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Abstract

The only anticipated resonant contributions to B+ → D+D−K+ decays are char-
monium states in the D+D− channel. A model-independent analysis, using LHCb
proton-proton collision data taken at centre-of-mass energies of

√
s = 7, 8, and

13 TeV, corresponding to a total integrated luminosity of 9 fb−1, is carried out to test
this hypothesis. The description of the data assuming that resonances only manifest
in decays to the D+D− pair is shown to be incomplete. This constitutes evidence
for a new contribution to the decay, potentially one or more new charm-strange
resonances in the D−K+ channel with masses around 2.9 GeV/c2.
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The B+ → D(∗)+D(∗)−K+ family of decays offers unique opportunities to study
charmonium states. The constrained environment of B meson decays allows the masses,
widths and quantum numbers of such states to be determined using amplitude analysis
techniques, with low backgrounds from other processes. In particular, resonances in the
D(∗)−K+ or D(∗)+K+ channels would be manifestly exotic, having minimal quark content
c̄dus̄ or cd̄us̄, respectively. While many exotic hadrons containing cc̄ or bb̄ quarks have
recently been observed [1–3], there is to date no significant evidence of the existence of
exotic hadrons with open flavour, i.e. with non-zero strangeness, charm, or beauty quantum
numbers. Studies of B+ → D(∗)+D(∗)−K+ decays are therefore expected to help resolve
open questions regarding charmonium spectroscopy [4, 5]. In addition, measurements
of these processes have been proposed as a method to aid characterisation of the cc̄
contribution in B+ → K+µ+µ− decays [6, 7].

The branching fractions of B+ → D(∗)+D(∗)−K+ decays have been measured [8, 9],
but no prior analyses of their resonant structure exist.1 Recent studies have shown that
extremely pure samples of these decays can be obtained using LHCb data [9], with yields
much larger than those available at previous experiments.

A model-dependent study of the resonant structure in B+ → D+D−K+ decays [10],
carried out in parallel to this work, has revealed structure in the D−K+ invariant-mass
spectrum that cannot be described by reflections of charmonium resonances. This highly
surprising observation, along with the limited current knowledge of the charmonium
spectrum in this mass range, particularly among spin-0 and spin-2 states, motivates the
study of this decay using a model-independent approach as presented in this Letter. This
method is particularly useful when applied to three-body decays where resonances are
only expected to form between one pair of the final-state particles, such that the decay
kinematics are described through one mass and one angular variable. Unexpected, exotic,
contributions to the decay process manifest as high-order moments in the distribution
of the angular variable, as has been demonstrated by the use of the method to identify
exotic resonances contributing to B0 → ψ(2S)K+π− [11], Λ0

b → J/ψpK− [12] and B0 →
J/ψK+π− [13] decays.

The model-independent analysis of the B+ → D+D−K+ decay involves consideration
of the distribution of the variable h(D+D−) defined as the cosine of the D+D− helicity
angle, i.e. the angle between the momenta of the K+ and D− particles in the D+D− rest
frame. A description of the B+ → D+D−K+ Dalitz plot is obtained by decomposing
the h(D+D−) distribution in terms of Legendre polynomials. The decomposition is done
within slices of the D+D− invariant mass, m(D+D−), thereby accounting for the two
degrees of freedom in the B+ → D+D−K+ decay kinematics. The description can be
projected onto the other invariant-mass distributions in order to identify regions where
exotic contributions are needed, and the significance of such deviations can be quantified.
If only D+D− resonances contribute, the projections will be well described using only
low-order moments, up to twice the maximum spin of charmonium resonances present. If
peaking contributions from other channels enter, higher-order moments will be required.
The narrower the structure, the higher the order that will be needed. Consequently, a
description employing only low-order moments will be incomplete.

This method is applied to a sample of B+ → D+D−K+ candidates selected from
LHCb proton-proton (pp) collision datasets, corresponding to integrated luminosities of

1The inclusion of charge-conjugate processes is implied throughout this Letter.

1



3 fb−1 recorded during 2011 and 2012 (Run 1) and 6 fb−1 from 2015 to 2018 (Run 2). The
data sample, selection criteria, background and efficiency modelling are identical to those
in the amplitude analysis of the same process, described in detail in Ref. [10] and briefly
summarised here. The LHCb detector [14,15] is a single-arm forward spectrometer covering
the pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c
quarks. Simulation, produced with software packages described in Refs. [16–19], is used to
model the effects of the detector acceptance and the imposed selection requirements. The
online event selection is performed by a trigger [20], which consists of a hardware stage,
based on information from the calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction and which identifies a two-, three-, or
four-track secondary vertex by means of a multivariate algorithm. The charm mesons are
reconstructed via the D+ → K−π+π+ decay. Reconstructed B+ → D+D−K+ candidates
that pass the trigger criteria are subjected to further selection requirements, including the
use of a boosted decision tree (BDT) algorithm [21,22] to reduce combinatorial background.
Variables characterising the particular topology of the decay (flight distance of the D
mesons and displacement of the reconstructed intermediate and final-state particles from
the B production point) and particle identification information are used as inputs to the
BDT algorithm. Specific requirements are imposed to suppress contributions from B
decays involving one or no D mesons, but having the same set of final-state pions and
kaons as the signal decays; inspection of the sidebands of the D-candidates’ invariant-mass
distributions confirms that any residual background from this source is at a negligible
level.

An extended maximum-likelihood fit is applied to the invariant-mass, m(D+D−K+),
distribution of the selected candidates, shown in Fig. 1(a). There are 1260 candidates
inside the signal window of m(D+D−K+) within 20 MeV/c2 of the known B+ mass [23], in
which the sample purity is greater than 99.5% and the residual background is combinatorial
in nature. The distribution of these candidates, which are retained for further analysis,
in the Dalitz plot is shown in Fig. 1(b). The Dalitz-plot coordinates, m2(D−K+) and
m2(D+D−), are determined after refitting the candidate decays, imposing the constraints
that the reconstructed B+ and D± masses should match their known values and that the
reconstructed B+ meson should originate at its associated primary pp interaction vertex.
Charmonium resonances are clearly visible as horizontal bands in the Dalitz plot, but
additional structure also appears to be present. A signal efficiency map is determined as
a function of position in the Dalitz plot with simulation, where the particle identification
response is calibrated using data control samples [24,25]. The efficiency is found to vary
with m(D+D−) at the ±10% level, and to depend only weakly on h(D+D−).

The m(D+D−) distribution is divided into slices of width 20 MeV/c2, which is large
compared to the resolution but narrower than any expected structure. Within each slice
the distribution of the cosine of the helicity angle is decomposed according to the basis
of Legendre polynomials. Including a factor to ensure normalisation over the domain
−1 to 1, these are given by

Pn

(
h(D+D−)

)
=

√
2n+ 1

2
× 2n

n∑
r=0

(
h(D+D−)

)r (n
r

)(
n+r−1

2

n

)
. (1)

In bin j of the m(D+D−) distribution, the coefficient of the expansion at order k is
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Figure 1: (a) Invariant-mass distribution for B candidates with the results of the fit superimposed,
where the signal component is indicated in red and background (barely visible) in blue. (b) Dalitz
plot for candidates with m(D+D−K+) values in the signal window.

referred to as the k-th unnormalised moment,

〈Y j
k 〉 =

NData
j∑
l=1

wlPk

(
hl(D

+D−)
)
, (2)

where the sum is over the NData
j candidates in that bin, wl is a weight assigned to each

candidate to achieve a background subtraction and efficiency correction, and hl(D
+D−)

is the value of h(D+D−) for candidate l. To probe whether charmonium resonances with
spins up to and including Jmax account for the structures observed in the Dalitz plot, the
expansion can be truncated at a given order, kmax = 2Jmax.

A simulated sample, generated uniformly in the Dalitz plot and weighted using the
truncated expansion, is used in order to visualise the description of the m(D−K+) and
m(D+K+) distributions and to compare them to data. The weights applied to the
simulated sample are

ηi =
2

NSim
j

×
kmax∑
k=0

〈Y j
k 〉Pk

(
hi(D

+D−)
)
, (3)

where i indexes the generated candidates and NSim
j is the number of candidates in the

simulation in bin j of the m(D+D−) spectrum, centred on mj(D
+D−).

The significance of any deviation between the truncated Legendre polynomial de-
scription and the data can be assessed using pseudoexperiments. They are generated
according to a probability density function (PDF) constructed as a function of m(D+D−)
and h(D+D−), given an hypothesis H regarding kmax,

P
(
mj(D

+D−), h(D+D−)|H
)

= P
(
mj(D

+D−)
)
P
(
h(D+D−)|H,mj(D

+D−)
)
. (4)

The binned PDF P (mj(D
+D−)) is given by

P
(
mj(D

+D−)
)

= N
NData

j∑
l=1

wl , (5)
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where N is a normalisation factor. The PDF P(h(D+D−)|H,mj(D
+D−)) is a function of

the moments and Legendre polynomial functions, reproducing the helicity angle dependence
in bin j of m(D+D−),

P
(
h(D+D−)|H,mj(D

+D−)
)

= 1 +
2∑NData
j

l=1 wl

kmax∑
k=1

〈Y j
k 〉Pk

(
h(D+D−)

)
. (6)

Since reflections of exotic contributions to the D−K+ or D+K+ channels would produce
complicated structure in the (m(D+D−), h(D+D−)) plane, the most sensitive model-
independent test statistic is based on the PDF for m(D−K+) or m(D+K+). The PDF
P (h(D+D−)|H,mj(D

+D−)) is projected onto m(D−K+) or m(D+K+) by generating
candidates uniformly in the (m(D+D−), h(D+D−)) plane and assigning a weight to each
according to Eq. (4). A representation of P (m(D−K+)|H) or P (m(D+K+)|H) is then
obtained by filling a histogram of m(D−K+) or m(D+K+) with these weighted candidates,
respectively.

A test statistic is constructed to discriminate between the hypothesis, H0, that
only D+D− resonances contribute up to order kmax and the hypothesis that allows for
contributions from higher-order moments to describe higher-spin or exotic contributions,
H1. The test statistic, formulated in terms of determining the significance of deviations
in the D−K+ channel, has the form [26]

t = −2
NData∑
l=1

sl log

(
P (ml(D

−K+)|H0) /IH0

P (ml(D−K+)|H1) /IH1

)
, (7)

where P (ml(D
−K+)|H) is the value of the PDF in the bin of m(D−K+) where candidate

l is found, sl is the signal weight effecting a background subtraction [27], and IH is a
normalisation factor, computed by Monte Carlo integration,

IH =
NSim∑
l=1

P(ml(D
−K+)|H)εl , (8)

where εl is the efficiency appropriate for candidate l.
The distributions in the D+D− invariant mass, m(D+D−), of the first nine unnor-

malised moments defined in Eq. (2) are computed for the selected candidates, and are
shown in Fig. 2. Significant structure is visible at m(D+D−) ≈ 3.8 GeV/c2 up to and
including the second moment, and not at higher orders, as expected for a contribu-
tion from the spin-1 resonance ψ(3770). In the vicinity of the χc2(2P ) resonance near
m(D+D−) = 3.9 GeV/c2, significant structure appears at order two and persists, albeit
weakly, at order four. This is found, in the model-dependent analysis [10], to be due to the
presence of both spin-0 and spin-2 charmonia in this region. Structure at low m(D+D−)
in the first moment indicates interference between S and P waves and, similarly, that
around m(D+D−) = 3.9 GeV/c2 in the third moment could indicate interference between
P and D waves. Structure apparent at all orders for m(D+D−) > 4.1 GeV/c2 — though
having large uncertainties at orders above 5 — could indicate reflection from a structure
in another two-body combination.

In order to test how well the B+ → D+D−K+ Dalitz plot can be described using
a truncated sum over m(D+D−) moments, a sample of 107 B+ → D+D−K+ decays is
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Figure 2: Distributions of the first nine unnormalised moments, 〈Y j
k 〉, defined in Eq. (2), as a

function of m(D+D−) for the selected B+ → D+D−K+ candidates, after efficiency correction
and background subtraction have been applied.

generated uniformly in the (m(D+D−), h(D+D−)) plane. Weights are applied according
to Eq. (3), and the resulting distribution of the weighted sample is compared to that for
the candidates selected from the LHCb data. In the first instance, kmax is set to a high
value of 29 in the construction of weights, to allow all but the smallest of fluctuations in
data to be captured. The comparison between the generated decays and the data sample
is shown in Fig. 3. The excellent agreement, limited only by statistical fluctuations which
can generate structure to arbitrarily high moments, in the m(D−K+) and m(D+K+)
invariant-mass distributions is also to be expected, given the high value of kmax.

The effect of truncating the sum over moments at a lower value is explored. A value
of kmax = 4 is chosen under the assumption that only resonances with spin up to 2 appear
in the D+D− channel, since production of high-spin resonances in B-meson decays is
suppressed and no evidence for a contribution with spin-3 or higher is seen in either
Fig. 2 or the model-dependent analysis [10]. Figure 4 shows the comparison between the
weighted generated sample and the data. A prominent discrepancy is apparent around
m(D−K+) = 2.9 GeV/c2. No narrow regions of disagreement are evident in the D+K+

spectrum.
The significance of the discrepancy in the m(D−K+) distribution between the data

and the weighted generated sample in Fig. 4(a) is evaluated using the test statistic defined

5
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Figure 3: Comparison between data (points with error bars) and a weighted generated sample
(filled histogram) as a function of (a) m(D−K+) and (b) m(D+K+), where the weights account
for the Legendre polynomial moments of order up to and including 29.
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Figure 4: Comparison between data (points with error bars) and a weighted generated sample
(filled histogram) as a function of (a) m(D−K+) and (b) m(D+K+), where the weights account
for the Legendre polynomial moments of order up to and including four. The uncertainty on the
weighted shape (dark band) is also shown.

in Eq. (7). An ensemble of pseudoexperiments, in which each dataset has the same
size as the real dataset, is prepared according to the PDF defined in Eq. (6), where
kmax is taken to be 4. The tiny background contribution is ignored, which introduces
negligible uncertainty due to the high purity of the selected B+ → D+D−K+ sample. For
each pseudoexperiment, a new efficiency map is generated to incorporate the systematic
uncertainty arising from the limited size of the simulated sample. This ensemble of
nearly 260 000 pseudoexperiments allows determination of the distribution of the test
statistic under the hypothesis, H0, that only D+D− resonances up to spin-2 are present,
as shown in Fig. 5. The value of the test statistic obtained from data, tData, allows the
H0 hypothesis to be rejected at the 99.994% level, corresponding to a significance of 3.9
Gaussian standard deviations (σ). Even when moments up to order 6 are considered, the
significance of the discrepancy remains above 3.7σ.

In summary, a model-independent technique has been employed to confirm whether or
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Figure 5: Comparison of the test statistic evaluated for the data (black dashed line) and for the
ensemble of pseudoexperiments (blue histogram) generated according to the PDF constructed
using the first four moments of the h(D+D−) distribution in data.

not the observed m(D−K+) distribution in B+ → D+D−K+ decays reconstructed in the
LHCb data sample can be explained in terms of reflections from charmonium resonances
alone. It is found that the intermediate structure of the decay cannot be described
using only D+D− resonances of spin up to 2. The significance of the disagreement in
the m(D−K+) distribution is 3.9σ, and is most apparent in the region m(D−K+) =
2.9 GeV/c2. This discrepancy could be explained by a new, manifestly exotic, charm-strange
resonance decaying to the D−K+ final state. The outcome of this model-independent
study therefore supports the results of the amplitude analysis of the same data [10], where
both spin-0 and spin-1 components are included in the D−K+ channel, as well as ψ(3770),
χc0(3930), χc2(3930), ψ(4040), ψ(4160), and ψ(4415) resonances decaying to D+D−, and
a nonresonant component.
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