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Abstract The presence of large-mass resonances in the
data collected at the Large Hadron Collider would provide
direct evidence of physics beyond the Standard Model. A
key challenge in current resonance searches at the LHC
is the modelling of signal–background interference effects,
which can severely distort the shape of the reconstructed
invariant mass distribution relative to the case where there
is no interference. Such effects are strongly dependent on
the beyond the Standard Model theory that must be consid-
ered as unknown if one aims to minimise any theoretical bias
on the search results. In this paper, we describe a procedure
which employs a physically-motivated, model-independent
template functional form that can be used to model interfer-
ence effects, both for the characterisation of positive discov-
eries, and in the presentation of null results. We illustrate the
approach with the example of a scalar resonance decaying
into a pair of photons.
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1 Introduction

With the discovery of the Higgs boson at the Large Hadron
Collider (LHC) in 2012 [1,2], the experimental evidence for
the particle spectrum of the Standard Model (SM) is seem-
ingly complete. In addition to this, there is a fast-growing
body of successful comparisons between accurate SM pre-
dictions and the corresponding LHC data, for a very large
number of observables measured in a significantly diverse
set of production processes. Nevertheless, and regardless of
this satisfactory phenomenological framework, theoretically
the SM is almost universally understood to be the low-energy
manifestation of a theory whose validity extends up to the
Planck scale. It is hoped that glimpses of such a theory could
be found at the TeV scale, which is what motivates the large
variety of searches for physics beyond the Standard Model
(BSM) at the LHC and at future colliders.

A common feature of BSM physics is the existence of
new resonances, whose discovery and characterisation can,
for example, be achieved by studying the invariant mass
distributions of their decay products. A statistically mean-
ingful quantification of a discovery, or indeed a null result,
can be inferred from experimental data after the selection
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of a benchmark model. In the absence of strong interfer-
ence effects between the resonant signal and the relevant SM
backgrounds, it is straightforward to take a lineshape for the
signal (which depends on both the mass and width of the
resonance), convolve it with the known detector resolution,
and perform a fit to the observed data with both the signal
and background invariant mass distributions. In the case of
positive results in the data, this allows for the extraction of
the discovery significance; for null results, one can extract
exclusion limits on the product of the cross section for the
resonance production and the branching ratio for decay into
the final state of interest. Needless to say, both of these results
will depend crucially on the underlying theoretical assump-
tions; in other words, the same data might lead to different
results had different benchmark models been adopted.

Unfortunately, neglecting interference effects is a prag-
matic compromise rather than a well-motivated assumption.
The details of signal–background interference are highly
dependent on the new physics that gives rise to the reso-
nance, which is unknown a priori. A scalar being produced
via gluon-fusion through a fermion loop, for example, inter-
feres with existing gluon-induced SM processes that produce
the same final state as the scalar, with the precise effects
depending on both the mass of the scalar and the masses of
any fermions that can run in the loop. Different models will
generate different patterns of interference, the ultimate effect
of which is to change the production rate of the resonance,
whilst distorting the invariant mass distribution of the decay
products in such a way as to change the apparent mass of
the scalar resonance [3–7]. The potential presence of these
effects complicates both the interpretation of a new discovery
in a resonance search, and the presentation of null results in
the form of cross-section times branching ratio limits, which
are not well-defined in the case of interference.

In this work, we adopt an alternative point of view and
present a practical approach for incorporating interference
effects in resonance searches in a model-independent way.
The key idea is that although the actual lineshape (of the
resonance invariant mass) depends on the unknown param-
eters of an unknown physics model, the space of its pos-
sible functional forms is largely dictated by general Quan-
tum Field Theory arguments. Thus, we employ a physically-
motivated functional form that is capable of describing the
distortions of the lineshape encountered in the presence of
signal–background interference, and illustrate how LHC-
experiment fitting procedures can be modified to use this
functional form in the presentation of both positive and null
results. We demonstrate the technique using an assumed
model of a scalar resonance produced via gluon fusion and
decaying to pairs of photons, but the approach easily gener-
alises to other models and final states. A model-independent
approach to resonance searches has also recently been pre-
sented in Ref. [8], but we note that the method we propose

is vastly different; in particular, Ref. [8] relies heavily on a
Fourier representation of non-periodic functions, which need
not be introduced in this paper.

This paper is structured as follows. Preliminary consider-
ations are first presented in Sect. 2. We then introduce a gen-
eral, model-independent functional form in Sect. 3. A bench-
mark signal model is presented in Sect. 4, which will serve
as our assumed choice of a scenario that exists in Nature.
In Sect. 5, we demonstrate that the general functional form
of Sect. 3 is able to describe the physics of the benchmark
signal model of Sect. 4, and assume a generalisability of its
description to other signal models due to the wide range of
behaviour covered. In Sect. 6, we make our tests more real-
istic by using fully-generated Monte Carlo (MC) samples
of the signal, interference and background diphoton invari-
ant mass distributions for the benchmark model, along with
simulated detector effects. Finally, we conclude in Sect. 7.

2 Preliminary considerations

The most straightforward way to present both positive and
null search results is that of working in the context of a given
BSM theory; an approach of this type is, by construction,
a top-down one. While statistically clean, top-down proce-
dures have two main drawbacks. Firstly, they often have to
be repeated, even if the datasets are unchanged, whenever a
different theoretical model is chosen. Secondly, the details
of how BSM theories are treated in such procedures are
under the control of the experimental collaborations, which,
among other things, renders it difficult for theorists to assess
how tweaking different aspects of the models might improve,
worsen, or otherwise affect the search results.

For these reasons, it is interesting to consider the opposite
viewpoint, namely that of a bottom-up approach in which
data are manipulated, and the search results presented using
the fewest possible number of theoretical assumptions. This
is the goal of the present paper. More specifically, a model-
independent functional form for describing the lineshape
of a resonance and its interference with the background is
employed, and the search results presented as allowed or for-
bidden regions in the space of parameters relevant to such
a form. The idea is that if experimental results are given in
this way, any theoretical model can be quickly checked to
be compatible or incompatible with the data by means of a
simple computation whose results are expressed in terms of
the same parameters.

In order to simplify the approach we are proposing, a num-
ber of assumptions need to be made. In particular:

1. We consider one resonance at a time; if several reso-
nances are present, they must be sufficiently well sepa-
rated for the procedure to work independently for each
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of them. Likewise, we assume the resonance to be suffi-
ciently separated from any hard kinematical thresholds.

2. We work with the invariant mass of the resonance, which
can be reconstructed by means of the four-momenta of
the decay products.

3. A single partonic process is responsible for the signal–
background interference pattern.

There is at least one implication of item #3 that requires
an immediate explanation. The overarching understanding is
that we presently have a solid confidence in the SM, as well
as in the correctness of the theoretical tools that are used to
simulate both SM and BSM physics processes with a good
control on the systematics. Thus, in the entirely realistic pos-
sibility that the background to the search proceeds through
more than one partonic channel (H → γ γ being a chief
example of this situation), the channels that are not inter-
fering must be subtracted from the data prior to the fitting
procedure that we shall describe below. This operation will
contribute to the overall systematics of the procedure we are
proposing.

3 Model-independent template functional form

Given the assumptions listed in Sect. 2, let us denote bym and
� the mass and width, respectively, of the resonance whose
characteristics we seek to determine. We write the amplitude
for the partonic process that features the signal–background
interference as follows:

Āh(q
2) = Sh(q2)

q2 − m2 + im�
+ Bh(q2)

m2 , (3.1)

where we have denoted by q2 the resonance virtuality,1 and
by h (with 1 ≤ h ≤ N ) the label of the helicity configu-
rations. Loosely speaking, one can identify the first and the
second term on the r.h.s. of Eq. (3.1) with the “signal” and
“background” contributions, respectively. Indeed, the ampli-
tude

B̄h(q
2) = Bh(q2)

m2 (3.2)

is by construction the one relevant to the production process
of interest when all BSM effects are neglected; we remark
that we find it convenient to work with Bh , rather than directly
with B̄h , owing to the fact that its canonical dimensions are
equal to those of Sh . We write the complex numbers Sh and
Bh by making their dependences on complex phases explicit,

1 For the sake of the present paper, q2 (i.e. a quantity defined at the level
of Feynman diagrams) is assumed to coincide with the squared invariant
mass of the decay products of the resonance (i.e. with an observable).

as follows:

Sh(q
2) = |Sh(q2)| exp[i ξh(q2)], (3.3)

Bh(q
2) = |Bh(q

2)| exp[i χh(q
2)]. (3.4)

Thus, the square of the amplitude in Eq. (3.1) is:

| Āh(q
2)|2 = |Sh(q2)|2

(q2 − m2)2 + m2�2 + |Bh(q2)|2
m4

+ 2

m2

|Sh(q2)||Bh(q2)|
(q2 − m2)2 + m2�2

×[(q2 − m2) cos φh(q
2) + m� sin φh(q

2)],
(3.5)

with:

φh(q
2) = ξh(q

2) − χh(q
2). (3.6)

In order to make the forthcoming discussion as transparent
as possible, we assume that only one helicity configuration
exists, i.e. N = 1; later, we shall consider the case N > 1.
We simplify our notation accordingly, by dropping the index
h wherever it appears. With this assumption, the amplitude
squared of Eq. (3.5), when multiplied by the flux and phase-
space factors, is the differential cross section for the sig-
nal plus background plus signal–background interference;
henceforth, we shall refer to this quantity as to the “full”
cross section. By computing its ratio over its analogue stem-
ming from Eq. (3.2) (which is thus the background-only cross
section), flux and phase-space factors mutually cancel, and
we obtain what follows:

| Ā(q2)|2
|B̄(q2)|2 = m4E(q2)

(q2 − m2)2 + m2�2

+m2(q2 − m2) O(q2)

(q2 − m2)2 + m2�2 + 1, (3.7)

where the “even” and “odd” dimensionless functions E(q2)

and O(q2), respectively, are:

E(q2) = R(q2)2 + 2
�

m
R(q2) sin(φ(q2)), (3.8)

O(q2) = 2 R(q2) cos(φ(q2)), (3.9)

with:

R(q2) = |S(q2)|
|B(q2)| . (3.10)

In the vicinity of the resonance mass, q2 � m2, by neglecting
all dynamical effects, i.e. by replacing E(q2) with E(m2)

and O(q2) with O(m2), Eq. (3.7) exhibits the well-known
interference pattern of pure kinematical origin. Namely, the
functional form in q2 is a linear combination of a Breit–
Wigner (BW henceforth), which is even under the (q2 −
m2) → (m2 − q2) transformation, and of a BW times a
(q2 −m2) factor, which is odd under the said transformation.
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This does not imply that the functions E(q2) and O(q2) are
even and odd, respectively. However, we do expect that in
a neighbourhood of m2 the kinematical effects be dominant
over the dynamical ones. We can formalise this statement by
re-writing Eq. (3.7) by Taylor-expanding E(q2) and O(q2)

around q2 = m2:

| Ā(q2)|2
|B̄(q2)|2 = m4

(q2 − m2)2 + m2�2

∞∑

k=0

ak
k!

(
q2

m2 − 1

)k

+ 1,

(3.11)

where2

ak = E (k)(m2) + k O(k−1)(m2), (3.12)

having denoted:

E (k)(q2) = dk E(q2)

d(q2/m2)k
, O(k)(q2) = dkO(q2)

d(q2/m2)k
. (3.13)

Note that for k = 0, Eq. (3.13) implies E (0)(m2) = E(m2)

and O(0)(m2) = O(m2).
Equation (3.11) gives us the first opportunity to discuss the

bottom-up approach introduced in Sect. 2. One first truncates
the Taylor expansion to some order K , i.e. one writes:

| Ā(q2)|2
|B̄(q2)|2 = m4

(q2 − m2)2 + m2�2

K∑

k=0

ak
k!

(
q2

m2 − 1

)k

+1 + O((q2 − m2)K+1). (3.14)

The terms of O((q2 − m2)K+1) and higher are then dis-
carded, and the parameters that appear in Eq. (3.14), namely
the following ones:

{m, �, a0, . . . aK }, (3.15)

have to be regarded as parameters to be determined by a fit to
the data. The results of such a fit will be compared with the
theoretical predictions for the same set of parameters (bar for
m and �, which must be considered as inputs to theoretical
simulations).

We point out that, for any given choice of K , the values of
the parameters of Eq. (3.15) emerging from fitting Eq. (3.14)
to the data will differ from those one would obtain if one
had retained all orders in the Taylor expansion as is done in
Eq. (3.11), even in the ideal case of infinite statistics. This is
because the fit based on Eq. (3.14) will tend to compensate for
the lack of the missing higher-order terms by suitably adjust-
ing the fit parameters, which can happen rather effectively
(i.e. without changing significantly the quality of the fit) if
the fitting range in q2 is chosen in an appropriate manner. It
is obvious that, by progressively enlarging such a range, the
fit quality will degrade, and eventually lead to an unstable

2 The quantity O(−1)(m2) that appears in Eq. (3.12) when k = 0 need
not be defined, since it is multiplied by a null coefficient.

procedure. We shall comment at length on this point in the
following, and show that the flexibility in choosing the fitting
range is an effective self-diagnostic tool.

The set in Eq. (3.15) constitutes a convenient choice since,
for any given K , it allows one to include all of the informa-
tion resulting from the fit in a minimal number of param-
eters. On the other hand, a possible drawback associated
with it is the fact that the parameters ak do not have one-to-
one relationships with quantities that emerge directly from
matrix-element computations, such as the Taylor coefficients
of R(q2) and φ(q2). However, one can express the for-
mer parameters in terms of the latter ones. By exploiting
Eqs. (3.8), (3.9), and (3.12) we obtain, for K = 2 (which
will be our default choice henceforth):

a0 = R(0)2 + 2
�

m
R(0)s(0)

φ , (3.16)

a1 = 2

[
R(0)R(1) + R(0)c(0)

φ + �

m

(
R(0)s(1)

φ + R(1)s(0)
φ

)]
,

(3.17)

a2 = 2

[
R(1)2 + R(0)R(2) + 2R(0)c(1)

φ + 2R(1)c(0)
φ

+ �

m

(
R(0)s(2)

φ + 2R(1)s(1)
φ + R(2)s(0)

φ

) ]
, (3.18)

where, analogously to Eq. (3.12), we have defined:

R(k) = dk R(q2)

d(q2/m2)k

∣∣∣∣
q2=m2

, c(k)
φ = dk cos φ(q2)

d(q2/m2)k

∣∣∣∣
q2=m2

,

s(k)
φ = dk sin φ(q2)

d(q2/m2)k

∣∣∣∣
q2=m2

. (3.19)

Thus, after having determined the values of the ak parame-
ters, one solves Eqs. (3.16)–(3.18) for the Taylor coefficients
of the R(q2) and φ(q2) functions. There are two issues with
the procedure. Firstly, the system of Eqs. (3.16)–(3.18) is
underconstrained: there are more unknowns than equations,
the more so the larger K . This implies that the solutions
can not be given as central values plus uncertainties for each
parameter, but rather as allowed hyperplanes in the space
of parameters. For example, the set of possible solutions for
R(0) and R(1) will sketch out a band in the 〈R(0), R(1)〉 plane,
with finite width due to uncertainties and the effect of pro-
jecting out the remaining parameters. Secondly, the system
of Eqs. (3.16)–(3.18) is in any case not easy to solve, par-
ticularly owing to the presence of trigonometric functions
whose argument is φ(q2). This problem can be alleviated
by solving directly for the sine and cosine of φ(q2), which
is what the notation of Eqs. (3.16)–(3.18) already implicitly
suggests. While this implies that the system of equations is
even more underconstrained, it is mostly an academic issue:
in fact, we shall see that it is inevitable in the realistic case
of multiple helicity configurations.
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An alternative, and much more practical, procedure is that
of regarding the parameters on the r.h.s. of Eqs. (3.16)–(3.18)
directly as fit parameters. This implies employing the r.h.s. of
those equations in the fitting template of Eq. (3.14), thereby
replacing Eq. (3.15) with:
{
m, �, R(0), . . . R(K ), c(0)

φ , . . . c(K )
φ , s(0)

φ , . . . s(K )
φ

}
. (3.20)

The comparison of Eq. (3.15) with Eq. (3.20) renders it mani-
fest the first issue discussed above: there are more parameters
in the latter set than in the former one. Conversely, since the
parameters of Eq. (3.20) are more directly related to physical
quantities (or rather, to quantities that naturally emerge in the-
oretical computations), it is possible to reduce their number
by means of physics considerations. For example, we expect
the complex phases to be more slowly-varying than the abso-
lute values of the amplitudes, and thus we may neglect the q2

dependence of the former. This implies trimming Eq. (3.20)
down to:
{
m, �, R(0), . . . R(K ), c(0)

φ , s(0)
φ

}
. (3.21)

Furthermore, rather than regarding Eq. (3.14) as emerging
from the Taylor expansion of Eq. (3.7), one can start from
Taylor-expanding the functions that appear on the r.h.s. of
Eqs. (3.8) and (3.9), and then replacing the resulting expres-
sions into Eq. (3.7), discarding consistently the terms of
orders higher than those stemming from the original expan-
sions. As an explicit example, we consider again our default
case K = 2, where Eq. (3.21) reads as follows:
{
m, �, R(0), R(1), R(2), c(0)

φ , s(0)
φ

}
. (3.22)

Conversely, by using a first-order Taylor expansion for R
(and by still neglecting the q2 dependence of the complex
phases) the fit parameters are:
{
m, �, R(0), R(1), c(0)

φ , s(0)
φ

}
. (3.23)

The corresponding template functional form is the same as
in Eq. (3.14), with the a0, a1, and a2 coefficients given in
Eqs. (3.16)–(3.18), where all the parameters on the r.h.s. of
those equations which are not explicitly present in the sets of
Eqs. (3.22) and (3.23) must be set equal to zero.

We can repeat here the comment made after Eq. (3.15).
Namely, the simplifying assumptions that lead from Eq. (3.20)
to Eq. (3.22) and thence to Eq. (3.23) imply that the values
of the parameters that are common to these three sets will
in general be different in the three cases. However, at vari-
ance with the case of the ak parameters, such differences
will not necessarily be small even in fits of comparable good
quality, since the system is underconstrained: thus, the indi-
vidual parameter has more latitude to accommodate for the
neglected terms than any of the ak ones. The trigonometric

parameters c(0)
φ and s(0)

φ will give the clearest example of this
behaviour.

Furthermore, at variance with the case of Eq. (3.15) which
is unambiguously determined once K is chosen, the sets in
Eqs. (3.20)–(3.23) differ from each other owing to consid-
erations stemming from their underlying physics meaning,
which is more direct than for Eq. (3.15). While this is an
appealing characteristic, it must be kept in mind that the
parameters in Eqs. (3.20)–(3.23) are still not measurable
quantities. Thus, the considerations mentioned above must
be subject to a level of scrutiny that is deeper than that rel-
evant to the parameters of Eq. (3.15); we shall further this
point in Sect. 5.

Before closing this section, we return to considering the
case of multiple helicity amplitudes, i.e. we work with N > 1
and start from Eq. (3.5). The amplitudes squared relevant to
the full and background-only cross sections are:

| Ā(q2)|2 =
N∑

h=1

| Āh(q
2)|2, (3.24)

|B̄(q2)|2 =
N∑

h=1

|B̄h(q
2)|2. (3.25)

It is then a matter of simple algebra to show that Eqs. (3.11)–
(3.23) are unchanged, provided that the function R(q2) is
defined as follows:

R(q2) =
√√√√

∑N
h=1 |Sh(q2)|2

∑N
h=1 |Bh(q2)|2 , (3.26)

and that the functions cos φ(q2) and sin φ(q2) are replaced
by cφ(q2) and sφ(q2), respectively, where:

cφ(q2) =
∑N

h=1 |Sh(q2)||Bh(q2)| cos φh(q2)
√∑N

h=1 |Sh(q2)|2 ∑N
h=1 |Bh(q2)|2

, (3.27)

sφ(q2) =
∑N

h=1 |Sh(q2)||Bh(q2)| sin φh(q2)
√∑N

h=1 |Sh(q2)|2 ∑N
h=1 |Bh(q2)|2

. (3.28)

While Eqs. (3.27) and (3.28) imply that:

− 1 ≤ cφ(q2), sφ(q2) ≤ 1, (3.29)

and therefore that both cφ(q2) and sφ(q2) can indeed be seen
as the cosine and the sine of an angle, in general this is not
the same angle. This fact, which has been anticipated before,
is what forces one to treat the Taylor coefficients of cφ(q2)

and sφ(q2) as independent fit parameters, as we have done
in Eqs. (3.20)–(3.23).

We conclude this section by summarising our fit setup.
In what follows we will show results based on two template
fits: TR and Ta corresponding to the fit parameters listed in
Eq. (3.22) and Eq. (3.15) respectively, the latter with K = 2.
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For completeness, the two sets of parameters are:

TR :
{
m, �, R(0), R(1), R(2), c(0)

φ , s(0)
φ

}
, (3.30)

Ta :
{
m, �, a0, a1, a2

}
, (3.31)

which, along with Eq. (3.14) (and substitutions similar to
those of Eqs. (3.16)–(3.18) in the case of the TR set), define
the two functional forms that we will use. We point out again
that the results obtained by employing either of the TR or
Ta sets constitute alternative descriptions of the same under-
lying physics; their different characteristics can be exploited
depending on the emphasis of the specific new-physics search
or modelling.

4 Benchmark physics model

The discussion of the previous section is general, model-
independent, and can be used to interpret the results of any
discovery (or null result), even without making assumptions
of an underlying resonant physics model.

In order to test that this model-independent functional
form is indeed appropriate for a realistic physics analysis,
we now consider a benchmark model that contains a new
Higgs-like CP-even scalar (spin-0) resonance produced via
gluon fusion and decaying to two photons. The leading-order
(LO) Feynman diagram of the process that we consider is dis-
played on the left panel of Fig. 1. The LO diagram relevant to
the SM process that interferes with this signal is shown on the
right panel. The two template forms of the previous section
will be tested against the invariant mass distribution of the
γ γ pairs produced in these interactions, which are assumed
to represent the model chosen by Nature.

For testing purposes, it is useful to have semi-analytic
descriptions of the signal process, the dominant SM back-
ground, and the expected resonant–background interference
to facilitate the generation of very high-resolution distribu-
tions of the diphoton invariant mass. To distinguish these
descriptions from the contents of the previous section, we

Fig. 1 Left: The gg → X → γ γ signal process. The resonance X
is a CP-even spin-0 particle. The f denotes heavy virtual fermions.
Right: The leading order gg → γ γ interfering SM background, with
circulating quarks q

will refer to them collectively as the physics model (PM)
functional form. We now discuss the signal, the background,
and their interference in turn.

4.1 Signal model

In the assumed benchmark model, the interaction of the scalar
resonance, X , with gluons is mediated by heavy fermion
loops, and can therefore be described by the effective inter-
action:

LG
0 ∝ GμνG

μνX, (4.1)

where Gμν is the gluon field strength tensor. Its decay into
photons is described by the dimension-5 operator:

LA
0 ∝ Aμν A

μνX, (4.2)

with Aμν the electromagnetic field strength tensor.
These effective interactions can be used to compute the

amplitude of the production and decay of the scalar res-
onance. The differential cross section with respect to the
diphoton invariant mass is given by:

dσS

dq
∝ Lgg(q)

q
|AS(q

2)|2, (4.3)

where Lgg(q) is the gluon-gluon luminosity function, and
AS(q2) is the signal amplitude, which can be written as:

|AS|2 = fBW|AggX AXγ γ |2, (4.4)

with AggX and AXγ γ the amplitudes of the production loop
and decay vertex respectively, and fBW the BW function:

fBW(q2) = 1

(q2 − m2
X )2 + m2

X�2
X

, (4.5)

where mX and �X are the mass and the width of the reso-
nance, X , respectively.

Both the effective production and decay vertices con-
tribute a factor to the amplitude with a simple q-dependence,
AXγ γ /XGG ∝ q2. Thus, using Eq. (4.3), we posit that the
diphoton invariant mass distribution of our chosen signal can
be described by [9]:

dσS

dq
= fs Lgg(q) q7 fBW(q2), (4.6)

where fs is a proportionality factor involving all other q-
independent factors. An approximation of the gluon lumi-
nosity lineshape was extracted using APFEL [10] and the
NNPDF2.3 set of parton luminosity functions (PDFs) [11]
to leading order:

Lgg(q) =
(

1 −
(

q

ECM

)1/3
)10.334 (

q

ECM

)−2.8

, (4.7)
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Fig. 2 A fit of the signal differential cross section functional form
to a histogram of the MC events generated at the mX = 400 GeV,
�X/mX = 5% point

where q is expressed in GeV, and ECM = 13 TeV is the
centre-of-mass energy corresponding to LHC Run 2 specifi-
cations.

A sample of MC signal-only events was generated using
MadGraph5_aMC@NLO, interfaced with Pythia8 for a
parton shower simulation [12–14]. The Higgs characterisa-
tion (HC) framework [15] was used for an implementation
of our assumed resonant model. Events were generated for a
resonant mass mX = 400 GeV, with a width �X/mX = 5%.
Using the ROOT data analysis framework [16], the analytic
form of Eqs. (4.6) and (4.7) was tested against a binned his-
togram of the diphoton invariant mass distribution, for events
at the generator level (i.e. those obtained without performing
any detector simulation). The result is presented in Fig. 2.
The values extracted for mX and �X agree well with the
inputs selected, and a good description of the data is found,
with χ2/ndf ≈ 1.5. Thus, it is clear that the analytic form of
Eqs. (4.6) and (4.7) indeed provide a description equivalent
to that of the HC model, but which will be quicker to run,
and is unaffected by statistical fluctuations.

4.2 Background parametrisation

The interfering SM gg → γ γ diagram at the LO is shown
in Fig. 1 (right). While it is possible to proceed in a similar
manner as in the signal case in order to obtain a description of
the background contribution to the diphoton invariant mass
distribution, the physics of the background is not the main
interest of our study. We adopt the methodology of experi-
mental collaborations and employ a template functional form
for an ad hoc description of the background differential cross

Fig. 3 A fit of the background template functional form to the his-
togram of generated background gg → γ γ events

section [17]:

dσB

dq
≡ FB(q) = fb

q

(
1 −

(
q

ECM

)1/3
)A (

q

ECM

)B

,

(4.8)

where ECM = 13 TeV. The parameters of this template con-
sist of a normalisation constant, fb, and exponents, A and
B.

The description of Eq. (4.8) was tested against a sam-
ple of background gg → γ γ events generated using Mad-
Graph5_aMC@NLO. The result of its fit to the events is
presented in Fig. 3; a good description of the simulated back-
ground diphoton invariant mass distribution is found, with
χ2/ndf ≈ 0.9.

4.3 Interference between signal and background

Using Eqs. (4.6) and (4.8), we can write the interference
contribution to the full differential cross section as follows:

dσI

dq
= 2

√
fs

√
Lgg(q)

q

√
FB(q) fBW q4

×
[
(q2 − m2

X )cφX + mX�XsφX

]
, (4.9)

where cφX and sφX are analogous to the quantities of
Eqs. (3.27) and (3.28), but specifically defined under the
assumed benchmark model.

For a heavy resonance that decays via an effective con-
tact interaction, and in the limit of infinite fermion masses
for the loop-induced resonant production and background
interaction, the phase difference φh(q2) (Eq. (3.6)) van-
ishes for all interfering helicity amplitudes. Thus, to generate
interference-only event samples corresponding to non-trivial
phase differences, we have modified the signal amplitude
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Fig. 4 A fit of the analytic description of the interference between the
benchmark signal model and the SM background to a MC sample of
interference-only events

appearing within the HC framework by means of the replace-
ment S → S×eiθ , such that the value chosen for the artificial
phase θ then corresponds to the phase difference between the
signal and background helicity amplitudes, θ ≡ φh .

To verify that we can extract the expected phase from
interference-only event samples generated in this way, we
note that since the same phase difference is defined for each
of the interfering helicity configurations, Eq. (4.9) can be
written in the following form:

dσI

dq
= 2 fi

√
Lgg(q)

q

√
FB(q) fBW q4

×
[
(q2 − m2

X ) cos θ + mX�X sin θ
]
, (4.10)

where fi is defined as:

fi ≡ √
fs ×

∑N
h=1 |Sh ||Bh |√∑N

h=1 |Sh |2 ∑N
h=1 |Bh |2

, (4.11)

with Sh and Bh the helicity amplitudes of the signal and
background respectively, as defined in Eq. (3.1). The four
free parameters of Eq. (4.10) are mX , �X , θ , and fi , where
the invariant mass dependence of fi is neglected.

Equation (4.10) was tested against an interference MC
sample generated with mX = 400 GeV, �X = 20 GeV, and
a complex phase θ = −3π/4 ≈ −2.36. The result of a fit
to the event sample is shown in Fig. 4. The values extracted
for mX , �X , and θ are in good agreement with those used to
generate the events, and a good description of the interference
differential cross section lineshape is found, with χ2/ndf ≈
1.2.

5 Template fits to physics model toys

In this section, we shall test the model-independent func-
tional form of Eq. (3.14) against the chosen benchmark
physics model. These tests will be performed using toy sam-
ples obtained from the analytic description of the benchmark
model, rather than from a Monte Carlo generator, in order to
achieve very fine resolutions of the invariant mass distribu-
tions.3

We consider the template functional form as expressed
in terms of the TR or Ta parameter sets, of Eqs. (3.30)
and (3.31) respectively, and compare and contrast the results
that we obtain for the two different template fits. By design,
the parameters of the functional form should be extracted
through a fit of the ratio of full to (interfering) background-
only differential cross sections, so as to reduce the bias of a
result on the particular partonic luminosity assumed for the
data. However, in the current study, we shall assume that the
background is known exactly (i.e. without any uncertainties
associated with its description). In this case, it is equivalent
to perform the fits in terms of absolute differential cross sec-
tions, using a description that follows from Eq. (4.3):

dσfull

dq
= FB(q)

| Ā(q2)|2
|B̄(q2)|2 , (5.1)

where FB(q) is the background-only differential cross sec-
tion (Eq. (4.8)), and the ratio of amplitudes squared is given
by Eq. (3.14).

Binned likelihood fits are performed using the Multi-
Nest implementation of the nested sampling algorithm [18].
We employ a log-likelihood function defined assuming inde-
pendent Gaussian random variables for each bin:

logL(�) = log
bins∏

i

Gi (�; qi ) = −1

2

bins∑

i

(yi − Y (qi ;�))2

σ 2
i

,

(5.2)

where yi and σi respectively represent the content and uncer-
tainty of the i th bin, and Y (qi ;�) denotes the fit function
evaluated at the central bin value qi (in the case of template
fits, Y is given by Eq. (5.1), with � corresponding to either
the Ta or TR parameter sets).

5.1 Construction of Asimov toys

The analytic description of the PM invariant mass distribu-
tion, given by the sum of Eqs. (4.6), (4.8) and (4.9), is used
to construct the Asimov toy histograms that will be used in

3 The decision to use high-resolution toy samples is purely a pragmatic
one. In the end, the functional form approach we propose depends only
on the lineshape of the data; lower resolution data will simply lead to
looser constraints on the parameter space of the functional form.
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our tests. Asimov datasets contain no statistical fluctuations
[19], and are constructed by setting the content of the kth bin
equal to the value of the input distribution, evaluated at the
central invariant mass value, qk , of that bin. Bin uncertainties
are given by:

�k =
√
Ntotal

A(qk)∑bins
i A(qi )

∑bins
i A(qi )

Ntotal
, (5.3)

where A(q) denotes the generating distribution of the Asi-
mov (in this case, the analytic PM description), and Ntotal

is the total number of events assumed for the dataset.
The square-rooted contribution arises from regular counting
statistics, while the rightmost factor accounts for the fact that
bin contents do not correspond to a number of events. Thus,
the toys perfectly represent the PM invariant mass distribu-
tions used to generate them, and provide a clean test-bed for
the general template.

Ten input PM mass points are considered, with values
ranging from mX = 400 GeV to mX = 1300 GeV in incre-
ments of 100 GeV. Input widths are set equal to �X/mX =
5%, and two different sets of values for the remaining PM
parameters are chosen as follows:

{cφX , sφX , fs} =
{

{0.7, 0.3, 2.5×10−16} “set 1”,

{−0.8, 0.1, 2.5×10−18} “set 2”,
(5.4)

with a notable difference being the “height” of the signal,
fs , which is two orders of magnitude smaller in set 2. The
collection of Asimov histograms constructed for these inputs
is shown in Fig. 5, for 2 GeV bin widths and Ntotal = 10 mil-
lion events across the 100–1600 GeV invariant mass range.
We note that this number of diphoton events is approximately
of the same order as that collected in Run 2 of the LHC.

Finally, we point out that, as can be inferred from Fig. 5,
the contribution of the signal to the full cross section in
the high-mass tail is larger than that of the background in
the adopted PM. While this might not be the case in actual
physics scenarios, we stress that it does not have any impli-
cations on the procedure we present in this paper, owing to
the limited fit window that is central to the latter; we shall
comment explicitly on this matter in Sect. 5.2.

5.2 Test of fit windows

The general template we consider retains only terms up to
O((q2 − m2)2) in its form. Thus, it is expected that its
description of an invariant mass distribution will deteriorate
if one considers masses too far away from the resonance
peak. In this section, we fit a range of invariant mass win-
dows centred on the true mass for each toy. Window widths
from 2w = 40 GeV to 2w = 400 GeV are chosen, in incre-
ments of 40 GeV, such that fit windows are equal to mX ±w.
From such a collection of fit results, one can (approximately)

determine an appropriate range of fit windows by noting that
−2 logL(�) follows a χ2

ν distribution, where for a given fit
ν is the number of fitted bins minus one for each free param-
eter. A 1σ cut-off in the fit quality, for example, can then
be determined by evaluating the quantile function of the χ2

ν

distribution, Qχ2
ν
(p), at p ≈ 0.68. If a fit returns a best-fit χ2

smaller than this value, then we can conclude that the general
functional form is able to provide a good description of the
data, to within 1σ , over the corresponding mass range.

The result of fitting the Ta parameters to PM toys for all
of the masses and windows chosen is presented in Fig. 6.
The left and right panels are obtained using the set 1 and
set 2 input PM parameter values of Eq. (5.4), respectively.
The half-width of the fit window, w, and the input PM mass,
mX , are reported on the x and y axes. For each combination
of these quantities, the z-axis is represented as colour-coded
values according to the scale depicted on the right of the two
panels, corresponding to the fit quality in terms of the ratio
of best-fit to 1σ cut-off chi-squares, χ2

bf/χ
2
1σ , with the latter

obtained from a χ2 distribution of appropriate dimensions.
Thus, larger z-axis values indicate poorer fits, with a value
of one marking the 1σ boundary. Note that the same colour
code is used in the two results, but corresponds to different z-
axis scales. We do not show the analogous results in terms of
the TR parameters, as both parametrisations yield identical
lineshapes.

Considering each input mass point separately, we find the
trend of decreasing fit quality with increasing fit window size,
as is expected. The results of set 1 show a much faster deteri-
oration in contrast to those of set 2, with the latter indicating
a good fit for every window tested. Nevertheless, provided
that a sufficiently small fit window is chosen, these results
show that the general parametrisation is capable of correctly
characterising a wide range of physical lineshapes.

5.3 Profile likelihood contours in template parameter space

Once a suitable choice for the fit window has been made,
aided by results akin to those of Fig. 6 or otherwise, the next
step of an analysis is to extract a result in terms of the gen-
eral parameters. As an example, let us refer to the particular
instance of Fig. 6 corresponding to the set 1 input PM param-
eters, mX = 700 GeV, �X/mX = 5%, and the mX ±40 GeV
fit window. A ratio of chi-squares that is close to zero is
found for this configuration, indicating a very good fit of the
toy data.

Figure 7 visualises the Ta parameter space of this result
as a collection of two-dimensional profile likelihood ratios.
Each point in a parameter plane corresponds to the ratio of
local to global maximum likelihoods: the former is found by
profiling over the remaining Ta parameters (i.e. by allowing
them to adopt values that maximise the likelihood), while
the latter corresponds to the overall best-fit likelihood. The
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Fig. 5 Visualisation of Asimov datasets, generated using the PM functional form at various mass points with �X/mX = 5%, for the two different
sets of input cφX , sφX , and fs

Fig. 6 Plots depicting the quality of Ta template fits relative to the
quantile function of a χ2

ν distribution. The z-axis is represented by
means of different colours, with a scale displayed on the right of each

plot, and shows the ratio of best-fit χ2 to the 1σ cut-off. Lower values
indicate better fits. Left (right) panel: the result using set 1 (2) of the
input PM parameters

white contours represent the 1σ and 2σ confidence bound-
aries, and a red circle marks the PM input point (mX , �X ) in
the 〈m, �〉 plane. The expected input mass and width values
are recovered in the fit to be well within the 1σ confidence
level, and we find tightly-constrained contours with very mild
correlations between the Ta parameters.

Figure 8 shows the analogous result in terms of the TR

parameter set, for a selection of possible two-parameter
planes. The 〈m, �〉 contour is essentially identical to that
in Fig. 7, which confirms the consistency of the two m and
� determinations obtained by means of the TR and Ta sets.
The R(i), c(0)

φ and s(0)
φ parameter planes are of more inter-

est: we find large, relatively flat regions of high likelihood,
with highly non-trivial degeneracies between the parameters.
These are a sharp contrast to the neat solutions of Ta space.
As we previously mentioned in Sect. 3, such a behaviour
is the expected consequence of the system being undercon-
strained by the TR parameters, and affirms that the results
obtained using this parametrisation cannot meaningfully be
presented as a set of parameter values with associated uncer-

tainties. Furthermore, flat regions in the fit-parameter space
may induce larger uncertainties in cases less ideal than those
constituted by Asimov datasets.

From the perspective of a fit, c(0)
φ and s(0)

φ are no different
from the other parameters of the functional form; as such,
we have allowed them to vary beyond their physical ranges,
c(0)
φ , s(0)

φ ∈ [−1, 1], in the fit. The grey contours imposed over
each plot represent the 1σ and 2σ boundaries of the physical
region, corresponding to points with c(0)

φ , s(0)
φ ∈ [−1, 1].

In these results, the physical contours are found to be fully
contained within the enlarged contours. However, this is not
necessarily the case in general, since the underconstrained
nature of the parametrisation implies that c(0)

φ and s(0)
φ values

can vary to compensate for the lack of higher order terms in
the functional form. This can lead to solutions that strongly
prefer unphysical regions of the parameter space.

Given that the only reason one would favour the TR over
the Ta parameters lies in the more immediate physical inter-
pretation of the former, even at the cost of more severe degen-
eracies, results presented in terms of TR parameters should
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Fig. 7 Fit result for the Ta parameters to a PM Asimov toy over the
mX ± 40 GeV window. The toy corresponds to the mX = 700 GeV,
�X/mX = 5%, and set 1 input parameters. Two-dimensional profile

likelihood plots are presented, with 1σ and 2σ boundaries outlined in
white. Where applicable, input PM parameter values are indicated with
a red circle

preferably be consistent with physical constraints. Nonphys-
icality of the trigonometric parameters can be used as a diag-
nostic tool: results that do not admit any physical solutions
must be discarded. On the other hand, this implies that as
long as physical regions are not rejected by the fit, it is safe
to present the result in which the physical considerations are
imposed on c(0)

φ and s(0)
φ . This has the benefit of greatly reduc-

ing the extent of degeneracy of the likelihood; in particular,
if the narrow correlations in the 〈R(0), s(0)

φ 〉 and 〈R(1), c(0)
φ 〉

planes in Fig. 8 are symptomatic of the parametrisation, then
R(0) and R(1) will be greatly constrained upon bounding c(0)

φ

and s(0)
φ . We have verified that fit results yielding c(0)

φ and s(0)
φ

solutions outside of their physical ranges occur more readily
with the set of Eq. (3.23) (which emerges from a strict first-
order expansion of the function R(q2)), and for this reason,
we suggest the baseline TR fitting procedure to involve the
second-order set of Eq. (3.30).

We conclude the section by remarking that both of the TR

and Ta parameter sets can accommodate background-only

solutions, and as such, can also be employed for the descrip-
tion of null signals. The Ta parameters provide the simplest
demonstration of a null result: the solution corresponding to
ak = 0 for all k is the background-only one. The analogous
solution in TR parameter space is less simple, owing to the
complicated correlations between its parameters; however,
its advantage lies in that they admit the space of possible
signal and interference contributions that sum to an apparent
background-only distribution. We present an example of a
null result in Fig. 9, corresponding to a fit of the Ta param-
eters to a background-only Asimov histogram over the 100–
1600 GeV mass range. Note that the result in the 〈m, �〉 plane
is included for completeness, but is largely meaningless (and
can thus be neglected) in the case of a null result.

5.4 Physics model closure test

For a theorist to be able to test their specific physics model
given a set of results presented in terms of either the TR or
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Fig. 8 Fit result of the TR parameters to a PM Asimov toy over the
mX ± 40 GeV window. The toy corresponds to the mX = 700 GeV,
�X/mX = 5%, and set 1 input parameters. Two-dimensional profile
likelihood plots are presented, with 1σ and 2σ boundaries outlined in

white. Where applicable, input PM parameter values are indicated with
a red circle. Grey contours represent the 1σ and 2σ regions that corre-
spond to physical solutions, c(0)

φ , s(0)
φ ∈ [−1, 1]

Ta parameters, there are two possible strategies. Either one
computes the TR or Ta parameters directly from one’s cho-
sen theoretical model, and compares the predictions to those
measured by the experiments; or one transforms the TR or
Ta experimental results into the parameters of one’s physics

theory. While the former approach is more straightforward in
that it follows the same procedure we have outlined so far, we
demonstrate in this section that the latter one is viable, too.
We adopt again the case corresponding to mX = 700 GeV
and �X/mX = 5% as an example; by using the results of
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Fig. 9 Fit of the Ta parameters to a background-only Asimov over the 100–1600 GeV mass range

Figs. 7 and 8, we show that the expected (i.e. input) PM
parameter values can be recovered.

We begin by using the MultiNest (see Eq. (5.2)) sam-
pling outputs corresponding to theTa andTR fits to construct
“results” histograms using their respective functional forms.
Such histograms are defined over an invariant mass range
equal to the fitted invariant mass window (in this case, 660–
740 GeV), with the same binning as that of the fitted dataset
(2 GeV). The points in parameter space satisfying

χ2
point − χ2

bf ≤ Qχ2
ν
(p = 0.68), (5.5)

were extracted from the MultiNest files, where ν = 5 for
the Ta parameters (Qχ2

5
(0.68) ≈ 5.86) and ν = 7 for the TR

ones (Qχ2
7
(0.68) ≈ 8.14). These are the points that lie within

the 1σ confidence region of the respective ν-dimensional
parameter spaces. For a given histogram bin, the range of
functional form values prescribed by these points can thus
be interpreted as the 1σ confidence interval of the bin. In this
way, we construct histograms, corresponding to a diphoton
invariant mass distribution, that represent the band of Ta and
TR lineshapes agreeing with the original PM toy to within
1σ .

Figure 10 shows the profile likelihood ratios resulting from
fits of the analytic PM description to the results histograms
constructed as detailed above. The main set of results cor-
respond to the fit of the Ta results histogram, with dotted
white contours showing the result in the TR case. Since the
Ta andTR results both describe the same underlying physics,
the two sets of contours are very similar, as expected; their
slight difference arises due to the greater dimensionality of
the TR parameter space, which implies larger bin uncertain-
ties being defined for its results histogram, in accordance with
Eq. (5.5). For all of the parameter planes visualised, we find
the corresponding PM inputs (Eq. (5.4), set 1) to lie within
the high-likelihood regions obtained. Thus, the procedure
described above can indeed be used to construct histograms
representative of physical data given a set of results in terms
of the general parameters, and thence constrain the parameter
space of the physics model of interest.

While we have utilised an analytic description of the
physics model in our demonstration, in the case that such
a form is not readily available one can generate a Monte
Carlo histogram for each point in the parameter space of the
model one wishes to test, and compare that to the histograms
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Fig. 10 Profile likelihood plots of the PM parameters from a fit to Ta
and TR results histograms, corresponding to input mX = 700 GeV,
�X/mX = 5% and set 1 parameter values. The fit is performed over the

700 ± 40 GeV mass window. 1σ and 2σ contours are outlined in solid
white (Ta) and dotted white (TR). Input PM points are marked with a
red circle

derived from the Ta or TR fit results. This comparison will
define a likelihood for the fit of the new model parameters.

5.5 Test of discovery significance

The results obtained in the previous sections used knowledge
of the true (input) resonance mass in selecting fit windows.
However, in a blind search, there is the lower-level ques-
tion of whether or not a signal is even present. Thus, some
preliminary analysis is required to identify candidate signal
regions.

For this purpose, a background-only hypothesis is com-
monly used to quantify the significance of a discovery. The
test statistic of interest is given by

q0 =
{

−2 log �0 for 0 < �0 ≤ 1,

0 for �0 > 1,
(5.6)

where

�0(�) ≡ L0

L(�)
, (5.7)

with L0 the likelihood of a background-only description
against the data, and L(�) the likelihood of a model that
includes both signal and background, with model parame-
ters � (in this case, the Ta or TR parameter sets). The q0

statistic is thus a measure that compares the likelihoods of the
null (background-only) and alternative (i.e. including a sig-
nal) hypotheses; given a particular dataset and the observed
value, q0,obs, one can calculate the p-value,

p0 =
∫ ∞

q0,obs
f (q0|0) dq0, (5.8)

that subsequent data will exhibit an incompatibility with the
background-only hypothesis to an equal or greater degree.
Here, f (q0|0) represents the probability distribution function
for q0 conditional on the null hypothesis being true, and as
such is always non-negative; a larger value of q0,obs thus
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yields a smaller p0, and indicates a greater disagreement
with the background-only hypothesis.

An alternative metric that quantifies the statistical incom-
patibility of the background-only assumption against the
observed dataset is the local significance:

Z0 = QG(1 − p0), (5.9)

where QG(p) is the quantile function for the standard Gaus-
sian distribution evaluated at probability p. For the test statis-
tic of Eq. (5.6), the local significance is given by [19]:

Z0 = √
q0. (5.10)

The common threshold required for a claim of discovery in
particle physics is Z0 = 5.

For the purposes of a background-only hypothesis test, the
entire invariant mass region of the search is typically fitted;
thus, the TR and Ta parameter sets (Eqs. (3.30) and (3.31)),
which are accurate only within a restricted mass range about
the signal peak, are technically inadequate. However, we note
that one can still achieve the goal of identifying prospective
signals using the second-order functional forms, since the
test only seeks to compare the background-only description
with one that includes a signal, and not to extract accurate
estimations of the parameters of the latter. To prevent an
underestimation of the local significance, one should define
sufficiently large prior volumes for the parameters during a
fit, so as to give them the freedom needed to compensate for
the lack of higher-order terms.

We demonstrate the procedure using an Asimov dataset
generated from the physics model, with the input parameters
as we have adopted in the previous sections (mX = 700 GeV,
�X/mX = 5%, and set 1 parameter values). The functional
form of Eq. (5.1) was used as the model alternative to the
null hypothesis, and was fitted over the full (100–1600 GeV)
invariant mass range of the toy. We note that since parameter
estimation is not of import, one can choose to do this using
either the Ta or TR parameters; in the interest of compu-
tational efficiency, we recommend the Ta parameter set be
employed, as a fit of its parameters typically converges more
quickly in comparison to the TR one. The prior volumes for
m and � were uniformly partitioned into 100 separate regions
over the 100–1600 GeV and 0–160 GeV ranges, respectively.
A scan over all of the partitions was performed: for each itera-
tion, the maximum likelihood was obtained by profiling over
the remaining parameters, and Eqs. (5.6) and (5.10) were then
used to calculate the local significance, in units of standard
deviations (σ ).

The results are visualised in Fig. 11. A distinct region of
high local significance can be identified at the mass value
expected from the input value chosen. The width is con-
strained less precisely by this result, but in a blind search
one would only require the former in order to presuppose the
existence and approximate mass of a resonance. The remain-

Fig. 11 Local significance for rejecting the background-only hypothe-
sis, for an Asimov dataset corresponding to input mass mX = 700 GeV
and width �X = 35 GeV. The Ta parametrisation of the template func-
tional form is used as the alternative hypothesis

ing general parameters (including the width) can then be
more precisely obtained by following our procedure of per-
forming a dedicated fit of the model-independent functional
form within a suitable fit window (see in particular Sects. 5.2
and 5.3 ).

5.6 Procedure for a general resonance search

Our tests of the TR and Ta functional forms have demon-
strated their flexibility in fitting a wide range of physical
distributions, provided one makes a suitable choice for the
invariant mass window over which the fit is performed.

A summary of our results, and an outline of the procedure
that we propose for a general resonance search, is as follows:

1. Perform a background-only hypothesis test by scanning
over the 〈m, �〉 plane of the Ta parameters, and produce
a plot of the local discovery significance. This can also be
performed with the TR parameters, but we recommend
the Ta for simplicity and computational reasons. Apart
from the mass and width, all of the other Ta (or TR)
parameters are to be profiled over to yield the maximum
significance for each iteration of the scan.

2. (a) If notably high significance regions exist: perform fits
of the template functional form to the data in these
regions over mass windows of increasing size, using
either of the TR or Ta parameter sets. A suitable
mass window that yields a good fit quality should be
identified from the results of these fits. Then, extract
the general parameters (TR or Ta) from a fit over
the chosen mass window. If this is performed using
the TR parameters, one should confirm that unphys-

123



1174 Page 16 of 22 Eur. Phys. J. C (2020) 80 :1174

ical solutions are not strongly preferred for c(0)
φ or

s(0)
φ . Fit results are to be presented in the form of 2-

dimensional profile likelihood contours in the general
parameter space.

(b) If notably high significance regions do not exist: per-
form a fit of the template functional form to the data
over the entire mass region. We recommend the Ta

parameter set for such a fit, due to its simpler interpre-
tation in the case of null signals: one should simply
find ak ≈ 0 for each k. Fit results are to be presented
in the form of 2-dimensional profile likelihood con-
tours in the general parameter space.

We will also reiterate our preliminary considerations: a sin-
gle resonance should contribute to the invariant mass range
considered, and if multiple regions of high significance are
found in step #1, they must contribute to sufficiently sepa-
rated regions of the data, such that independent analyses can
be conducted for each. Furthermore, it is assumed that the
data contains only backgrounds produced in the same par-
tonic channel as the signal (and hence generating an inter-
ference). Any additional backgrounds yielding the same final
state but induced by a different partonic process from the sig-
nal should be subtracted from the data prior to the analysis.

6 Incorporation of detector effects in template forms

The results presented thus far have been obtained under
the assumption of statistically perfect datasets, whilst also
neglecting event reconstruction effects stemming from the
limitations of particle detectors, which will affect the events
observed in any physical experiment. To account for these
effects, one can choose one of two approaches. The first
option is to obtain an approximation of truth-level data using
unfolding algorithms, to which the procedure, as summarised
in Sect. 5.6, can then be applied. The alternative approach is
to incorporate a parametrisation of the detector reconstruc-
tion effects within the template descriptions, so that they can
be fitted directly to reconstructed data.

In this section, we study the latter approach. We work with
MC event samples generated usingMadGraph5_aMC@NLO
and the HC model, as described in Sect. 4, coupled with a
fast simulation of the CMS detector using theDelphes 3.4.1
framework [20]. In accordance with current CMS trigger
requirements [21], we designate photons passing a pT >

60 GeV selection cut as candidates for the diphoton pair pro-
duced in hard scattering events.

We begin by describing a method of parametrising detec-
tor reconstruction effects, before demonstrating that it holds
for the reconstructed MC event samples. In applying the pro-
cedure to the template functional form, several assumptions

are made to simplify the method. It is important to note that
these assumptions, while expected to be reasonable, may not
be generalisable to all experimental scenarios. As such, the
content of this section should not be seen as a comprehen-
sive guideline for an analysis, but rather as a procedure that
could be adopted, or adapted, if the assumptions are deemed
reasonable. Since our procedure for doing so is based on that
used to mimic the full simulation of the ATLAS and CMS
experiments, we note that it should therefore be applicable
within the LHC experimental collaborations.

6.1 Description of detector effects through convolution

The standard procedure of an analysis is to model the
detector-smeared invariant mass lineshape,R(q), as the con-
volution of the truth-level description, T (q), with a detector
resolution function, DR(q) [17]:

R(q) = (T ∗ DR)(q) =
∫ ∞

0
T (Q) DR(q − Q) dQ. (6.1)

This convolution is assumed to hold for the separate mod-
elling of smeared signal, interference, and background dis-
tributions, although for the latter one would typically opt for
the alternative of obtaining a direct parametrisation instead.
If R(q) is normalised to unity, one can then write the recon-
structed differential cross section as:

dσ

dq
= ε(q) σR(q), (6.2)

where ε(q) is the (generallyq-dependent) reconstruction effi-
ciency, and σ the (truth-level) total integrated cross section.

We choose to parametrise DR(q) as a Double-Sided Crys-
tal Ball (DSCB) function, which comprises of a Gaussian
core with power law tails:

DSCB(q)

= NDSCB

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
− t2

2

)
for − αlow ≤ t ≤ αhigh,

exp

(
− α2

low
2

)

[
αlow
nlow

(
nlow
αlow

−αlow−t
)]nlow for t < −αlow,

exp

(
− α2

high
2

)

[
αhigh
nhigh

(
nhigh
αhigh

−αhigh+t

)]nhigh for t > αhigh,

(6.3)

where

t = q − μDSCB

σDSCB
. (6.4)

The parameters μDSCB and σDSCB are the mean and stan-
dard deviation of the Gaussian core. αlow and αhigh determine
the mass point at which the Gaussian transitions into power
law distributions, with exponents nlow and nhigh respectively.
NDSCB is a factor that normalises the DSCB to unity.

The parametrisation of the detector resolution function
as a DSCB function (whose parameters potentially depend
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on the invariant mass) is largely inspired by the procedure
adopted in ATLAS analyses [22]. The exact description of
the DSCB parameters is obtained using narrow-width sig-
nal samples generated at a range of mass points; such sam-
ples assume sharply-peaked truth-level distributions,T (q) ∼
δ(q −mX ), and it thus follows from Eq. (6.1) that the recon-
structed narrow-width signal distributions should be well
described by the chosen detector resolution function. Given
the parametrised DSCB resolution function obtained in this
way, a reconstructed lineshape can then be modelled accord-
ing to Eqs. (6.1) and (6.2), for any appropriate truth-level
lineshape T (q), and for DR(q) corresponding to the DSCB
function with parameters evaluated at the resonance mass,
q = mX .

That being said, we point out that a more sophisticated,
and fully correct, approach would be that of modelling detec-
tor effects by means of a convolution analogous to that of
Eq. (6.1), but where DR(q) is replaced by a detector response
function that depends on several variables (e.g. the photon
transverse momenta in addition to the pair invariant mass),
all of which would be integrated over. Such a convolution
would account for both the resolution and the efficiency
contributions to the q-dependence manifest in the observed
reconstructed lineshape. Nevertheless, we will adopt the sim-
pler parametrisation of Eqs. (6.1) and (6.2) for our current
study.

6.2 Verification of the convolution description

In this section, we show that Eqs. (6.1) and (6.2) can be used
to describe reconstructed large-width signal, background-
only, and interference-only events. We demonstrate that the
description works separately for each of these components,
using events that are reconstructed from the corresponding
truth-level samples of Figs. 2, 3 and 4. In each case, the
truth-level description that enters the convolution is taken to
be that of Eqs. (4.6) (in conjunction with Eq. (4.7)), (4.8), and
(4.9), respectively, with all parameter values fixed to those
reported from their corresponding fits of the truth-level data.
A parametrisation of the DSCB function was extracted by
using narrow-width signal samples, with its parameter values
evaluated at the known resonance mass (mX = 400 GeV),
and a numerical value for NDSCB computed and implemented
accordingly to ensure normalisation of the DSCB to unity.

Requiring a minimum photon pT during the reconstruc-
tion of diphoton events introduces a distortion (dependent on
the physics model) in the invariant mass lineshape that is most
prominent at the lower end of its spectrum. Thus, to model
the lineshape of a reconstructed invariant mass distribution
in its entirety, one requires accurate knowledge of the recon-
struction efficiency and how it varies with the invariant mass.
However, since this effect is expected to manifest mainly in
the low mass region, one can also posit that the approxima-

tion of a q-independent efficiency should suffice to describe
reconstructed lineshapes above some invariant mass thresh-
old. In such a case, only a single free parameter remains in the
parametrised description, namely that of an overall normal-
isation factor corresponding to the reconstruction efficiency
of the diphoton events, ε. Note that in general this will differ
for signal, interference and background-only events, since
the rejection of events below a hard pT threshold removes a
different fraction of events from each component, owing to
their different photon pT distributions.

We test this assumption by performing one-parameter fits
over the 300–1000 GeV invariant mass range. Results are
presented in Fig. 12. The ratio of the reconstructed (i.e. fit-
ted) function and the corresponding truth-level distribution
is visualised beneath each plot; in particular, we note that
in the case of the background, this ratio varies slowly with
the invariant mass. We find that the simple convolution pro-
vides a good description of the reconstructed lineshape for all
of the components, and the approximation of q-independent
efficiencies has not prevented a good fit being found in each
result. There is approximately a 15% discrepancy, at most,
between the efficiencies reported for each component, which
stems from the pT selection. In a realistic analysis, and par-
ticularly as one begins to consider TeV-scale resonances,
this difference will diminish and most likely become sub-
dominant in comparison to other sources of uncertainty. For
this reason, we expect that it will be valid firstly to adopt a
q-independent reconstruction efficiency approximation, and
secondly, to neglect the difference between component effi-
ciencies in realistic search scenarios.

6.3 Convolving the template functional form

We now proceed to apply the convolution method of incor-
porating detector effects to the general functional form. Note
that the template description of Eq. (3.14) is formulated as
a ratio of full to background-only differential cross sections.
However, we will again treat the (reconstructed) background
as a quantity that is known exactly, i.e. with zero associated
uncertainty. As was remarked in Sect. 5, this implies that it
is equivalent to perform fits of the full differential cross sec-
tions, and in this case, it allows us to work with the quantity
that is consistent with Eqs. (6.1) and (6.2).

To further simplify the procedure, we make the follow-
ing additional assumptions, based on the discussion of the
previous section:

1. the reconstruction efficiencies of the various components
are approximately equal, εs ≈ εb ≈ εi ≡ ε;

2. the dependence of the efficiency on the invariant mass is
negligible;
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Fig. 12 Fits to reconstructed signal, interference and background dis-
tributions, using a convolution of their respective truth-level analytic
functions with a DSCB detector resolution parametrisation. The fits are
performed over the 300–1000 GeV invariant mass window. The free

parameter in each of the fits is ε, the event reconstruction efficiency.
The ratio of the best-fit function and its corresponding truth-level dis-
tribution is plotted beneath each result

3. the convolution of the background with the detector res-
olution function produces negligible change in its shape:

F truth
B (q) ≈ (F truth

B ∗ DR)(q) = 1

ε
F reco
B (q), (6.5)

where F truth
B (q) and F reco

B (q) denote the truth and recon-
structed backgrounds, respectively.

Along with the assumption of a perfect reconstructed back-
ground description,4 these items constitute the assumptions
underpinning the procedure we describe in this section. It is
important to point out that these assumptions need only hold
within the invariant mass window over which a fit is to be
performed.

Under the first assumption, one can exploit the linearity of
the convolution operator to convolve the full reconstructed
differential cross section, and obtain what follows:

dσ reco
full

dq
(q) = ε

(
dσ truth

full

dq
∗ DR

)
(q)

= ε

(
F truth
B

∣∣ Ā
∣∣2

∣∣B̄
∣∣2 ∗ DR

)
(q), (6.6)

where the rightmost equality is made using Eq. (5.1), with
an according equality between F truth

B (q) and the FB(q) of
Eq. (5.1). The second and third assumptions can then be

4 Note, however, that this assumption differs from those enumerated
in that it does not invalidate the equations we present in this section;
uncertainties on the background can always be incorporated by profiling
over the associated nuisance parameters.

used to write Eq. (6.6) in terms of only the reconstructed
background:

dσ reco
full

dq
(q) =

(
F reco
B

∣∣ Ā
∣∣2

∣∣B̄
∣∣2 ∗ DR

)
(q). (6.7)

In this way, the efficiency factor is absorbed into the descrip-
tion of the background, and one obtains a parametrisation that
can be expressed without pertaining to any additional free
parameters: a fit to reconstructed events can be performed
using the same set of parameters as those in the truth sce-
nario, namely those of the TR or Ta sets. Note that returning
to the ratio regime (cf. Eq. (3.14)) is a simple matter of divid-
ing this equation through by the reconstructed background
differential cross section.

A few comments are in order here. Firstly, Eq. (6.7) stems
from Eq. (6.6) if one can parametrise the background line-
shape with the same functional form before and after a con-
volution with detector effects. If the effect of the convolu-
tion is not entirely negligible, the parameters relevant to the
two scenarios will generally be different. One might won-
der, then, if detector effects are not double counted on the
r.h.s. of Eq. (6.7). We posit that this is not the case, since
these must largely cancel in the ratio F reco

B (q)/ε (if that were
not the case, the approximate equality between the leftmost
and rightmost sides of Eq. (6.5) simply could not hold). Sec-
ondly, if the convolution with detector effects is so significant
for background lineshapes that Eq. (6.5) cannot be correct,
one needs to instead use Eq. (6.6); this is acceptable, but it
entails an increased dependence on theoretical predictions,
which would likely increase the overall systematics. Finally,
in the case of significant departure from all of the assump-
tions made, it might be preferable to pursue the alternative
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window, for fits of the convolved second-order template functional
form to reconstructed MadGraph5_aMC@NLO events. Right: A fit of

the convolved second-order template functional form to reconstructed
MadGraph5_aMC@NLO events over the 300–1200 GeV mass range

procedure altogether, namely that of fitting Eq. (3.14) directly
to (the ratio of) unfolded datasets.

We perform a straightforward test of Eq. (6.7) by fit-
ting it to a sample of reconstructed events, and compar-
ing the extracted result to that of the corresponding truth-
level fit. An agreement between these two sets of results
implies that Eq. (6.7) has correctly characterised the under-
lying physics via a fit of the reconstructed distribution. Fol-
lowing the discussion of the previous section, we conduct
this test using MC samples generated at a larger resonance
mass of mX = 800 GeV, with width �X/mX = 5%, to
diminish the impact of approximating equal selection effi-
ciencies between the signal, interference, and background
events. The comparison is demonstrated using theTR param-
eter set.

To determine a suitable mass window for estimating the
parameters, preliminary fits were performed using ROOT
[16] across a range of invariant mass windows centred on
the true resonance mass. The left panel of Fig. 13 shows the
ratio of best-fit (χ2

bf) to 1σ cut-off (χ2
1σ ) chi-squared values

against the fit windows tested. Unlike the results of Fig. 6,
a monotonically increasing ratio with the fit window is not
seen. This is due to the stochastic nature of MC samples, in
contrast to Asimovs that perfectly capture the underlying the-
ory.5 To prevent random fluctuations from yielding volatile
results, a sufficiently large fit window will thus be required;
for the current case, the ratio of chi-squares reaches a min-
imum at w = 250 GeV, though the distribution effectively
plateaus past w ≈ 150 GeV and does not worsen signifi-
cantly for larger windows. This suggests a resonance small
enough that a second-order approximation sufficiently char-

5 In practice, the implication of this is simply that one loses the freedom
to fit relatively small mass windows using non-Asimov datasets.

acterises the entire range of its invariant mass lineshape. For
samples with larger signals, one would expect to instead see
a relationship of the fit quality with a clear minimum in w.
The right panel of Fig. 13 shows that the TR parameter set
is indeed able to fit the reconstructed distribution well over
a large 300–1200 GeV mass range. However, for the pur-
pose of parameter estimation, it is still advisable to choose
a restricted fit window to avoid the possibility of parameter
values drifting to compensate for the missing higher order
terms of the functional form of Eq. (3.14).

Choosing w = 150 GeV, we perform a fit of theTR param-
eters over the 650–950 GeV mass window usingMultiNest.
A fit of the truth-level template was also performed on the
truth events. A selection of resulting profile likelihood distri-
butions in TR parameter space are presented and compared
in Fig. 14. The main set of results, represented by the colour
gradient and white contours, correspond to the fit to recon-
structed events, while truth-level contours are drawn in grey.
A red circle marks the expected mass and width in the cor-
responding parameter plane.

The reconstructed fit is able to recover the input mass
and width values within 1σ confidence. We find the truth
and reconstructed-level results to agree well, with the white
and grey contours largely overlapping in all of the parameter
planes. The largest discrepancies are seen in the R(0) and R(2)

parameters; the reconstructed fit yields slightly larger values
for these, with an approximately 10 and 30% increase for
R(0) and R(2), respectively, when comparing the truth-level
contours to the reconstructed results. This behaviour arises
from approximating equal reconstruction efficiencies for the
signal, interference and background components. For the cur-
rent benchmark point, where εs � εi � εb, the approxima-
tion introduces a small enhancement to R(q2), which mani-
fests most noticeably in the zeroth and second order expan-
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Fig. 14 Two dimensional profile likelihood plots of theTR parameters,
for a fit of reconstructed diphoton events over the 650–950 GeV invariant
mass window. The grey boundaries correspond to 1σ and 2σ contours

at the truth level. The physical constraint −1 ≤ c(0)
φ , s(0)

φ ≤ 1 has been
imposed

sion coefficients in the current set of results. However, as we
have noted in Sect. 6.2, such effects are expected to become
negligible in realistic searches. Our results thus show that
the description of Eq. (6.7) can be used to extract the gen-
eral parameters by means of a fit directly to reconstructed
events.

7 Conclusion

The top-down approach typically employed in the presen-
tation of LHC resonance search results, while constituting
a straightforward procedure in the scenario where there is
strong motivation to believe a priori in a particular model,
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becomes less ideal for reporting the findings of a general
search for BSM resonances. In the latter case, it is desirable
to present results in a form that is sufficiently generalisable
to any BSM models, such that a given theorist is able to relate
them a posteriori to their particular model of interest.

In this paper, we have proposed a procedure that is apt
to the presentation of search results in the form advocated
above. This procedure assumes that data can be organised
as the differential distribution in the invariant mass of the
would-be resonance, e.g. as is reconstructed by means of the
four-momenta of its decay products, and is based on employ-
ing a functional form for the lineshape of such a distribution
that stems from general quantum field theory considerations
and is fully model-independent. A definite advantage of the
procedure is that it allows the characterisation of the reso-
nance and of its interference pattern with the Standard Model
background, given in terms of the free parameters that enter
the lineshape; the method is shown to work in the case of
null search results as well.

The core of the procedure is described in Sect. 3, and its
results in terms of the lineshape parameters are presented in
Sect. 5.3 using as a test case the simple physics model that
is summarised in Sect. 4. While this is the essence of the
method we have proposed, we have also discussed various
ancillary techniques that supplement it, and which can either
be adopted as they are, or replaced by alternative mecha-
nisms if the latter will be deemed more convenient in cer-
tain working conditions. More specifically, the lineshape-
parameter determination works well if one knows with a good
approximation the value of the pole mass of the resonance.
In Sect. 5.6 we have shown how a preliminary determination
of such a value can be achieved; however, nothing prevents
experiments from pursuing a different determination strat-
egy, whose result can then be used in the context of our char-
acterisation procedure. Likewise, when experimental results
are presented in terms of the lineshape parameters, any the-
orist can check the compatibility of their models with the
data by computing the same parameters by following exactly
the same procedure as is done by experiments. However, in
Sect. 5.4 we have also discussed an alternative approach,
which employs the lineshape parameters extracted by the
experiments to determine allowed regions in the parameter
space of the theoretical model one wishes to test. Finally,
while the procedure we advocate would typically be applied
to unfolded data, we have shown in Sect. 6 how, under cer-
tain conditions, it can be employed directly on raw data, by
means of a suitable and relatively simple description of detec-
tor effects.

We have explicitly shown how the general lineshape func-
tional form can be parametrised by means of two different
parameter sets that are characterised by different features—
one being more tightly constrained but with a less direct phys-
ical interpretation, the other being more closely connected

with an underlying theoretical description but liable to have
flat directions in the parameter space. Ultimately, the choice
of which set to adopt depends on the emphasis that the anal-
ysers will want to give to their searches and/or tests. In view
of that, we conclude by pointing out that the two parame-
ters sets we have discussed constitute minimal options that
can be systematically extended if necessary, by following the
methodology presented in Sect. 3.
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