two-photon invariant mass, in order to select
π0 mesons.

– 0.71 GeV/c2 < Mπ+π−π0 < 0.86 GeV/c2, where Mπ+π−π0 is the three-pion invariant mass, in order to
select ω mesons. In Fig. 3, the ω signal is clearly visible above a small background. The invariant
mass of the three-pion system is fitted by a Breit-Wigner function and a linear background. As
the non-resonant background is found to be small, i.e. about 7% for the used range of three-pion
invariant mass, its effect on the extraction of SDMEs is neglected.

– Eω > 14 GeV to reduce the SIDIS background contribution.

The information from the recoil proton detector is not used for the extraction of SDMEs. Instead, in
order to enhance the fraction of events with exclusively produced ω mesons, the missing energy

Emiss =
M2

X−M2

2M
(22)

is constrained by −3.0 GeV < Emiss < 3.0 GeV to take into account the experimental resolution. Here
M is the proton mass, M2

X = (p+q− pπ+ − pπ− − pπ0)2 is the missing mass squared, and pπ+ , pπ− and
pπ0 are the four-momenta of the three pions. The Emiss distribution for the experimental data is shown in
Fig. 4 as open histogram. The exclusive peak is apparent.

After applying all kinematic selection criteria, 3060 events are available for further analysis.
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Fig. 3: Distribution of the π+π−π0 invariant mass fitted by a Breit-Wigner function and linear background. The
dashed vertical line denotes the PDG value of the ω mass. The black arrows denote the applied limits.

4.3 SIDIS background

The Emiss distribution is used to determine the fraction of SIDIS background under the exclusive peak,
following the procedure described in Refs. [17, 23]. For the simulation of background, the LEPTO 6.5.1
generator is used with the COMPASS tuning of parameters [24]. In order to achieve the best possible
agreement between experimental and simulated Emiss distributions, the simulated data are reweighted on
a bin-by-bin basis using the weight

w(Emiss) =
Nsc

rd(Emiss)

Nsc
MC(Emiss)

. (23)

Here Nsc
rd(Emiss) and Nsc

MC(Emiss) are numbers of events containing same-charge hadron pairs, h+h+γγ and
h−h−γγ , in the three-pion system for experimental and simulated data, respectively. In order to improve
the statistical significance, the constraint on the ω invariant mass is not used for the purpose of estimating
the weight w. The shaded histogram in Fig. 4 represents the simulated SIDIS background, which is
generated by LEPTO and processed through the full simulation of the COMPASS setup [25], followed
by the same event reconstruction and selection procedure as for the real data, and then reweighted in
the way described above. The distribution is normalised to the experimental data in the region 7 GeV
< Emiss < 20 GeV. The fraction of background in the signal window −3.0 GeV < Emiss < 3.0 GeV is
found to be fbg= 0.28 for the total kinematic range. The fraction of SIDIS background increases with
increasing Q2 and p2

T, and it decreases with increasing W . For the results on kinematic dependences of
SDMEs, which are presented in the following, the background fraction fbg is evaluated separately for
each kinematic bin, the values ranging between 0.20 and 0.41.

5 Extraction of SDMEs

5.1 Unbinned maximum likelihood method

The SDMEs are determined by an Unbinned Maximum Likelihood fit of the function W (R;Φ,φ ,cosΘ)
to the experimental three-dimensional angular distribution of ω production and decay. The explicit
expression for the dependence of W on SDMEs was given in Sec. 3 by Eqs. (12, 13, 14). Here R
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Fig. 4: The missing-energy distribution from experimental data (open histogram) compared to the distribution of
SIDIS events from a LEPTO MC simulation (shaded histogram). The MC distribution is normalised to the data
in the region 7 GeV < Emiss < 20 GeV. The vertical dashed line denotes the upper limit of the exclusive region.
Each LEPTO MC event is reweighted by a Emiss-dependent weight that is calculated using both experimental and
simulated data with same-charge hadron pairs. See text for a detailed explanation.

denotes the set of 23 SDMEs rα

λV λ ′V
. The negative log-likelihood function to be minimised reads

− lnL(R) =−
N

∑
i=1

ln
W U+L(R;Φi,φi,cosΘi)

Ñ (R)
, (24)

where N is the number of selected events.The likelihood normalisation factor

Ñ (R) =
NMC

∑
j=1

W U+L(R;Φ j,φ j,cosΘ j) (25)

is calculated numerically using the sample of MC events generated with the HEPGEN++ ω generator, in
the following denoted by HEPGEN [26, 27]. This generator is used to model the kinematics of exclusive
ω production. For the purpose of the present analysis, the option with an isotropic three-dimensional
angular distribution of ω production and decay is chosen. The generated events are passed through a
complete description of the COMPASS setup and the resulting data are treated in the same way as it was
done for experimental data. The number of HEPGEN events is denoted NMC in Eq. (25).

5.2 Background-corrected SDMEs

In order to determine SDMEs that are corrected for SIDIS background, a two-step procedure is used.
First, the parameterisation of the background angular distributions is obtained by applying the above
described maximum likelihood method to selected SIDIS events simulated with the LEPTO generator.
These events are required to pass the same selection criteria as experimental data. Performing an un-
binned likelihood fit according to Eq. (24) using simulated events in the range −3.0 GeV< Emiss <
3.0 GeV yields the set B of 23 “background SDMEs”.

In the second step, the set B of background SDMEs is used to extract the set R of background-corrected
SDMEs by applying the unbinned maximum likelihood fit to the experimental data. For this purpose the
following negative log-likelihood function is fitted:
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− lnL(R) =−
N

∑
i=1

ln
[(1− fbg) W U+L(R;Φi,φi,cosΘi)

Ñ (R,B)
+

fbg W U+L(B;Φi,φi,cosΘi)

Ñ (R,B)

]
. (26)

Here, fbg is the fraction of background events in the selected experimental data as determined in Sec. 4.2
and Ñ is the normalisation factor:

Ñ (R,B) =
NMC

∑
j=1

[(1− fbg) W U+L(R;Φ j,φ j,cosΘ j)+ fbg W U+L(B;Φ j,φ j,cosΘ j)]. (27)

5.3 Systematic uncertainties

The following sources of systematic uncertainties are considered:

i) Difference between results for µ+ and µ− beams
The µ+ beam intensity was about 2.7 times higher than that of the µ− beam. A possible impact
of this difference on the determination of SDMEs is checked by comparing the SDMEs extracted
separately for the µ+ beam (negative polarisation) and the µ− beam (positive polarisation). For
each SDME, half of the difference between the SDME values determined with opposite beam
polarisations is taken as systematic uncertainty.

ii) Influence of shifted Emiss peak position
It was observed in Ref. [28] that certain SDME values depend on the position of the Emiss peak.
The Emiss distribution shown in Fig. 4 is not precisely centred at zero, but slightly shifted towards
negative values. This results from an imbalance between the energy measured for the incoming
muon and the energies of the final-state particles measured in the forward spectrometer. The effect
of this shift on the extracted SDMEs is investigated by applying the small kinematic correction
(+0.7 GeV/c) to the beam momentum that is needed to centre the Emiss peak at zero. The differ-
ence between the values of final SDMEs and those obtained with corrected kinematics is taken as
systematic uncertainty.

A similar shift of the Emiss peak is obtained by rescaling the momenta of the final-state parti-
cles measured in the spectrometer. The differences between SDME values obtained without and
with the rescaling are comparable to those obtained with corrected beam momentum. In order to
avoid double counting, only the differences obtained with corrected beam momentum are taken as
systematic uncertainties.

iii) Effect of background subtraction
As detailed in Sec. 5.2, the background-corrected SDMEs are obtained with background SDMEs
obtained from LEPTO events in the exclusive region−3.0 GeV < Emiss < 3.0 GeV. As the angular
distributions from LEPTO were never experimentally verified for the event selection used in the
present analysis, as a check an alternative method is used, in which background SDMEs are esti-
mated from experimental data in the region 7.0 GeV< Emiss < 20.0 GeV. The difference between
SDMEs obtained by these two methods is taken as systematic uncertainty.

In addition, the procedure for background correction is checked by using the data from the recoil-
proton detector (RPD). These data allow us to apply additional selection criteria on exclusive
events [29, 30], which lead to a reduction of the non-exclusive background by a factor of about
10. As a limited p2

T-range is covered by the RPD, the same limited kinematic region is used to
compare the SDMEs obtained with and without RPD. The results are consistent within statistical
uncertainties, hence no systematic uncertainty is assigned here.
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iv) Comparison of unbinned and binned maximum likelihood methods
The two fitting methods are expected to yield consistent results for sufficiently large statistics. In
this analysis however, when using the unbinned method the background treatment is different from
that when using the binned method. In the former case, the angular dependence of the background
is parameterised, while in the latter case the background is subtracted in each angular bin on a
bin-by-bin basis. Comparing the results from the two methods hence probes a possible systematic
uncertainty due to the background-correction procedure. For each SDME, the systematic uncer-
tainty is given by the difference between the final value as obtained using the unbinned method
and the value obtained with the binned method.

v) Sensitivity to the shapes of the kinematic distributions generated by HEPGEN
As no experimental data exists on the differential cross section for exclusive ω production at COM-
PASS energies, a model is used to simulate the process in HEPGEN. In order to check the sen-
sitivity of SDMEs to the shapes of kinematic distributions in the HEPGEN generator, the SDME
extraction was repeated by reweighting the MC events with weights depending on Q2 and ν . The
weights are tuned such that the Q2 and ν distributions from the experimental data match those
from the reweighted simulated data. The effect of this reweighting on the extracted SDMEs is
small in most cases, and the difference between final SDMEs and those obtained with reweighted
MC events is taken as systematic uncertainty.

The total systematic uncertainties are obtained by adding the above described components in quadrature.
Table 1 gives the values for the total kinematic region. The individual contributions i) - v) to the sys-
tematic uncertainty for each SDME are compiled in Table A.1 in the Appendix. When averaged over all
SDMEs it appears that the group i) systematics dominates by contributing almost half of the systematic
uncertainties, while about one-fifth contributions arise from both group ii) and group iv) systematics. In
most cases, the statistical uncertainty is comparable to or smaller than the total systematic one.

6 Results

6.1 SDMEs for the total kinematic region

The SDMEs extracted in the total kinematic region 1.0 (GeV/c)2 < Q2 < 10.0 (GeV/c)2, 5.0 GeV/c2

<W < 17.0 GeV/c2 and 0.01 (GeV/c)2 < p2
T < 0.5 (GeV/c)2, with mean values 〈Q2〉= 2.13 (GeV/c)2,

〈W 〉 = 7.6 GeV/c2 and 〈p2
T〉 = 0.16 (GeV/c)2 are presented in Fig. 5 and Table 1. These SDMEs are

presented in five classes corresponding to different helicity transitions. For the SDMEs in class A, the
dominant contributions are related to the squared amplitudes for transitions from longitudinal virtual
photons to longitudinal vector mesons, γ∗L→VL, and from transverse virtual photons to transverse vector
mesons, γ∗T →VT . In class B, the dominant terms correspond to the interference between amplitudes for
the two aforementioned transitions. The main terms in most of the SDMEs for classes C, D and E are
proportional to the products of small amplitudes describing γ∗T →VL, γ∗L →VT and γ∗T →V−T transitions
respectively, and the large helicity-conserving amplitudes T11 or T00.
In Fig. 5, polarised SDMEs are shown in shaded areas. The experimental uncertainties of these SDMEs
are larger than those of the unpolarised SDMEs because the lepton-beam polarisation is smaller than
unity (|Pb| ≈ 80%) and in the expressions for the angular distributions (see Eq. (14)) they are multiplied
by the small kinematic factor |Pb|

√
1− ε , where ε ≈ 0.96. In the calculation of the statistical uncertainty,

the correlations between the various SDMEs are taken into account.

6.2 Dependences of SDMEs on Q2, p2
T and W

The kinematic dependences of the SDMEs on Q2, p2
T and W , which have been determined in three bins

for each of the variables, are shown in Figs. 6, 7 and 8. In Table 2, the limits of the kinematic bins and
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Fig. 5: The 23 SDMEs for exclusive ω leptoproduction extracted in the total COMPASS kinematic region with
〈Q2〉= 2.13 (GeV/c)2, 〈W 〉= 7.6 GeV/c2, 〈p2

T〉= 0.16 (GeV/c)2. Inner error bars represent statistical uncertainties
and outer ones statistical and systematic uncertainties added in quadrature. Unpolarised (polarised) SDMEs are
displayed in unshaded (shaded) areas.

the mean values of kinematic variables in the bins are given. The values of SDMEs in bins of Q2, p2
T and

W are given in Table A.2, A.3 and A.4 respectively, in the Appendix.

7 Discussion

7.1 Test of the SCHC hypothesis

In case of SCHC, only the seven SDMEs of classes A and B are not restricted to vanish, while all SDMEs
from classes C, D, and E should be equal to zero. Six of the SDMEs in classes A and B have to fulfil the
following relations [18]:

r1
1−1 = −Im{r2

1−1},
Re{r5

10} = −Im{r6
10},

Im{r7
10} = Re{r8

10}.

Within uncertainties, the extracted SDMEs are consistent with these relations:

r1
1−1 + Im{r2

1−1} = −0.010±0.032±0.047,

Re{r5
10}+ Im{r6

10} = 0.014±0.011±0.013,
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Table 1: The 23 unpolarised and polarised SDMEs for the total COMPASS kinematic region, shown in the same
order as in Fig. 5 for classes A to E. The first uncertainties are statistical, the second systematic.

SDME

r04
00 0.346± 0.018± 0.008

r1
1−1 −0.041± 0.023± 0.038

Im r2
1−1 0.031± 0.023± 0.049

Re r5
10 0.103± 0.008± 0.010

Im r6
10 −0.089± 0.007± 0.015

Im r7
10 0.005± 0.081± 0.118

Re r8
10 0.093± 0.072± 0.025

Re r04
10 0.018± 0.011± 0.014

Re r1
10 −0.081± 0.016± 0.022

Im r2
10 0.061± 0.015± 0.021

r5
00 0.132± 0.014± 0.039

r1
00 −0.078± 0.028± 0.040

Im r3
10 0.057± 0.052± 0.073

r8
00 0.125± 0.130± 0.148

r5
11 −0.016± 0.009± 0.032

r5
1−1 −0.017± 0.012± 0.025

Im r6
1−1 0.023± 0.011± 0.018

Im r7
1−1 0.150± 0.111± 0.168

r8
11 −0.106± 0.078± 0.056

r8
1−1 −0.009± 0.101± 0.124

r04
1−1 0.022± 0.016± 0.011
r1

11 −0.025± 0.018± 0.017
Im r3

1−1 0.095± 0.071± 0.110

Im{r7
10}−Re{r8

10} = −0.088±0.110±0.196.

However, for the transitions γ∗T → VL of class C the non-zero values of SDMEs r5
00 and Re{r1

10} show
SCHC violation at the level of three standard deviations of the statistical uncertainty. In the GK model
[10], these SDMEs are related to the chiral-odd GPDs HT and ĒT coupled to the higher-twist wave
function of the meson. The kinematic dependences of these SDMEs, as presented in Section 6, may help
to further constrain the model.

7.2 UPE contribution in exclusive ω meson production

The existence of UPE transitions in exclusive ω production can be tested by examining linear combina-
tions of SDMEs such as

u1 = 1− r04
00 +2r04

1−1−2r1
11−2r1

1−1. (28)

The quantity u1 can be expressed in terms of helicity amplitudes as

u1 = ∑̃
4ε|U10|2 +2|U11 +U−11|2

N
. (29)
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Fig. 6: Q2 dependence of the measured 23 SDMEs. The capital letters A to E denote the class, to which the SDME
belongs. Inner error bars represent statistical uncertainties and outer ones statistical and systematic uncertainties
added in quadrature.

Since the numerator depends only on UPE amplitudes, a u1 value different from zero indicates non-zero
contribution from UPE transitions. For the total kinematic region of COMPASS u1 is equal to 0.830
± 0.073 ± 0.049, which is a clear signal of a large UPE contribution. Additional information on UPE
amplitudes is obtained from the SDME combinations

u2 = r5
11 + r5

1−1 (30)

and
u3 = r8

11 + r8
1−1, (31)

which in terms of helicity amplitudes can be combined into

u2 + iu3 =
√

2∑̃
(U11 +U−11)U∗10

N
. (32)
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Table 2: Kinematic binning and mean values for kinematic variables.

bin 〈Q2〉
1.0 (GeV/c)2 < Q2 < 1.35 (GeV/c)2 1.16 (GeV/c)2

1.35 (GeV/c)2 < Q2 < 2.05 (GeV/c)2 1.64 (GeV/c)2

2.05 (GeV/c)2 < Q2 < 10.0 (GeV/c)2 3.61 (GeV/c)2

bin 〈p2
T〉

0.01 (GeV/c)2 < p2
T < 0.07 (GeV/c)2 0.037 (GeV/c)2

0.07 (GeV/c)2 < p2
T < 0.19 (GeV/c)2 0.125 (GeV/c)2

0.19 (GeV/c)2 < p2
T < 0.5 (GeV/c)2 0.310 (GeV/c)2

bin 〈W 〉
5.0 GeV/c2 < W < 6.4 GeV/c2 5.87 GeV/c2

6.4 GeV/c2 < W < 7.9 GeV/c2 7.06 GeV/c2

7.9 GeV/c2 < W < 17.0 GeV/c2 9.90 GeV/c2

For COMPASS, u2 = −0.033 ± 0.016 ± 0.043 and u3 = −0.114 ± 0.126 ± 0.099 are obtained, which
are consistent with zero at the present accuracy of the data.

In Fig. 9 the dependence of the quantities u1, u2, u3 on Q2, p2
T, and W is presented. The quantity u1

decreases with increasing W and p2
T, which indicates that the UPE contribution becomes smaller, while

u2, u3 fluctuate around zero.

More detailed information on the Wdependence of certain UPE transitions in terms of helicity amplitudes
can be obtained by considering the difference of the following two class-A SDMEs [14]:

r1
1−1 =

1
2N ∑̃{|T11|2 + |T1−1|2

−|U11|2−|U1−1|2}, (33)

Im{r2
1−1}=

1
2N ∑̃{−|T11|2 + |T1−1|2

+|U11|2−|U1−1|2}, (34)

which reads:
Im{r2

1−1}− r1
1−1 =

1
N ∑̃(−|T11|2 + |U11|2). (35)

For the total kinematic region, both SDMEs and their difference are close to zero. For the present data,
Im{r2

1−1}− r1
1−1= 0.07±0.07 is obtained, hence ∑̃|U11|2 ≈ ∑̃|T11|2. By applying Eq. (10), Eq. (35) can

be rewritten as follows:

Im{r2
1−1}− r1

1−1 =
1

N
(−|T1 1

2 1 1
2
|2−|T1− 1

2 1 1
2
|2

+|U1 1
2 1 1

2
|2 + |U1− 1

2 1 1
2
|2). (36)

Bilinear contributions of nucleon helicity-flip amplitudes are suppressed by a factor (
√
−t ′/M)2, where

t ′ is a measure of the transverse momentum of the vector meson with respect to the direction of the virtual
photon. Neglecting these bilinear contributions yields:

Im{r2
1−1}− r1

1−1 ≈
1

N
(|U11|2−|T11|2). (37)
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Fig. 7: p2
T dependence of the measured 23 SDMEs. The capital letters A to E denote the class, to which the SDME

belongs. Inner error bars represent statistical uncertainties and outer ones statistical and systematic uncertainties
added in quadrature.

In Table 3, the values of the SDMEs r1
1−1 and Im{r2

1−1} and their difference are shown as a function of
〈W 〉. The difference is large and positive at 〈W 〉= 5.9 GeV/c2, i.e. |U11|> |T11|. For 〈W 〉= 7.1 GeV/c2,
|U11| ≈ |T11| holds and for 〈W 〉= 9.9 GeV/c2 the situation is reversed: |U11|< |T11|.

A substantial contribution of UPE transitions in hard exclusive ω meson electroproduction was ob-
served at HERMES [13]. In their total kinematic range, with mean values 〈Q2〉= 2.4 (GeV/c)2, 〈W 〉=
4.8 GeV/c2 and 〈t ′〉 = 0.08 (GeV/c)2, for the proton target they found u1 = 1.1± 0.09± 0.12 and
Im{r2

1−1}− r1
1−1 = 0.35± 0.04± 0.05. The latter value indicates that |U11|2 > |T11|2 in their kinematic

range. Also they observed that the quantity u1, when averaged over the total range of W , increases
(decreases) with increasing values of Q2 (t ′).

A quantitative comparison of COMPASS and HERMES results is not straightforward, because the cov-
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Fig. 8: W dependence of the measured 23 SDMEs. The capital letters A to E denote the class, to which the SDME
belongs. Inner error bars represent statistical uncertainties and outer ones statistical and systematic uncertainties
added in quadrature.

ered kinematic regions only partially overlap, and COMPASS covers significantly wider ranges of W and
p2

T. It is important to note here that, when studying the kinematic dependences of the measured observ-
ables, results are extracted in one-dimensional intervals of a given kinematic variable, while averaging
over the full ranges of the other two variables. As the two experiments have only partially overlapping
kinematic ranges, the results after averaging cannot be directly compared.

When neglecting the observed Q2 and t ′ (p2
T) dependences, which exhibit opposite trends, one can com-

pare the HERMES result on u1 for their total kinematic range to the COMPASS result shown at the lowest
W value in Fig. 9. Similarly, HERMES result on Im{r2

1−1}− r1
1−1 can be compared to the corresponding

value from COMPASS at 〈W 〉= 5.9 GeV/c2, which is shown in Table 3. Within uncertainties the results
from the two experiments are consistent for both observables.

Altogether, the main COMPASS results presented in this subsection, i.e. the W dependence of u1 as
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T, and W dependences of u1, u2, u3. The open symbols represent the values over the total kinematic

region. Inner error bars represent statistical uncertainties and outer ones statistical and systematic uncertainties
added in quadrature.

Table 3: W dependence of SDMEs r1
1−1, Im r2

1−1 and their difference

〈W 〉 (GeV/c2) 5.9 7.1 9.9

r1
1−1 −0.134±0.043±0.32 −0.044±0.036±0.33 0.052±0.038±0.047

Im r2
1−1 0.139±0.044±0.46 0.037±0.036±0.24 −0.098±0.038±0.033

Im r2
1−1− r1

1−1 0.273±0.061±0.046 0.081±0.050±0.041 −0.151±0.053±0.057

well as that of Im{r2
1−1}− r1

1−1 indicate that the UPE contribution decreases with increasing W without
vanishing towards largest W values accessible at COMPASS. In the GK model, UPE is described by the
GPDs H̃ f and Ẽ f (non-pole), and by the pion-pole contribution treated as a one-boson exchange [12].
The latter one, which is a sizeable contribution, results in a significantly faster decrease of the predicted
UPE contribution with increasing W than that measured at COMPASS.

7.3 The NPE-to-UPE asymmetry of the transverse cross section for the transition γ∗T →VT

Another observable that is sensitive to the relative contributions of UPE and NPE amplitudes is the NPE-
to-UPE asymmetry of the transverse differential cross section for the transition γ∗T →VT . It is defined [12]
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as1

P =
dσN

T (γ∗T →VT )−dσU
T (γ∗T →VT )

dσN
T (γ∗T →VT )+dσU

T (γ∗T →VT )

=
2r1

1−1

1− r04
00−2r04

1−1
, (38)

where the superscript N and U denotes the part of the cross section that is fed by NPE and UPE transi-
tions, respectively.

The value of P obtained in the total kinematic region is−0.007±0.076±0.125, which indicates that the
UPE and NPE contributions averaged over the whole kinematic range of COMPASS are of similar size.
The kinematic dependences of the asymmetry P are shown in Fig. 10. The UPE contribution dominates
at small values of W and p2

T and decreases with increasing values of these kinematic variables. At large
values of W and p2

T, the NPE contribution becomes dominant, while a non-negligible UPE contribution
remains. No significant Q2 dependence of the asymmetry is observed.

7.4 Longitudinal-to-transverse cross-section ratio

In order to evaluate the longitudinal-to-transverse virtual-photon differential cross-section ratio

R =
dσL(γ

∗
L →V )

dσT (γ∗T →V )
, (39)

the quantity R′ can be used:

R′ =
1
ε

r04
00

1− r04
00
. (40)

Using expressions defining r04
00 and 1− r04

00 in terms of helicity amplitudes [14, 18], one obtains

R′ =
1
ε

∑̃(ε|T00|2 + |T01|2 + |U01|2)
∑̃{|T11|2 + |U11|2 + |T1−1|2 + |U1−1|2 +2ε(|T10|2 + |U10|2)}

. (41)

The quantity R′ may be interpreted as the longitudinal-to-transverse ratio of “effective” cross sections
for the production of vector mesons that are polarised longitudinally or transversely irrespective of the

1In Ref. [13] a different definition of the asymmetry is used.
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directional systematic uncertainty due to the approximation R≈ R′ is not shown here, see text for details.

virtual-photon polarisation. In case of SCHC, R′ is equal to R. In spite of the observed clear violation
of SCHC at COMPASS, we use the approximate relation R≈ R′. The accuracy of this approximation is
estimated using the GK model [11, 12] and the resulting uni-directional systematic uncertainty is found
to be about +15% on average, while its magnitude ranges between 3% and 47% with increasing W and
between 6% and 28% with increasing p2

T .

For the total kinematic region, the ratio R is found to be 0.553±0.044stat±0.020syst
+ 0.082
− 0 |appr. Here, the

third uncertainty is the systematic one due to the approximation R ≈ R′. The kinematic dependences of
R are shown in Fig. 11. The ratio appears to increase as Q2 and p2

T increase, which indicates an increase
of the fraction of longitudinally polarised vector mesons, while it shows no significant change over the
W range.

7.5 Phase difference between amplitudes

Using Eq. (42), the phase difference between the UPE amplitudes U11 and U10 can be calculated [13]:

tanδU = u3/u2 =
r8

11 + r8
1−1

r5
11 + r5

1−1
. (42)

The phase difference δU for the total kinematic region is found to be δU = (−106.1±53.6±2.5) degrees.

The absolute value of the phase difference δN between the NPE amplitudes T11 and T00 can be calculated
using Eq. (43) from Ref. [14]:

cosδN =
2
√

ε(Re{r5
10}− Im{r6

10})√
r04

00(1− r04
00 + r1

1−1− Im{r2
1−1})

. (43)

The phase difference δN for the total kinematic region is found to be |δN | = (33.1 ± 4.9 ± 7.2) degrees.

Using the polarised SDMEs, also the sign of δN can in principle be determined using the following
equation from Ref. [14]:
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sinδN =
2
√

ε(Re{r8
10}+ Im{r7

10})√
r04

00(1− r04
00 + r1

1−1− Im{r2
1−1})

. (44)

However, the large experimental uncertainties of the polarised SDMEs make this presently impossible.

7.6 Comparison with predictions of the GK model

In Fig. 12 the 23 SDMEs for exclusive ω production, extracted in the total kinematic region of COM-
PASS, are compared with the predictions of the GPD model of Goloskokov and Kroll [11, 12] for hard
exclusive vector-meson leptoproduction. In this version of the model, contributions from chiral-odd
GPDs as well as from pion-pole exchange are included. The model was tuned to HERMES results on
SDMEs and spin asymmetries for exclusive ρ0 and ω production, which led to a satisfactory agreement
between the model and the data.

The predictions of the model shown in Fig. 12 were obtained for exclusive ω production at Q2 =
2.0 (GeV/c)2, W = 7.5 GeV/c2 and p2

T = 0.14 (GeV/c)2, close to the corresponding average kinematic
values for COMPASS. In the following, we concentrate on the most pronounced differences between
model predictions and experimental results.

The most noticeable differences are as follows: i) the predicted value of SDME r04
00, which represents

the fraction of longitudinally polarised mesons in the produced sample, is significantly larger than the
measured one; ii) the SDMEs dominated by the transitions γ∗T → ωL (class C) are in general close to
zero in the model, while in the data several of them (r5

00, Re{r1
10}) indicate a clear violation of the SCHC

hypothesis.

A characteristic prediction of the model is a strong decrease of the UPE contribution with increasing
values of W . The predicted values of the quantity u1 at 〈Q2〉= 2.13 (GeV/c)2 and 〈p2

T〉= 0.16 (GeV/c)2

are equal to 1.01, 0.39 and 0.07 for W values of 5.0 GeV/c2, 7.1 GeV/c2 and 11.0 GeV/c2 respectively. A
comparison of these predictions to the results shown in the lower-left panel of Fig. 9 shows that, while at
the smallest accessible value of W the prediction is consistent with the measured u1, at large values of W
the model predicts a much stronger decrease with increasing W and hence underestimates significantly
the measured UPE contribution.

8 Summary

Using exclusive ω meson muoproduction on protons, we have measured 23 Spin Density Matrix El-
ements at the average COMPASS kinematics, 〈Q2〉 = 2.1 (GeV/c)2, 〈W 〉 = 7.6 GeV/c2 and 〈p2

T〉 =
0.16 (GeV/c)2. The SDMEs are extracted in the kinematic region 1.0 (GeV/c)2 < Q2 < 10.0 (GeV/c)2,
5.0 GeV/c2 <W < 17.0 GeV/c2 and 0.01 (GeV/c)2 < p2

T < 0.5 (GeV/c)2, which allows us to study their
Q2, p2

T and W dependences.

Several SDMEs that are dominated by amplitudes describing γ∗T→ωL transitions indicate a considerable
violation of the SCHC hypothesis. These SDMEs are expected to be sensitive to the chiral-odd GPDs
HT and ĒT, which are coupled to the higher-twist wave function of the meson. A particularly prominent
effect is observed for the SDME r5

00, which strongly increases with increasing Q2 and p2
T, and decreases

with increasing W .

Using specific observables that are constructed to be sensitive to contributions from transitions with
unnatural-parity exchanges such as u1, Im{r2

1−1}− r1
1−1 and the UPE-to-NPE asymmetry for the trans-

verse cross section, a strong W dependence of the UPE contribution is observed. At low values of W ,
we confirm the earlier observation by HERMES that the amplitude of the UPE transition γ∗T → ωT is
larger than the NPE amplitude for the same transition, i.e. |U11| > |T11|. With increasing W the UPE



22 The COMPASS Collaboration

Im r
3 

1−1

r
1 

11 

r
04

1−1

r
8 

1−1

r
8 

11 

Im r
7 

1−1

Im r
6 

1−1

r
5 

1−1

r
5 

11 

r
8 

00 

Im r
3 

10 

r
1 

00 

r
5 

00 

Im r
2 

10 

Re r
1 

10 

Re r
04

10  

Re r
8 

10 

Im r
7 

10 

Im r
6 

10 

Re r
5 

10 

Im r
2 

1−1

r
1 

1−1

r
04

00  

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Im r
3 

1−1

r
1 

11 

r
04

1−1

r
8 

1−1

r
8 

11 

Im r
7 

1−1

Im r
6 

1−1

r
5 

1−1

r
5 

11 

r
8 

00 

Im r
3 

10 

r
1 

00 

r
5 

00 

Im r
2 

10 

Re r
1 

10 

Re r
04

10  

Re r
8 

10 

Im r
7 

10 

Im r
6 

10 

Re r
5 

10 

Im r
2 

1−1

r
1 

1−1

r
04

00  

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

SDME values

COMPASS

GK model

A: γ *
 

L
 →VM

L

γ *
 

T
 →VM

T

B: Interference

γ *
 

L
 →VM

L
 & γ *

 
T
 →VM

T

C: γ *
 

T
 →VM

L

D: γ *
 

L
 →VM

T

E: γ *
 

T
 →VM

−T
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contribution decreases and |U11| < |T11| at large W , still with a non-negligible UPE contribution at the
largest W values accessible at COMPASS.

Altogether, the COMPASS results presented in this paper cover a kinematic range that extends con-
siderably beyond the ranges of earlier experimental data on SDMEs for exclusive ω leptoproduction.
They provide important input for modelling GPDs, in particular they may help to better constrain the
amplitudes for UPE transitions and assess the role of chiral-odd GPDs in exclusive ω leptoproduction.
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Appendix

Table A.1 gives the various contributions to the systematic uncertainty of the 23 SDMEs and Tables A.2,
A.3, and A.4 list their kinematic dependences.

Table A.1: Uncertainties for each SDME value: in column 3 the statistical uncertainty (“stat.”), in columns 4–8
the individual contributions for each source of systematic uncertainty as defined in Sec. 5.3, in column 9 the total
systematic uncertainty (“tot. sys.”), and in column 10 the total uncertainty (“tot.”).

SDME value stat.
beam
charge

Emiss
back-

ground
method

simu-
lation

tot.
sys.

tot.

(i) (ii) (iii) (iv) (v)

r04
00 0.346 0.018 −0.001 0.000 0.001 0.003 0.007 0.008 0.022

r1
1−1 −0.041 0.023 0.033 0.008 0.007 0.016 0.000 0.038 0.045

Im r2
1−1 0.031 0.023 0.029 0.015 0.020 −0.031 −0.002 0.049 0.054

Re r5
10 0.103 0.008 −0.004 0.003 0.005 0.006 −0.001 0.009 0.012

Im r6
10 −0.089 0.007 0.004 0.007 0.000 −0.012 0.001 0.015 0.017

Im r7
10 0.005 0.081 0.115 0.024 0.000 0.009 0.002 0.118 0.143

Re r8
10 0.093 0.072 −0.019 −0.004 0.000 0.016 0.001 0.025 0.076

Re r04
10 0.018 0.011 0.001 0.010 0.004 0.008 0.004 0.014 0.018

Re r1
10 −0.081 0.016 −0.003 −0.019 0.000 −0.009 −0.002 0.022 0.027

Im r2
10 0.061 0.015 0.000 0.010 0.006 0.017 0.004 0.021 0.026

r5
00 0.132 0.014 0.005 0.009 −0.012 0.035 0.010 0.040 0.043

r1
00 −0.078 0.028 0.010 −0.031 0.016 −0.011 −0.008 0.038 0.048

Im r3
10 0.057 0.052 −0.048 0.019 0.000 0.052 −0.001 0.073 0.090

r8
00 0.125 0.130 0.125 0.077 0.000 0.016 0.001 0.148 0.197

r5
11 −0.016 0.009 −0.002 0.028 −0.009 −0.013 0.006 0.032 0.034

r5
1−1 −0.017 0.012 0.020 0.003 −0.008 −0.011 0.002 0.025 0.027

Im r6
1−1 0.023 0.011 0.010 −0.006 −0.005 0.012 0.001 0.018 0.021

Im r7
1−1 0.150 0.111 0.147 −0.012 0.000 0.079 0.000 0.168 0.201

r8
11 −0.106 0.078 −0.030 −0.001 0.000 −0.047 0.002 0.056 0.096

r8
1−1 −0.009 0.101 0.108 −0.054 0.000 −0.028 −0.002 0.124 0.160

r04
1−1 0.022 0.016 0.005 0.004 −0.008 0.003 0.000 0.010 0.019
r1

11 −0.025 0.018 −0.015 −0.005 0.000 0.002 0.000 0.016 0.024
Im r3

1−1 0.095 0.071 0.109 0.002 0.000 0.010 0.002 0.110 0.131
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Table A.2: The measured 23 unpolarised and polarised ω SDMEs in bins of Q2: 1.00− 1.35− 2.05−
10.00 (GeV/c)2. The first uncertainties are statistical, the second systematic.

SDME 〈Q2〉 = 1.16 (GeV/c)2 〈Q2〉 = 1.64 (GeV/c)2 〈Q2〉 = 3.58 (GeV/c)2

r04
00 0.313±0.027±0.027 0.322±0.029±0.046 0.415±0.038±0.052

r1
1−1 −0.029±0.037±0.015 −0.011±0.037±0.036 −0.101±0.048±0.090

Im r2
1−1 −0.027±0.037±0.025 0.036±0.037±0.047 0.103±0.049±0.065

Re r5
10 0.120±0.012±0.008 0.086±0.013±0.013 0.101±0.017±0.050

Im r6
10 −0.102±0.012±0.009 −0.075±0.012±0.012 −0.088±0.016±0.033

Im r7
10 0.079±0.127±0.140 0.061±0.136±0.070 −0.150±0.167±0.182

Re r8
10 0.164±0.119±0.183 −0.131±0.112±0.116 0.340±0.153±0.144

Re r04
10 0.020±0.017±0.016 0.014±0.017±0.016 0.016±0.023±0.013

Re r1
10 −0.080±0.023±0.033 −0.074±0.025±0.055 −0.080±0.035±0.045

Im r2
10 0.064±0.025±0.012 0.066±0.025±0.018 0.069±0.032±0.046

r5
00 0.059±0.021±0.022 0.130±0.023±0.039 0.219±0.031±0.077

r1
00 −0.002±0.041±0.028 −0.090±0.043±0.073 −0.144±0.063±0.087

Im r3
10 −0.026±0.080±0.187 0.175±0.087±0.109 −0.038±0.109±0.062

r8
00 −0.064±0.213±0.404 0.178±0.209±0.166 0.224±0.245±0.101

r5
11 0.009±0.014±0.035 −0.028±0.015±0.041 −0.037±0.019±0.026

r5
1−1 −0.002±0.019±0.015 −0.028±0.020±0.052 −0.026±0.024±0.020

Im r6
1−1 0.021±0.018±0.016 0.038±0.019±0.024 0.008±0.024±0.017

Im r7
1−1 0.159±0.161±0.216 −0.006±0.186±0.079 0.330±0.246±0.150

r8
11 0.092±0.123±0.120 −0.260±0.132±0.126 −0.188±0.163±0.159

r8
1−1 −0.023±0.163±0.451 −0.186±0.169±0.191 0.231±0.203±0.300

r04
1−1 0.034±0.025±0.034 0.009±0.026±0.043 0.024±0.032±0.016
r1

11 −0.024±0.028±0.028 −0.013±0.029±0.046 −0.042±0.038±0.024
Im r3

1−1 0.167±0.106±0.229 0.082±0.119±0.162 0.024±0.161±0.131



Spin Density Matrix Elements in Exclusive ω Meson Muoproduction ∗ 25

Table A.3: The measured 23 unpolarised and polarised ω SDMEs in bins of p2
T: 0.01− 0.07− 0.19− 0.50

(GeV/c)2. The first uncertainties are statistical, the second systematic.

SDME 〈p2
T〉 = 0.037 (GeV/c)2 〈p2

T〉 = 0.124 (GeV/c)2 〈p2
T〉 = 0.31 (GeV/c)2

r04
00 0.272±0.027±0.016 0.310±0.033±0.025 0.479±0.035±0.045

r1
1−1 −0.097±0.037±0.016 −0.058±0.040±0.034 0.051±0.043±0.067

Im r2
1−1 0.095±0.037±0.020 0.017±0.042±0.046 −0.032±0.042±0.033

Re r5
10 0.077±0.013±0.004 0.113±0.014±0.022 0.123±0.016±0.050

Im r6
10 −0.090±0.011±0.012 −0.080±0.013±0.006 −0.102±0.015±0.029

Im r7
10 −0.044±0.123±0.024 0.046±0.145±0.385 −0.009±0.159±0.023

Re r8
10 0.120±0.122±0.052 0.168±0.120±0.136 −0.016±0.142±0.082

Re r04
10 0.001±0.017±0.016 0.034±0.019±0.021 0.033±0.022±0.033

Re r1
10 −0.044±0.025±0.030 −0.068±0.027±0.009 −0.136±0.031±0.089

Im r2
10 0.037±0.023±0.043 0.036±0.027±0.037 0.116±0.030±0.062

r5
00 0.044±0.022±0.024 0.151±0.025±0.039 0.217±0.029±0.051

r1
00 −0.089±0.040±0.026 −0.038±0.051±0.042 −0.080±0.058±0.056

Im r3
10 0.048±0.081±0.167 −0.009±0.094±0.089 0.089±0.106±0.060

r8
00 −0.035±0.185±0.094 0.266±0.230±0.261 0.169±0.270±0.208

r5
11 −0.008±0.015±0.025 −0.028±0.016±0.014 −0.014±0.017±0.034

r5
1−1 −0.002±0.019±0.013 −0.031±0.021±0.024 −0.012±0.022±0.021

Im r6
1−1 0.009±0.018±0.030 0.054±0.021±0.016 0.006±0.021±0.008

Im r7
1−1 0.289±0.171±0.125 −0.098±0.202±0.312 0.159±0.221±0.144

r8
11 0.079±0.122±0.115 −0.260±0.144±0.222 −0.222±0.154±0.089

r8
1−1 −0.005±0.161±0.094 −0.268±0.183±0.134 0.280±0.190±0.204

r04
1−1 0.002±0.025±0.024 0.058±0.029±0.017 0.009±0.030±0.024
r1

11 −0.023±0.029±0.057 −0.037±0.032±0.023 −0.021±0.034±0.024
Im r3

1−1 0.097±0.107±0.278 −0.069±0.131±0.171 0.263±0.145±0.075
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Table A.4: The measured 23 unpolarised and polarised ω SDMEs in bins of W : 5.00−6.4−7.9−17.0 GeV/c2.
The first uncertainties are statistical, the second systematic.

SDME 〈W 〉 = 5.87 GeV/c2 〈W 〉 = 7.06 GeV/c2 〈W 〉 = 9.90 GeV/c2

r04
00 0.315±0.034±0.012 0.355±0.029±0.055 0.333±0.027±0.035

r1
1−1 −0.134±0.043±0.003 −0.044±0.036±0.033 0.052±0.038±0.047

Im r2
1−1 0.139±0.044±0.046 0.037±0.036±0.024 −0.099±0.038±0.033

Re r5
10 0.066±0.015±0.021 0.102±0.012±0.010 0.125±0.012±0.016

Im r6
10 −0.071±0.014±0.003 −0.072±0.011±0.031 −0.115±0.012±0.015

Im r7
10 0.270±0.287±0.122 0.183±0.164±0.184 −0.099±0.082±0.065

Re r8
10 0.477±0.280±0.056 0.207±0.155±0.215 0.046±0.072±0.029

Re r04
10 0.039±0.021±0.010 0.013±0.017±0.022 0.007±0.017±0.016

Re r1
10 −0.092±0.030±0.034 −0.100±0.024±0.040 −0.051±0.026±0.018

Im r2
10 0.073±0.029±0.038 0.056±0.025±0.017 0.046±0.025±0.021

r5
00 0.154±0.026±0.023 0.145±0.023±0.019 0.081±0.023±0.007

r1
00 −0.114±0.053±0.069 −0.003±0.043±0.040 −0.104±0.043±0.018

Im r3
10 0.162±0.199±0.124 0.295±0.112±0.075 −0.001±0.054±0.082

r8
00 −0.834±0.467±0.047 0.451±0.282±0.138 0.044±0.129±0.133

r5
11 0.023±0.017±0.038 −0.027±0.015±0.024 −0.040±0.014±0.021

r5
1−1 −0.025±0.022±0.011 −0.024±0.019±0.046 −0.006±0.019±0.005

Im r6
1−1 0.030±0.021±0.007 0.023±0.018±0.020 0.026±0.018±0.018

Im r7
1−1 −0.105±0.435±0.235 −0.173±0.236±0.082 0.210±0.112±0.135

r8
11 0.264±0.320±0.043 −0.177±0.181±0.192 −0.127±0.082±0.060

r8
1−1 0.124±0.414±0.193 −0.177±0.222±0.155 −0.004±0.108±0.152

r04
1−1 0.027±0.031±0.015 0.022±0.025±0.028 0.025±0.024±0.018
r1

11 −0.023±0.034±0.005 −0.060±0.028±0.011 0.006±0.028±0.005
Im r3

1−1 0.406±0.297±0.100 0.015±0.168±0.042 0.088±0.072±0.085
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