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A B S T R A C T

For upcoming nuclear fusion energy reactors, like the China Fusion Engineering Test Reactor (CFETR) and EU-
DEMO, the superconducting Cable-In-Conduit Conductors (CICC) are in the design phase, and the operating
conditions like electromagnetic forces can be higher than in previous devices like ITER. The prototype con-
ductors for the Central Solenoid (CS) coils in the CFETR, for example, are designed to produce a peak field of
19.9 T and are expected to be made of high current density Nb3Sn strands. Investigations are also ongoing on the
application of bismuth strontium calcium copper oxide (BSCCO) and MgB2 strands for CICCs in fusion reactors.
The latter material, MgB2, could be applied for superconductors subjected to lower magnetic fields, such as
Poloidal Field coils, Correction Coils, and Feeders. The performance of all these strands is sensitive to strain, and
the mechanical strength of the brittle filaments is relatively weak. This requires a thorough analysis of the cable
pattern in terms of the mechanical support of the strands along their length in combination with the mini-
mization of the interstrand coupling currents and strand indentation. As an initial step to finding the most
appropriate cable pattern for CICCs, three prototype CICCs made of ITER type Nb3Sn strands with significantly
different cable twist patterns are tested experimentally for AC coupling loss, interstrand contact resistance, and
strand indentation. The three cabling patterns referred to as the Twente, CWS (copper wound superconducting
strand), and CFETR-CSMC (CFETR Central Solenoid Model Coil) design. The numerical code JackPot ACDC
developed at the University of Twente is used to analyze the interstrand coupling loss and contact resistance. The
new ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences) triplet modified CWS design is aimed at
reducing strand pinching during cabling, which causes degradation of transport properties during compaction
and cyclic loading. The Twente design has the same objective but also aims at reducing the coupling loss while
maximizing the mechanical lateral support for the strands by making the twist pitch ratio of the sequential
cabling stages close to one. The CFETR-CSMC, taken as a reference for comparison, has cable a pattern mostly
similar to the ITER CS cable design.

1. Introduction

Superconducting cables play a vital role in achieving stable high
magnetic fields required in nuclear fusion power plants. The CFETR,
which stands for “China Fusion Engineering Test Reactor,” is a new
tokamak device to be built in China as a complementary to ITER
(International Thermonuclear Experimental Reactor), presently being
built in Europe. Also, in Europe, the design activities are ongoing for

ITER's successor, DEMO, a DEMOnstration fusion power plant [1].
Their magnet systems include Toroidal Field (TF), Central Solenoid
(CS), Poloidal Field (PF), Correction Coils (CC), and Feeders. The op-
erating conditions for the superconducting Cable-In-Conduit-Con-
ductors (CICCs) can be more severe than ever before. For example, the
CS coil system of the CFETR consists of eight modules with a combi-
nation of low-temperature Nb3Sn strands and high-temperature Bi-2212
to generate a maximum magnetic field of 19.9 T at 51.25 kA/turn [2].
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While the PF, CC, and Feeder materials operate at lower magnetic
fields. For future fusion reactors, bismuth strontium calcium copper
oxide (BSCCO) [3] and rare-earth barium copper oxide (REBCO) [4,5]
materials are being considered for the high magnetic field coils. For
conductors operating in a lower magnetic field, MgB2 could be a po-
tential candidate because it provides a more significant temperature
margin or higher operating temperature [6]. The superconducting
cables for all magnet coil systems are considered to adopt the CICC
concept.

CICCs consist of a certain number of superconducting and copper
strands transposed and twisted together in a rope-like pattern and in-
serted into a steel jacket. A typical void fraction (VF) of around 30 % is
maintained for forced flow helium circulation to have adequate cooling.
A central hole or helium flow pressure relief channel is mostly also
provided.

Since the advent of the CICC concept [7], many studies have been
performed to optimize the cabling design for low AC loss, mechanical
strength against electro-mechanical forces, low cabling degradation,
higher current sharing temperature (Tcs), higher engineering current
density, high-voltage insulation, efficient cooling, and pressure loss
reduction of supercritical helium flow [8–11]. Present-day research
mainly focuses on two features besides cost reduction: transverse load
stability and reducing AC losses. Although also, other superconducting
materials such as the REBCO and BSCCO with potential for high-field
(TF and CS) and MgB2 for low-field (PF) are of interest. The design
variables that influence the cable stiffness, strand support, and AC loss
apart from the strand surface properties, stiffness, and diameter are
cable void fraction, twist pitch pattern, and shape of the cable cross-
section (aspect ratio).

Most of the research work on CICC cable concepts have occurred in
the field of magnets for nuclear fusion reactors [12–17]. As a result,
ITER has set a standard baseline for all magnet types: the Central So-
lenoid Model Coil (CSMC) [18], Poloidal Field Coil Insert (PFCI) [19],
and Toroidal Field Model Coil (TFMC) [20]. For high field magnets
above 6 T, Nb3Sn is the commercially used strand material. Nb3Sn is
brittle and sensitive to strain, so eventual cracks in the filaments lead to
irreversible degradation of the transport properties [21–24]. High
strain sensitivity and brittleness can lead to poor conductor perfor-
mance due to fatigue loads in electro-magnetic cycling [25–27]. In
2010, it was observed that the CS conductor performance degraded at
only around 10 % of the required reactor plasma operating current
pulses [28–30]. This poor performance would have a drastic influence
on the practical lifetime of a fusion plant. In 2006, the computation
model TEMLOP helped to better understand, predict, and prevent
transverse load degradation of CICCs [31]. The most important con-
clusion was that an adequate increase or decrease of the cabling twist
pitch length, thereby reducing local stress concentrations in strands
crossovers, could solve the problem of severe degradation. This pre-
diction was later confirmed by experiments in the SULTAN facility [32].
In the case of CS conductors, the research and development program for
the development of Toroidal Field coils for ITER (R&D ITER TF) de-
velopment strategy of longer twist pitches was not put to use because of
suspected higher AC losses from alternating magnetic fields and cur-
rents [25]. According to the classical supposition, the coupling loss
increases roughly with the square of the twist pitch length if the contact
resistance (Rc) remains constant. Such a simplified principle is not
suitable to analyze the behavior of complicated CICC cable patterns.
The JackPot ACDC model, specially developed at the University of
Twente to study ITER CICCs [33–37], predicted that a conductor with
relatively long twist pitch patterns starting from above 100mm and in
particular keeping the twist pitch ratio of the subsequent stages slightly
above one, will still have relatively low coupling losses [38]. An ex-
perimental test later confirmed this result in the SULTAN facility
[37,39].

The usual strand coating for Nb3Sn to avoid sintering of strands and
to reduce the coupling currents is chromium. A highly resistive

chromium strand coating reduces the current sharing between strands.
The reduction of current sharing reduces the coupling loss component
of the total AC loss in the cable. If an ultra-high resistive strand coating
like in [40] is not favored to minimize the coupling loss in so-called
Short Twist Pitch (STP) cables such as the present solution for the ITER
CS-type [8,41], a twist pitch scheme with a twisting stage ratio close to
one could be suitable if AC loss is a critical design parameter. A sig-
nificant advantage of a longer twist pitch in the first cabling stage in
combination with a twist pitch sequence ratio close to one (TPR1) is the
minimal deformation (bending and pinching) of the strands. The void
fraction should be reduced to minimize the strand movement in TPR1
cable patterns, which will slightly affect the thermo-hydraulics of he-
lium circulation [42]. Reducing the void fraction for a specific cable
twist pitch pattern increases the transverse cable stiffness [31]. How-
ever, it also results in a higher coupling loss time constant, which
eventually is reduced somewhat with cyclic loading, although the scope
of reduction depends on the void fraction [41,43]. For a CICC with
sufficient cable stiffness and lateral strand support, the scope for strand
movement in the bundle is restricted. Therefore, the increase of inter-
strand contact resistance during cyclic loading is expected to be also
limited.

In order to understand the effects of cabling variations, three ca-
bling patterns with different twist pitches have been studied for AC loss
and interstrand contact resistance. The CICC samples were manu-
factured from Nb3Sn strand. However, the comparisons in terms of
coupling loss and strand mechanical deformation are considered re-
levant for other materials such as BiSCCO and MgB2 round wires as
well. For evaluation and comparison of the three different conductor
designs, the interstrand coupling losses and contact resistances were
analyzed with the numerical code JackPot ACDC, and also the strand
deformation was examined post-mortem. The correlation between the
numerical code and experimental results for the different cabling con-
figurations should demonstrate the ability of the code to predict the
performance of unconventional cabling patterns.

2. Experiments and modeling

2.1. AC loss measurements

The AC loss of the prototype cables was measured with a sinusoidal
magnetic field applied perpendicular to the long axis of the conductor
in the AC dipole facility at the University of Twente [34–36]. AC loss
and interstrand contact resistance experiments are done on heat-treated
samples. Fig. 1 shows the different components and connections of the
AC dipole facility. The AC loss is measured by two methods: gas flow
calorimetry and pick up (PU) coil magnetization [44,45].

Gas flow calorimetry measures the power dissipation in the con-
ductor utilizing a calibrated gas flow of boil-off helium. A heater inside
the sample chamber is used for calibrating the calorimetric measure-
ments. The calorimeter is inserted in the bore of a superconducting
dipole magnet. The measurements are done with and without an offset
magnetic field and carried out at 4.2 K in a liquid helium bath at at-
mospheric pressure. The pick-up coil magnetization method uses two
pick-up coils, one around the sample (PU) and one empty correction
coil (CC). Both signals are subtracted and integrated over time to
construct the magnetization loops representing the total loss per cycle.

2.2. CFETR Prototypes – cabling patterns

Three different cabling patterns were examined. The first one is the
copper-wound superconducting strand (CWS) design, which is proposed
to reduce the strand indentation in STP cabling as observed in the
tightly compacted ITER CS type conductors. The STP design possesses
higher stiffness and better performance for cyclic loading, although the
small crossover angles result in deep strand indentations. In the CWS
type, a soft copper strand is wound around the two superconducting
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strands (SC) in the first stage to reduce the indentation in the SC
strands. The twist pitch of the Cu strands in the first stage is four (CWS-
I) to five (CWS-II) times smaller than that of the SC strands in the same
triplet. The CWS concept essentially should maintain the stiffness of the
ITER CS type cable but with reduced strand indentations [46].

The second cable type is a shorter twist pitch version of the Twente
cable design with the subsequent twist pitch ratio close to one. The
earlier proposed and tested Twente design concept for the ITER CS type
follows a twist pitch ratio slightly above one with a first stage twist
pitch of 110mm (110×118×126×140×352) [37]. The first stage
twist pitch of the Twente design tested here is about half that of the
previous design to preserve sufficient stiffness. However, there are some
changes in the manufactured cable and original proposed CWS and
Twente design. The void fraction of the Twente design is accidentally
reduced from the original intended 27 to 23 % after manufacturing. For
both cables, Twente and CWS, the petal wrap coverage is reduced from
the original target of 70 to 45 %. Both these changes have a significant
impact on the cable performance, specifically for the coupling loss. The
impact of these changes is described in this paper. Post-mortem analysis
of the cable is also done to check the strand indentation from cabling
and compaction.

The third cable design used for the CFETR CSMC conductor is ser-
ving as a baseline for comparison. The CFETR CSMC has the same cable
pattern as the ITER CS STP conductor except for the final stage. The so-
called initial slope coupling loss time constant is found from the initial
and steep slope of the experimentally determined AC loss versus fre-
quency curve for a sinusoidal applied magnetic field. For ITER CS
conductors, this is generally in the range of 300−700ms [46].

2.2.1. Sample details, preparation, and measurement
The three CICC conductors tested here have a round-in-square

geometrical configuration in which Nb3Sn strands are cabled (with
right-hand twist direction) as six petals with a multistage round cable
pattern inside a square steel jacket (316 L N). All three cables were
made from ITER type strands of the same diameter produced by
Western Superconducting Technologies Co., Ltd., Xi’an, China (WST).
One-third of them, 288 strands, among a total of 864 strands, were
made of copper [46]. The basic cable pattern and overall conductor
parameters are given in Table 1. The cabling angle (cos Θ) is de-
termined for all cable types with the help of the JackPot ACDC model
[35], considering SC strands only. The cos Θ can be used in case the
absolute volume needs to be calculated.

Each conductor sample was mounted with a pick-up coil (PU, coil
area perpendicular to the magnetic field) and a compensation coil (CC,

parallel to and in-plane with the pick-up coil and near the sample) to
measure the sample magnetization simultaneously with the calori-
metric data [47]. Calorimetric flow measurements require a certain
time to settle depending upon the helium gas flow rate, the circuit flow
resistance and involved volumes even though voltage signals respond
quickly to any gas flow changes. Disregarding previous AC cycles
needed to reach a stable gas flow rate, for each magnetic field frequency
and amplitude setting, the final five calorimetric and magnetization
loops were recorded for accuracy, and the average value is taken. Fig. 2
shows the various parts of the prepared CICC with mounted PU and CC
coils inserted in a calorimeter.

The measured AC loss was normalized per total volume of Nb3Sn
strands. The length of the samples used was 40 cm, and the diameter of
each strand element was 0.82 +/-0.005mm. A volume of 576 Nb3Sn
strands was taken, giving 121.7 cm3, for the AC loss normalization of
the conductor. The average SC strand angle from Table 1 was not
considered for calculation of the exact volume. The magnitude of the
AC loss is calculated from the measured area of the magnetization loop.
The magnetization measurement is calibrated with the calorimetric
measurement. Sinusoidal modulation field of 150m T with and without
a background field of 350m T is used for the AC loss measurement.

2.3. Interstrand contact resistance (Rc) measurement

The contact resistance is an essential factor in determining the
coupling loss in the cable. Predicting the Rc value is difficult due to its
dependency on the twist pitch pattern, cable compaction, strand ma-
terial composition, and coating process, and primarily because the
strand surface properties determining the Rc are not known in advance.
Here, Rc is defined as the overall resistance value between two selected
strands along the measured sample length. The contact frequency
within the cable is not uniform, which makes short sample testing not
archetypal. However, here, the length of the cable (400mm) tested is
almost comparable to the final stage twist pitch (450mm) of the cable,
and the shorter twist pitches already went through many repetitions.
Hence, the measured resistance is considered representative for longer
length cables of the same type. Since the resistance measured is for
parallel contact, the values are normalized by multiplying them with
the length of the cable sample (not length of strands) and reported with
unit ‘nΩ.m.’

The Rc measurements between selected strands were carried out
after the AC loss measurements. In this study, the contact resistance
measurements are carried out on reacted samples. The jackets of all
three cables were cut 5 cm from one of the ends to access the strands for
Rc measurements. Great care was taken in preparing the samples since
the Nb3Sn filament material is brittle and sensitive to damage by small
movements. None of the selected strands were removed from its twisted
configuration for sample preparation, that is to say, the strands re-
mained intact and in their original position.

All the tested cables had five stages of cabling with six petals in the
last stage, although the selected strands were tagged as within a petal
(intra-petal) or between petals (inter-petal). A total of 14 strands were
chosen from the outer petal perimeter, such that two to three random
strands are from each petal, as shown in Fig. 3.

One of the prepared samples and the schematic diagram of the
current and voltage tap connections are shown in Fig. 4. The chromium
coating on the strand surface was removed with abrasive paper before
soldering the voltage taps and current leads. Ends of NbTi wires were
soldered to the ends of the selected Nb3Sn strands in the cable. The
other NbTi wire ends were soldered to a thick copper current-carrying
wire for each strand combination. The reason for using NbTi wires for
current transfer was to ease the process of soldering and to avoid local
heating of the Nb3Sn strands. Thin copper wires were used for voltage
taps, which were placed at a distance varying from 5 to 20mm from the
current lead contact, which is longer than the current transfer length
[48]. The suitable positions for voltage taps were also checked

Fig. 1. Schematic diagram of the AC dipole facility.
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experimentally by placing them relatively near and far from the current
leads to determine the minimum distance for avoiding current entrance
effects. The measurements were carried out under similar conditions as
for the AC loss measurements: in a liquid helium bath at 4.2 K and
ambient pressure.

The slope of the V-I curve is used to determine the contact re-
sistance. As a check for linearity, the current was increased and de-
creased in steps of 5 A from zero to a maximum of 30 A.

2.4. JackPot – numerical network model

For the evaluation of the cable design, the numerical model JackPot
ACDC was used. JackPot-ACDC considers the trajectories of all super-
conducting and copper strands of the cable for building the electrical
network model [35,49]. The main feature of JackPot is the cable geo-
metrical model, which is capable of including thousands of strands. The
one-dimensional (1D) strands elements altogether make a three-di-
mensional (3D) geometry reproducing the actual CICC cable pattern.
The interstrand contact resistance (Rc) network is calculated using the
interstrand contact areas obtained from the geometry and the inter-
strand resistivity. The resistivity is calibrated using the experimental
contact resistance measurements. The network model then finds the
voltage at each node along the strand length by calculating self and
mutual inductances based on the transport current, self and background
field (B), and temperature (T). Strand properties are assigned in the
model based on the strand critical current Ic(B, T, ε) scaling law, with ε
representing the axial strain, and the power-law voltage-current re-
lationship of superconducting to normal transition. There are no fitting
parameters in the model. The only unknown parameter is the thermal
axial strain [50] in the Nb3Sn filaments due to cool-down, which is
taken as -0.5 % [30]. Coupling losses in all the CFETR prototype cables
were calculated using realistic Rc distributions based on an extensive
experimental database available at the University of Twente. Previous
research works show that JackPot can predict the CICC behavior ac-
curately if the contact resistance and strain are known (like in all pre-
vious Jackpot works).

Table 1
Details of the three Nb3Sn CICC prototypes, each with a length of 400mm.

CWS-I Twente CFETR CSMC

Cable pattern (2Sc + 1Cu) x 3×4 × 4×6
Twist pitch length [mm] (40+10) x60× 90×160×450 50×58×66×76×450 25×50×90×160×450
Void fraction [%] 33.2 23 32.9
Cable outer diameter [mm] 32.7 30.5 32.7
Strand diameter [mm] 0.82 ± 0.005mm
Cos θ (average strand angle) 0.95 0.93 0.93
Petal wrap coverage [%] 45 45 70
Conduit dimensions [mm] 52×52 52×52 49×49

Fig. 2. Details of the prepared CICC conductor sample for AC loss measure-
ment.

Fig. 3. Petal and strand selection for contact resistance measurement.

Fig. 4. (a) Schematic diagram and (b) prepared CWS-I conductor sample
showing current and voltage tap connections for contact resistance measure-
ment.
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3. Results and discussion

3.1. Interstrand contact resistance measurement

The intra-petal Rc represents the resistance between the SC strands
within a petal. Fig. 5 shows the measured intra-petal and inter-petal
contact resistances (Rc) for all three cable prototypes, and they are all
within the expected range based on previous test results [51]. The inter-
petal Rc refers to the resistance between SC strands from two different
petals with that specific number of petals in between, i.e., ‘inter-petal 0′
stands for Rc between neighboring petals and ‘inter-petal 2′ stands for Rc

between petals that have two petals in between them. The additional
resistance in the inter-petal Rc is mainly due to the stainless-steel wrap
coverage around each of the six petals. The petal wrap coverage for an
ITER CS conductor is 70 %, and in fact, all three conductors were
supposed to have similar petal wrap coverage of 70 % for a fair com-
parison. Here, both CWS-I and Twente cables have petal wrap coverage
of only 45 %, while the CFETR CSMC has 70 %. The implication of this
variation in the cable parameter is visible in Fig. 5.

The results in Fig. 5 show two features in particular: a large spread
in inter-petal Rc and a very-low inter-petal Rc for the CWS-I and Twente
cables. The spread within a petal is from selecting random strands from
the first four stages. The spread in inter-petal Rc, however, is likely from
strong uneven contact between petals, as shown in Fig. 6. The red
circles in Fig. 6 show direct contact between petals 1 and 2, and the
green circle shows the presence of petal wrap between petals 2 and 3,
preventing direct contact between the strands in the petals. This non-
uniformity in contacts was observed in all three of the measured cables.
The petal wrap was removed from the exposed portion of the cable to
connect current and voltage taps, as shown in Fig. 6.

The average inter-petal resistance measured between Cu strands in
the CWS-I conductors was 12.2 nΩm, which is relatively low.
Chromium coating on the surface of the strands is to avoid strand sin-
tering during the heat treatment process, and this coating increases Rc

between strands. Damage to the chromium coating, the deep strand
indentations due to the small twist pitch and severe compaction ex-
plains the low Rc between Cu strands.

The low inter-petal Rc for the CWS-I and Twente cable prototypes is
due to the unintended petal wrap coverage of 45 instead of 70 % and
the lower void fractions. In order to make a fair comparison for the
different cable patterns, a method will be introduced further on to
compensate for these unintended differences.

Fig. 5. Interstrand contact resistance measurement results of three cable prototypes.

Fig. 6. Non-uniform contact between petals from the petal wrap coverage of the
CSMC CICC prototype conductor.
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The reduced petal wrap coverage implies more direct contact be-
tween strands of neighboring petals and thus lowers Rc. A reduced Rc

will lead to and increased current sharing between strands, and the
resulting low resistive current loops in the last cabling stage will in-
crease the coupling loss significantly. In Fig. 7, the typical differences
between the cable options can be seen, with the strands much more
aligned in the Twente design and least in the CWS-I design, where
strands are most severely deformed.

Interstrand Rc simulations were conducted with the JackPot model,
and one example of the results is shown in Fig. 8. In order to replicate
the Rc experiment, random strands were chosen within a petal and
between petals for calculating intra-petal and inter-petal Rc, respec-
tively, following the method of the experimental measurement. As
shown in Fig. 8(b), the strand currents start decaying from the con-
nected current lead at the end of the cable by sharing current with all
neighboring strands. The current carried by both selected strands at the
other end is zero as expected. The current carried by each of the 862
surrounding strands (flat lines in Fig. 8(b)) is comparatively low due to
the large number of them. The red (+) and blue dot (-) in Fig. 8 (a)
shows the location of the selected strands, and the length of the simu-
lated cable section is the same for all, 0.4 m, just as in the experiment.

Average values of all experimental data were taken compared to the
JackPot Rc simulations of the three cable prototypes in Fig. 9. The Rc

distribution based on the experiments is then used for the JackPot
coupling loss simulation. The Rc values of the experimental measure-
ment and JackPot simulation are also listed in Table 2.

3.2. AC loss

Fig. 10 shows the loss-frequency dependence of the Twente proto-
type cable obtained by calorimetry and magnetization in perpendicular
applied magnetic AC field. The calorimetric and magnetization data are
in fair agreement. For the given field amplitude and frequency range,
the AC loss for Nb3Sn CICCs is generally higher without background

field (offset) as compared to the loss measured with background field
due to both smaller penetration field and magnetoresistance of copper,
although the difference is rather small.

A third-order polynomial function fits the loss-frequency de-
pendencies obtained by magnetization for the CWS conductor and a
second-order for both the Twente and the CFETR CSMC cables.
Irrespective of the degree of the fitting polynomial (not shown in
Fig. 10), the y-intercept values are used for the calculation of hysteresis
losses, and the linear coefficient of the fitted curve is used for the cal-
culation of the coupling loss time constant, nτ. The fitting is not used to
modify the experimental data nor to make a comparison with JackPot
analysis.

The coupling loss time constant nτ is obtained from the initial slope
of the loss-frequency curve [47]:

Fig. 7. (a) CWS-I (b), Twente, and (c) CFETR CSMC samples with a section of the steel jacket cut for Rc measurements, showing stainless steel wraps around petals
and the differences in strand trajectories.

Fig. 8. JackPot modeling of an Rc measurement, showing (a) selection of strands and (b) current sharing between all 864 strands along the cable length (z).

Fig. 9. Comparison of results from experimental measurements and JackPot
simulations of the average Rc in the three cable prototypes.
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=nτ α
μ

π B2 a
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2 2 (1)

Where Ba is the amplitude of the magnetic AC field. The loss curve
slope, which is described as a constant ‘α ’ of the right-hand side of (1),
is determined from the initial slope at low frequencies. However, the
single time constant fails to describe the coupling loss over an extended
range of frequencies [47,52,53] since many time constants are present
in multi-stage cables. For this reason, a simulation with JackPot is more
accurate for specific magnetic fields and current variations. The value
of the coupling loss time constant, nτ is used here to compare the AC
loss of the different cables. Since the nτ value is calculated for the same
frequency range for all the cables, it gives a proper basis for comparison
of the AC loss behavior of different cables irrespective of the nτ de-
pendence on the frequency range. The total loss is a combination of
coupling loss and hysteresis loss. The coupling loss is dependent and the
hysteresis loss is independent on the frequency of the applied AC field.
So, in theory, approaching zero frequency only hysteresis loss is present
in the cable. Hence the hysteresis loss is calculated from the AC loss-axis
intercept of the loss versus frequency curve.

Coupling loss simulations with JackPot were conducted at 4.2 K
without transport current. For comparison with the experimental data,
only the case without the background field is simulated. The results of
both the AC loss experiments and the simulations are shown in Fig. 11.
The intra-strand coupling losses are negligible in the experimental
frequency range [37].

The hysteresis loss (Qhys), the initial slope of the AC loss curve (α),
and the coupling loss time constant (nτ) of all three samples are listed in
Table 3. Here Ba is the applied AC magnetic field, and Bdc is the DC
background magnetic field.

The hysteresis loss of both the Twente and the CFETR CSMC cables
is in the same range, while the CWS-I shows a slightly higher value. This
difference might be due to the inaccuracy related to the steep initial

slope of the loss versus frequency curve for the CWS-I sample. The
presence of the background field Bdc reduces the Qhys as expected. As
compared to the CFETR CSMC, the nτ value of the Twente cable is 1.6
times higher, and that of the CWS-I is 5.5 times higher.

Transverse resistivity between petals depends on petal wrap cov-
erage, petal diameter, relative arrangement of wraps in neighboring
petals, and cable compaction. When the inter-petal to intra-petal Rc

ratio is high, the coupling loss contribution is mainly generated inside
the petals. A recent study [46] showed a strong dependence between
the coupling loss time constant, nτ and the intra-petal Rc. However, the
inter-petal to intra-petal Rc ratio of the Twente conductor tested here is
∼11 due to low petal wrap coverage, and for the CWS-I conductor
tested here is ∼1 due to the combination of low petal wrap coverage
and high cable compaction. This low Rc ratio leads to a significant in-
crease in inter-petal coupling losses in both cables as shown in Fig. 12.
A four-fold reduction in the coupling loss is reported for a CICC con-
ductor with wraps compared to that without wraps (VF=34 %, 1440

Table 2
Average interstrand contact resistance values from the experimental measurements and JackPot simulations of the three cable prototypes.

CWS-I Twente CFETR CSMC

Experiment JackPot Sim Experiment JackPot Sim Experiment JackPot Sim
[nΩ.m]

Intra-petal 5.9 7.6 2.5 2.6 1.8 2.7
Inter-petal 0 6.9 10.5 7.8 7.7 32.2 29.5
Inter-petal 1 10.5 11.1 9.8 10.5 43.7 46.2
Inter-petal 2 8.4 11.2 11.8 11.3 56.2 51.6

Fig. 10. The total AC loss-frequency dependence from magnetization and ca-
lorimetric measurements on the Twente cable design (all experimental data are
without any curve fitting, Ba is the magnitude of the applied AC magnetic field).

Fig. 11. Comparison of coupling loss for experimental measurements and
JackPot simulations based on the Rc values determined above, for the three
cable prototypes.

Table 3
Experimental loss-frequency parameters of all three cable prototypes with Bap

l= Bdc + Ba.

CWS-I Twente CFETR CSMC
Ba [T] Bdc [T]

Qhys [mJ cm−3]

± 0.15 0 10.5 ± 0.8 7.7 ± 0.1 7.5 ± 0.1
0.35 9.1 ± 0.6 6.9 ± 0.1 7.2 ± 0.1

α [J.s/m3 × 106]
±0.15 0 1.48 ± 0.07 0.409 ± 0.006 0.274 ± 0.006

0.35 1.36 ± 0.07 0.402 ± 0.005 0.244 ± 0.005
nτ [ms]

±0.15 0 4190 ± 200 1157 ± 17 775 ± 17
0.35 3850 ± 140 1137 ± 14 690 ± 14
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NbTi strands) [54]. Here the computed coupling loss at no petal wrap
coverage is three times higher than 70 % petal wrap coverage for
CFETR CSMC. The simulation was done with a sinewave applied
magnetic field at frequency of 80mHz, and applied field amplitude of
150m T), where the value of nτ is significant. The percentage of petal
wrap coverage is simulated by changing the inter-petal to intra-petal Rc

ratio. The ratio becomes one when there is no petal wrap coverage.
The coupling loss increase for lower Rc ratios is drastic, but it sa-

turates at higher ratios for the simulated frequency of 80mHz and
chosen cable configuration. Fig. 12 also shows that the coupling loss
reduces with increasing inter-petal to intra-petal Rc ratio, confirming
that the petal wrap coverage of 70 % is more effective than 45 % in
reducing the total coupling loss in all the three cable types, although the
impact for CWS-I is marginal. The values of petal wrap coverage cor-
responding to the inter-petal to intra-petal Rc ratio shown in Fig. 12 are
from experiments and simulations done on the cables studied in this
work. Here two main cable parameters are playing significant roles in
the observed results for Twente and CWS-I cable in comparison with
CFETR CSMC; petal wrap coverage and void fraction.

3.2.1. Effect of petal wrap coverage
The local inter-petal Rc will be practically the same as the intra-petal

Rc where adjacent petals are in direct contact without any wrap in
between. Typical petal wrap coverages for ITER conductors are in the
range of 70 % for CS, and 50 % for TF and PF CICCs [19,55]. Petal wrap
coverage of both Twente and CWS-I cables was 45 %, and of CFETR
CSMC was 70 %. Simulations show that the Twente cable has practi-
cally similar coupling loss as the CFETR CSMC cable at a petal wrap
coverage of ∼ 45 % but significantly less coupling loss at 70 %.
However, at lower inter-petal to interstrand coverage, the Twente
cables show higher coupling loss than the CFETR CSMC because the
coupling loss component from the last cable stage becomes dominant.
Last stage (stage 5) twist pitch length of all cables is 450mm (Table 1),
so at inter-petal to intra-petal Rc approaching 1 (no petal wraps),
coupling losses of all cables approach to almost similar values. The
remaining difference is due to variation in the twist pitch scheme of the
first four cable stages.

A broader petal wrap coverage also reduces local buckling of strands
on the petal surface [56]. However, increasing the petal wrap coverage
or transverse resistivity between petals beyond a specific limit can have
negative consequences on the cable performance, such as lower cooling
rates and reduced current sharing. However, as for the main argument
of current sharing between petals and reduction of DC performance,
research has shown that cables with and without petal wraps show

similar current distribution behavior at least until ten times the Ic cri-
terion of 10 μV/m. The local peak voltages caused by non-uniform
current distribution within the petals of NbTi CICCs can lead to an
earlier quench [57]. A petal wrap coverage of 70 % allows for the re-
quired current sharing and helium exchange between the petals [30].
The JackPot simulations also show that increasing beyond 70 % petal
wrap coverage is less effective in reducing the coupling loss in the cable
for all three cables tested.

3.2.2. Effect of the void fraction (VF)
Cable compaction or reducing the VF decreases both inter-petal and

intra-petal Rc [58]. The concept of a threshold VF was first discussed in
a paper published in 2001, though not explicitly stated. Upon com-
pacting a cable beyond a certain VF, the coupling loss drastically in-
creases due to the loss contribution from the last stage of the cable. The
last stage has longer twist pitch length and hence higher coupling loss,
this is usually reduced by a highly resistive stainless-steel wrap around
the last stage i.e., petal. The last stage coupling loss becomes dominant
only if the petal wraps are ineffective. The VF at which the petal wraps
become ineffective in limiting the last stage coupling loss is referred to
as threshold VF. Although the change in inter-petal Rc is not significant
up to a certain VF in the case of high resistive wrap coverage, com-
pacting the cable beyond a threshold VF value can have similar effects
to that of no petal wraps [59]. It was found for an Nb3Sn CICC with 60
% petal wrap coverage that the coupling loss time constant increases
dramatically below 24 % VF due to the effect of compaction [59]. The
last stage coupling loss becomes dominant below a certain VF, a be-
havior that was observed in conductors without petal wraps due to
increased current sharing between the petals [59,60]. The VF at which
the compaction threshold for inter-petal coupling loss is reached, likely
also depends on the percentage of petal wrap coverage, twist pitch
length, and cabling pattern. Compacting a cable increases the cable
stiffness, but with compaction, the strands are pressed against each
other, and indentations at strand crossovers damage the strands [58],
which is detrimental to the cable performance. So, there is an optimum
window of VF for each cable design.

Even though the petal wrap coverage of the CWS-I cable is 45 %, the
combined experimental and computed results (Fig. 12) indicate per-
formance similar to that of no petal wraps. Due to peculiarity in the first
stage of the CWS-I cable design, the sliding of strands is limited hence
making the cable stiffer even at higher VF. Strands are less flexible to
move during compaction and are almost locked; the resulting petal
deformation and transverse pressure reduce the inter-petal Rc sig-
nificantly. This makes the petal wraps ineffective in reducing coupling
loss in the same way as in [58], exceeding the VF threshold. A manu-
facturing difficulty of CWS-I cable is also experienced at the cable
compaction stage at ASIPP, China. Post-mortem examination of the
CWS-I cable showed highly deformed petal wraps and strands. All these
lead to the conclusion that CWS-I cable already reached its VF threshold
value for inter-petal Rc at or above a VF of 33.2 %.

The Twente cable follows a design strategy of cable stage twist pitch
ratio close to 1 (TPR1). For the TPR1 type of cables, the strands are
mostly parallel to each other forming line contacts, which is efficient for
the optimized filling of voids inside the jacket and creating lateral
strand support. So even at a VF of 23 %, the cable did not reach the
threshold VF value for inter-petal coupling loss, but the reduction in VF
certainly affects coupling loss. The coupling loss analysis of ITER TF
and CS model coil conductors for different VF’s at 4.2 K, with 150m T
amplitude and 350mT background stationary field shows that the
coupling loss increases almost linearly with the reduction of the VF in
the range of interest [58]. This indicates that for these types of proto-
type ITER conductors, strand movement was still possible, and de-
pending on the cabling twist pitch scheme, mechanically stable CICCs
should have low void fraction but not exceeding the inter-petal cou-
pling loss VF threshold. It is not obvious to calculate the inter-petal Rc

values from petal wrap coverage percentage alone due to its

Fig. 12. Jackpot simulation showing the effect of the inter-petal to intra-petal
Rc ratio on coupling losses in the CFETR CSMC cable (the lines are simulation
data and the thick points are experimental data).
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dependence on VF and relative arrangement of wrap coverage between
petals.

The reduction in petal wrap coverage (70 to 45 % in Twente cable
and CWS-I) and VF (27 % to 23 % in Twente cable) together con-
tributed to the observed high coupling loss. In order to assess the re-
duction of the inter to intra-petal Rc ratio, another simulation is done
but now with a similar Rc ratio as in the case of the CFETR CSMC cable.
The modified inter-petal resistance of CWS-I and Twente conductors is
calculated by multiplying the inter-petal to intra-petal Rc ratio of
CFETR CSMC (∼40) with intra-petal Rc of CWS-I and Twente con-
ductors. The obtained inter-petal Rc values used in the JackPot simu-
lation are shown in Table 4.

Fig. 13 shows the JackPot simulation results with the predicted AC
losses as a function of frequency for an inter-petal to intra-petal Rc ratio
for both the Twente and the CWS-I conductors representing ∼70 %
petal coverage, taken as that of the CFETR CSMC cable. The JackPot
simulation indicates that the coupling loss of the Twente design will be
reduced considerably and become less than the CFETR CSMC cable loss.
Though the coupling loss of CWS-I design has reduced, it is still sig-
nificantly higher than the other two cables.

In contrast to both CWS-I and CFETR CSMC conductor designs, no
visible strand indentations are found on the extracted strands from the
Twente design sample despite the exceptionally small void fraction, as
shown in Fig. 14. The Twente cable pattern is therefore very suitable for
strain sensitive wire materials. Severe indentation on Cu and SC strands
in CWS-I cable also damaged the resistive chromium coating, which
further reduced the contact resistance.

It is confirmed that the cable pattern, petal wraps, and void fraction
significantly affect the coupling loss. The primary purpose of this work
is to address the influence of the cable pattern on the coupling loss and
strand indentation. It is demonstrated that the Twente cable pattern
with twist pitch ratio close to one, has the lowest coupling loss and the
least strand deformation, even with a first stage triplet twist pitch
which is twice that of the CSMC and also larger than that of the CWS-I.

4. Conclusion

The AC loss and interstrand contact resistance have been measured
on three prototype Nb3Sn Cable-In-Conduit Conductors with sig-
nificantly different cabling twist pitch patterns. In the CWS cable, a soft
copper strand is wound around the two superconducting strands (SC) in
the first stage with twist pitch five times smaller than that of the SC
strands in the same triplet to reduce the indentation of the SC strands.
The second cable type is a shorter twist pitch version of the Twente
cable design concept with the subsequent twist pitch ratio close to one.
The CFETR CSMC has the same cable pattern as the ITER CS STP
conductor except for the final stage. Simulations, done by using the
JackPot model are in fair agreement, confirming the consistency of data
and allowing reliable predictions with the JackPot model. Simulations
have been performed to compare the performance of the different cable
designs; this confirms that a design petal wrap coverage of 70 % should
be maintained for CS cables to reduce the AC loss.

The experiments and simulations of AC loss and contact resistance
conducted in this study confirm previous research from others that a
critical threshold value of void fraction exists, which makes the pre-
sence of petal wraps ineffective in reducing coupling loss (from the
CWS-I cable results). For the copper wound superconducting strand
short twist pitches design, this threshold is already reached at or above
33 %, while for the Twente design, the limit was still not reached at 23
% void fraction.

The JackPot simulations with derived corrections for inter-petal
contact resistance representing 70 % petal wrap coverage show that the
Twente cable design has the lowest coupling loss. Internal post-mortem
examination of the conductors revealed no visible strand indentation
for the Twente design, even at a void fraction of 23 %, opposite to both
other designs, with a most severe indentation for the CWS-I type even
damaging the Cr plating. So far, the Twente cable design seems a sui-
table candidate for CFETR or DEMO conductors, made of strain-sensi-
tive strands such as Nb3Sn or other materials, for minimization of
coupling loss and strand indentation. However, studies are continued
for further optimization.
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