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Abstract

We discuss the ultra-relativistic gravitational scattering of two massive particles
at two-loop (3PM) level. We find that in this limit the real part of the eikonal,
determining the deflection angle, is universal for gravitational theories in the two
derivative approximation. This means that, regardless of the number of super-
symmetries or the nature of the probes, the result connects smoothly with the
massless case discussed since the late eighties by Amati, Ciafaloni and Veneziano.
We analyse the problem both by using the analyticity and crossing properties of
the scattering amplitudes and, in the case of the maximally supersymmetric the-
ory, by explicit evaluation of the 4-point 2-loop amplitude using the results for
the integrals in the full soft region. The first approach shows that the observable
we are interested in is determined by the inelastic tree-level amplitude describing
the emission of a graviton in the high-energy double-Regge limit, which is the ori-
gin of the universality property mentioned above. The second approach strongly
suggests that the inclusion of the whole soft region is a necessary (and possibly
sufficient) ingredient for recovering ultra relativistic finiteness and universality at
the 3PM level. We conjecture that this universality persists at all orders in the PM
expansion.

http://arxiv.org/abs/2008.12743v2


1 Introduction

At high energy and large impact parameter, gravitational scattering is dominated by the
exchange of the highest-spin massless states in the theory [1, 2, 3, 4, 5]. The focus of
this work is on standard gravitational field theories in the two derivative approximation,
so the highest spin particle is the graviton. The observable we study is the elastic 2 → 2
amplitude in the ultra-relativistic regime, where the centre-of-mass energy Ecm =

√
s is

much larger than any other energy scale in the process (which goes under the name of
Regge limit). Notice that this implies that the impact parameter b, which is related by
Fourier transform to the total momentum exchanged in the scattering, is much larger than
the gravitational length scale1 RD−3 ∼ GN

√
s, defined in analogy with the Schwarzschild

radius. Since the process is dominated by the exchange of gravitons, it is natural to
expect a universal result for the high energy gravitational scattering. It is well known
that this is the case to first order in R/b ≪ 1 where the result is captured by the leading
eikonal phase δ0 irrespectively of whether one works with strings or point particles, in
higher dimensions, or in the presence of supersymmetry [2, 3]. It is then natural to ask
whether such universality persists at higher orders in R/b, at least in the class of theories
mentioned above2.

The first non-trivial contribution to the ultra-relativistic result appears at sub-sub-
leading order in the small R/b limit which captures the 3PM (post-Minkowskian) cor-
rection. This contribution can be encoded in terms of a correction δ2 to the full eikonal.
A first novelty with respect to the leading result is that δ2 has both a real and an imag-
inary part, so e2iδ is not just a phase. The imaginary part is related to non-conservative
processes, such as the bremsstrahlung emission of massless particles, while the real part
captures the conservative dynamics. A first result for δ2 was obtained in [6] for the scat-
tering in pure general relativity (GR) of two massless scalars representing, classically,
the collision of two Aichelburg-Sexl shock-waves. The analysis of [7] suggested that the
same result for Re(δ2) should hold also for supergravity theories and this was explicitly
verified in [8] for the case of the maximally supersymmetric theory. Explicit comparison
between the GR and the N = 8 results shows that Im(δ2) is not universal (although
a crucial log(s)-enhanced term is), which is expected since the massless spectrum of
the two theories is different. The universality of the 3PM conservative dynamics in the
massless case has been confirmed and extended [9] to theories with different amounts of
supersymmetry.

A similar, but slightly different setup is to consider the scattering of two scalar par-
ticles of masses m1 and m2. There has been considerable interest, recently, in the use of
new scattering amplitude techniques for extracting information about the conservative

1As usual, working in a D-dimensional theory is also convenient for regularising the IR divergences
of the D = 4 case.

2Note that, while at this order in R/b the problem can be studied, following [1], as the scattering
of one particle in the Aichelburg-Sexl shock-wave produced by the other, such a simple picture fails at
higher orders.
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scattering process in the case s ∼ m2
i [10, 11, 12, 13, 14, 15, 16, 17, 18]: the aim is

to pin down the relevant ingredients needed for describing the inspiral phase of black-
hole mergers. The importance of such a result for computing the templates for actual
gravitational-wave experiments have been stressed, in particular by Damour [19].

The first result at 3PM level was derived a little while ago in [12, 14] and was later
confirmed in [20, 21], while the case of maximally supersymmetric gravity was obtained
recently in [22]. The ultra-relativistic limit of these massive results is qualitatively dif-
ferent from the massless case mentioned above, as the leading term of Re(δ2) has a
log(s/(m1m2)) enhancement with respect to the one obtained in [6]. From the amplitude
perspective the origin of this log(s/(m1m2))-enhanced contribution lies in a particular
scalar integral which appears in exactly the same way in both the N = 0 and the
N = 8 cases, hence the proposal of [22] that there is a separate universality class for
the logarithmically-enhanced term of the massive scattering which is different from the
massless case where there is no log(s)-enhancement.

This unexpected result of [12, 14] has provoked quite a lot of discussion since, taken at
face value, it would lead to a divergent deflection angle in either the massless or the ultra-
relativistic limit. Since gravity is known [23] to be free of mass/collinear divergences the
authors of [12, 14] have immediately pointed out that their result only holds for sufficiently
small values of the ratio q

m
where q ∼ ~

b
is the momentum transfer in the perturbative

amplitude. They have also given [14] a one-loop example (involving a non-classical term)
of how the m → 0 and the q → 0 limits can be quite different. On the other hand the
above-mentioned divergence is also present at finite m for s → ∞ and would persist even
if, for m > q, one would replace the log(s/(m1m2)) by a log(s/q2). There is also some
tension with expectations based on the “self-force” approach to PM dynamics. On these
different grounds Damour suggested that log(s/(m1m2)) enhancement Re(δ2) cannot be
present in the ultra-relativistic limit. He proposed in [24] a modification of the result of
[12, 14] with a smooth massless limit that however differs (even in sign!) from the one
of [6]. Finally, a check [25, 26] proposed in [24] for distinguishing the two alternatives
at 6PN order has contradicted his original proposal while it is consistent with [12, 14].
Other alternatives, still at variance with [6], have been proposed in a later version of [24].

As mentioned above, in this short note we will reassess the ultra-relativistic limit
s ≫ m2

i and ask whether one recovers the massless shock-wave result for the real part
of the eikonal δ at 3PM level. We will address this issue by using two complementary
techniques. The first approach follows the argument of [6] where the 3PM result was
derived by exploiting the analyticity and crossing properties of the scattering amplitudes
among scalars. These properties imply a dispersion relation connecting the leading energy
behaviour of the imaginary and real parts of the 2 → 2 amplitude. Then, in this limit, the
conservative 3PM dynamics can be derived from a particular unitarity cut of the two-loop
amplitude, thus replacing the full-fledged 2-loop calculation by a phase-space integral of
a product of two tree-level amplitudes. As an aside, notice that this provides an explicit
check that the 3PM conservative dynamics is entirely determined by classical on-shell
data. The second approach follows the direct loop amplitude derivation of [12, 14, 22],
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where we just reconsider the calculation of the integrals without relying on the “potential”
approximation. We use the eikonal approach to extract the classical contribution, instead
of the effective field theory comparison of [10], and we work with the full result of the
integrals in the “soft region” (i.e. in the limit of small momentum transfer). Both the
approach based on analyticity/crossing and the one using the explicit loop amplitudes
yield the same Re(δ2) which also agrees with the massless result of [6, 8, 9], thus suggesting
that the origin of the different ultra-relativistic behaviour of [12, 14, 20, 22, 21] lies in the
use of the “potential” approximation in evaluating the loop integrals. When including the
full contribution of the soft region, the ultra-relativistic limit at 3PM order is universal
regardless of the mass of the external states. We conjecture that this is actually true
to all orders in the PM expansion, since the relevant contributions are described by
diagrams where the external states emit only gravitons and the two highly boosted lines
representing them are connected through a tree-level GR amplitude [27]. Both ingredients
are universal in the class of theories we focus on.

The paper is organized as follows. In Section 2 we revisit the analyticity/crossing
of [6] deriving on general grounds a relation between the ultra-relativistic limit of Re(δ2)
and the leading high energy behaviour of the imaginary part of the 2-loop amplitude.
The analysis holds for arbitrary values of the masses as long as s ≫ m2

i and also shows
that the ultra-relativistic limit of Re(δ2) can be universal only if Im(δ2) is enhanced by a
single power of log(s). In Section 3, we again follow [6] and evaluate the 2 → 3 tree-level
amplitude relevant for the 3-particle cut determining the imaginary part of the 2-loop
amplitude. Since we are interested in the ultra-relativistic case, we focus on a double
Regge limit of the tree-level amplitude and show that, in this regime, it is universal
and equal to the massless result of [6, 28]. This implies that the ultra-relativistic limit
of Im(δ2) is enhanced by a single factor of log(s) and that the ultra-relativistic limit
of Re(δ2) is also universal and has no enhancement at all. In Section 4 we follow the
approach of [12, 14] and in particular focus on the massive N = 8 case studied in [22].
We provide the results for the integrals necessary to calculate the 3PM massive eikonal
in N = 8 supergravity in the ultra-relativistic limit. As mentioned, we consider the
full “soft” region result and show that the universal ultra-relativistic result for Re(δ2)
of Section 3 is recovered. We also provide the result for Re(δ2) and the 3PM deflection
angle for the generic values of s/m2

i so as to facilitate the comparison with [22] even if
we leave the discussion of the derivation to another work [29]. In Appendix A we provide
some further details on the consequences of analyticity and crossing used in the main
text. In Appendix B we collect all the results we need for the high-energy scalar integrals
in the soft region.

2 The analyticity/crossing argument revisited

In this section we review, improve and extend the arguments given in [6] for connecting
the leading high-energy expression of Re(δ2) to the inelastic contribution to the imaginary
part of the two loop scattering amplitude. The latter is the convolution of two on-shell
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tree amplitudes and thus an easier object to deal with. For definiteness we will consider
the case of the elastic gravitational scattering of two non-identical scalar particles of mass
m1, m2. Crossing symmetry under the exchange of the two Mandelstam variables s and
u simplifies considerably our analysis although we believe that the final results generalize
to elastic processes that lack exact s ↔ u symmetry.

The essential ingredients of the argument presented in [6] are:

i) real-analyticity of the scattering amplitude A(s∗, t) = A∗(s, t) as a function of the
complex variable s at t ≤ 0, where −t = q2 is the exchanged momentum (squared);

ii) its s ↔ u crossing symmetry A(s, t) = A(u, t) with u = −s− t + 2(m2
1 +m2

2);

iii) some information about its high-energy asymptotic behaviour at each loop order, a
property that fixes the number of subtractions needed in order to write a convergent
dispersion relation for A, see Appendix A.

We will also make use of the exponentiation in impact-parameter space needed for re-
covering a classical limit.

We will be helped by an amusing mathematical analogy with high-energy hadronic
(QCD) scattering whereby the elastic hadronic amplitude AHad(s, t) is believed to behave,
at high energy, as s logp s with some (not necessarily integer) p. An important quantity

discussed in that context [30], [31] (see [32] for a recent review) is the ratio ReAHad(s,0)
ImAHad(s,0)

.

Such a ratio (extended to the case of non-vanishing t) plays an important role in [6] as
we shall see hereafter. Note that constraints based on analyticity and crossing, being
linear, apply at each loop order, at each order in ǫ, and also separately to different
terms in the high-energy expansion (like in the hadronic case where the Pomeron may be
accompanied by subleading Regge pole contributions). Since it is not easy to find a self-
contained account of this methodology in the literature, and we are not constrained here
by the Froissart bound, we will sketch for completeness the basic argument in Appendix
A and refer to the above literature for further details.

We start by recalling the expression for the high energy tree-level amplitude A0(s, t)
and the corresponding eikonal phase 2δ0 for generic D = 4 − 2ǫ keeping only the first
relevant terms in an expansion in inverse powers of s. One finds [33, 13]:

A0(s, t) = −8πGNs
2
(

1− Σ
s
+O(s−2)

)

t
+ analytic terms in t , (2.1)

where Σ ≡ 2 (m2
1 +m2

2) and correspondingly3:

2δ0 = Ã0 ≡
∫

dD−2~q

(2π)D−2

A0 (s, t = −~q 2) ei~q·
~b

4
√

(p1p2)2 −m2
1m

2
2

= GNs

(

1− Σ

2s
+O(s−2)

)

Γ(−ǫ)(πb2)ǫ .

(2.2)

3The kinematics is discussed in more detail before (3.4). In our conventions the eikonal phase is 2δ and
is given by the Fourier transform of 1

4EcmP
A(s, t), with 2EcmP = 2

√

(p1p2)2 −m2
1m

2
2 = s(1− Σ

2s+O(s−2))

is the product of the centre-of-mass energy and momentum. Following [13], we denote by M̃(s, b) the
Fourier transform of 1

4EcmP
M(s, t) for a generic function M(s, t).
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The high-energy behaviour of Ã0 gives the asymptotic form of the leading eikonal phase:

2δ0 ≃ GNsΓ(−ǫ)(πb2)ǫ . (2.3)

In the Regge limit the full amplitude is encoded in the expression [8]4

iÃ = (1 + 2i∆(s, b)) e2iδ − 1 , (2.4)

where δ = δ0+δ1+δ2+· · · is the classical eikonal and ∆ encodes the quantum corrections.
At one-loop we know that A must include a leading imaginary contribution, growing like
s3 (without extra logs) and responsible for the start of the exponentiation of 2δ0. This
indeed comes out of the box plus crossed box contribution in the form [13]:

ImA
(1)
1 (s, t) = s3

(

1− 3Σ

2s
+O

(

s−2
)

)

F1(t,m
2
i ) ; with s3

(

1− 3Σ

2s

)

F̃1 =
(2δ0)

2

2
,

(2.5)
which therefore fixes F1 modulo analytic terms as t → 0. As explained in Appendix A
analyticity and crossing symmetry imply the following form for the amplitude itself:

A
(1)
1 (s, t) = −1

π

[

(

s− Σ

2

)3

log(−s) +

(

u− Σ

2

)3

log(−u)

]

F1(t,m
2
i )

∼ s3
(

1− 3Σ

2s

)

F1(t,m
2
i )

(

i+
3t

πs
(log s+O(1))

)

+O(Σ2s, t2s) , (2.6)

as confirmed by explicit calculations [13].
It is known [6] that, in order to compute the classical two loop contribution to the

eikonal, one has to take into account the first quantum contribution at one-loop level up
to O(ǫ). It is also known from explicit calculations [34, 13, 35, 8] that such a contribution
contains two powers of s and no log s in its imaginary part5. Using Eq. (A.3) with p = 0
from Appendix A we get:

A
(2)
1 (s, t) ∼ s2G1(t,m

2
i )(−iπ + 2 log s) +O(s2) . (2.7)

In [6] this second structure was omitted since, in the specific case discussed there, there
was no correction to the leading imaginary part appearing in Eq. (2.6) for D = 4. This
was also shown [13] to be the case for non-vanishing6 m1,2. However in other processes,
in D 6= 4, or in supergravity theories, the structure Eq. (2.7) is also present. We shall

4Since we will focus on a specific s− u-symmetric amplitude here we follow slightly different conven-
tions from Eq. (2.15) [8] where the tree-level structure Â(0) was factorised.

5There are also terms with an s−ǫ behaviour in the analytic part of the amplitude [34, 8]. Although
they are irrelevant for our subsequent discussion, we have checked that they also fulfil the constraints of
analyticity and crossing.

6We have checked that the structure of Eq. (2.6) and Eq. (2.7) is exactly recovered, at all D, by
taking the high-energy limit of the explicit results (2.21), (2.25) given in [13].
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see that, provided a certain exponent takes a particular value, A
(2)
1 actually drops out in

the final expression for Re(δ2), in agreement with several explicit calculations [8, 9].
We finally turn to the two-loop amplitude A2 . We know that it should have a leading

O(s4) real term in order to reproduce the correct third-order term in the exponentiation
of δ0. Analyticity and crossing symmetry now fixes the amplitude to be of the form (see
again Appendix A):

A
(1)
2 (s, t) =

(

s4 + 2s3(t− Σ) +O(t2s2,Σ2s2)
)

F2(t,m
2
i )

with s4
(

1− 2
Σ

s

)

F̃2(b,m
2
i ) = −1

6
(2δ0)

3 .
(2.8)

As a consequence F2(t,m
2
i ) is known (up to analytic terms at t = 0). Note that the

terms O(s2) in Eq. (2.8) do not contribute to the classical phase shift. In order to have
a classical contribution in the ultra relativistic (or massless) limit we need a term in the
amplitude proportional to s3 (up to logarithms)7 contributing, in general, to both the
real and the imaginary parts of A2.

Let us parametrize the latter in the form

ImA
(2)
2 (s, t) = G2(t,m

2
i )s

3 logp(s) with some p > 0 . (2.9)

We may then use Eq. (A.4) of Appendix A to get 8:

ReA
(2)
2 (s, t) =

πp

2 log s
ImA

(2)
2 (s, t)

(

1 +O
(

1

log2 s

))

. (2.10)

A highly non-trivial test of Eq. (2.8) and Eq. (2.10) is provided by the explicit results
of [34]. These are reported, for instance, in Eq. (B.1) of [8] where both the structure
of Eq. (2.8) and the one of Eq. (2.9) are present. The process discussed there is not
necessarily s − u symmetric but becomes so (at the order we consider) by choosing the
external states appropriately9. After doing so all the real sub-leading terms (of O(sq2))
are matched either by the leading ones on the first line of (B.1) through Eq. (2.8), or
by the logarithmically-enhanced imaginary terms through Eq. (2.10), or both. Nothing
constrains instead the non logarithmically-enhanced imaginary terms at this level since
their real counterparts would be sub-sub-leading in s.

7We should mention that in the massive case other structures emerge both at the one and at the two-
loop level. At one-loop the O(s2) contribution actually contains a classical piece of the form (with D = 4

for concreteness) ReA
(3)
1 (s, t) ∼ s2m

q
⇒ δ1 ∼ GNs

~

GNm
b

. At two loops we can get classical contributions

from an amplitude going like s2m2 log q2 while an amplitude behaving like s3(m/q) log q2 should also
be present in order to accommodate the δ0δ1 interference. Fortunately, all these terms arrange among
themselves and do not interfere with the rest of our argument.

8In order to keep track of the first sub-leading correction in m2/s, as we did until now, we should
include such corrections also in (2.9) and (2.10). We leave this point to our forthcoming paper[29].

9This can be done by choosing an axion and a dilaton as incoming state, which implies that Â(0) =
(1 + t

s
) + . . . in the notations of [8].
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We finally use exponentiation in impact parameter space to argue that:

Re Ã2(s, b) = Re Ã
(1)
2 (s, b) + Re Ã

(2)
2 (s, b) = −4

3
δ30 − 4δ0 Im∆1 + 2Re δ2

⇒ Re Ã
(2)
2 (s, b) = 2Re δ2 − 2s3(̃tF2)− 4δ0 Im∆1 ; 2 Im∆1 = −πs2 G̃1 , (2.11)

where we used Eq. (2.8) including the contribution 2s3tF2 to 2Re(δ2). Analogously,

Im Ã2(s, b) = 2 Im δ2 + 4δ0Re∆1 ; 2 Re∆1 = 2s2 log s G̃1 +
3

π
s2 log s (̃tF1) , (2.12)

where the term 4δ0Re(∆1) represents the full elastic contribution to the s-channel discon-
tinuity of the amplitude while 2 Im(δ2) represents the inelastic (3 particle) contribution.

We are interested in extracting Re(δ2) from Eqs. (2.11) and (2.12). In particular we
would like to connect Re(δ2) to Im(δ2), an easier quantity to evaluate. Since F1(t,M

2
i )

and F2(t,m
2
i ) are both known in terms of δ0 (see below) the only obstacle for obtaining

the sought for relation is to eliminate the non-universal G1(t,m
2
i ) contribution appearing

in Re(∆1) and Im(∆1). Using Eq. (2.10) a straightforward calculation gives:

2 Re(δ2) =
πp

2 log s
(2 Im δ2) + π(p− 1)2δ0s

2G̃1 +
3p

2
s2(2δ0)(̃tF1) + 2s3(̃tF2) +O

(

1

log s

)

=
πp

2 log s
(2 Im δ2)−

4− 3p

s
δ0(2∇δ0)

2 − (p− 1)(2δ0)(2 Im∆1) +O
(

1

log s

)

, (2.13)

where in the last equation we have used Eq. (2.5) and Eq. (2.8) to express (̃tF1) and

(̃tF2) in terms of δ0, and Eq. (2.7) to express G̃1 in terms of Im∆1.
We thus notice that only for p = 1 is Re(δ2) given entirely in terms of Im δ2 and of

δ0. For p 6= 1, Re(δ2) will also depend on G̃1 i.e. on Im(∆1) which is non universal. We
shall see in Section 3 that Im(δ2) is indeed universal at high energy, and that Eq. (2.9)
holds with p = 1. As a result, also Re(δ2) is universal in the high-energy limit and given
by:

Re(2δ2) =
π

2 log s
Im(2δ2)−

δ0
s
(∇2δ0)

2 +O
(

1

log s

)

. (2.14)

Note that both Im(δ2) and δ0(∇δ0)
2 are IR divergent, but these divergences cancel so

that physical observables derived from Re(δ2), such as the deflection angle, are finite.

3 High energy limit of the 3-particle cut

In this section we focus on the 3-particle cut contribution to A2 as depicted in Fig. 1.
Since we are interested in the ultra-relativistic limit, the amplitude is dominated by the
graviton exchange whose contribution is universal. Thus for the sake of simplicity we
focus on a gravity theory that can be obtained by taking the double copy of gauge theory

7



k2

k

k1

p2 p3

p1 p4

q2 q3

q1 q4

Figure 1: The lines in bold represent energetic massive states, while the others represent
massless states. The process depicted inside the dashed bubbles should not be interpreted
as a specific Feynman diagram contribution, but just as a visual aid to recall the definition
of the kinematic variables qi. We are interested in the full 2 → 3 tree level process,
see (3.1) as an explicit example.

amplitudes or equivalently the field theory limit of string amplitudes. The presence of
extra fields, and the dilaton in particular, becomes irrelevant in the limit s ≫ m2

i . In
order to obtain an explicit result we consider a 5-point amplitude in bosonic string theory
where the external states p1 and k1 have a Kaluza-Klein momentum along one compact
direction and p2 and k2 along another so they describe massive scalars in the uncompact
dimensions10. By taking the field theory limit we obtain the following result for the 2 → 3
process in the left part of Fig. 1,

Mµν = 2(8πGN)
3

2

{

(k1p2)(k2p1)

(

− k1µ
k1k

+
k2µ
k2k

)(

− p2ν
p2k

+
p1ν
p1k

)

+ 4q21q
2
2 (3.1)

×
[

qµ1 (p1p2) + pµ2 (p1k)− pµ1 (p2k)

q21q
2
2

+
kµ
2

2k2k

(

p1p2
q21

+
1

2

)

− kµ
1

2k1k

(

p1p2
q22

+
1

2

)

]

×
[

qν1 (k1k2) + kν
2 (k1k)− kν

1(k2k)

q21q
2
2

− pν1
2p1k

(

k1k2
q22

+
1

2

)

+
pν2

2p2k

(

k1k2
q21

+
1

2

)

]}

,

where we introduced the variables q1 = −p1−k1, q2 = −p2−k2, which satisfy k = q1+q2.
The overall normalization was fixed by considering the leading high energy term for the

10We used the KLT procedure to obtain the closed string amplitude from the open string one, see for
instance Eq. (5.3) of [36]: in our case, in order to encode the dependence on the KK masses, one needs to
use 2kikj , instead of sij , in the second line of that equation where all the scalar products are restricted
to the uncompact directions.
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Weinberg soft limit k → 0, where (3.1) has to reduce to the leading 2 → 2 amplitude
times a universal factor.

One can then calculate the contribution to the imaginary part of A2 from the 3-particle
cut by the usual phase space integral

2 ImA
(3p)
2 =

1

((2π)D−1)3

∫

dD−1k1
2Ek1

∫

dD−1k2
2Ek2

∫

dD−1k

2Ek

M µν(p1, p2; k1, k2, k)

×Mµν(−k1,−k,−k2; p3, p4)(2π)
Dδ(D)(p1 + p2 + k1 + k2 + k) . (3.2)

Here we are interested in the ultra-relativistic limit, so it is possible to approximate (3.2)
in the double Regge limit11

s ≫ s1, s2 → ∞ , with
s1s2
s

, q2i , m2
i fixed , (3.3)

where s = −(p1 + p2)
2 and si = −(k + ki)

2. In this regime it is convenient to write
the kinematic variables in terms of the (D − 2) space-like vectors orthogonal to the
direction where the energetic states are boosted (which we take to be xD−1). By working
in the Breit frame and taking light-cone variables for the time and longitudinal direction
(p0 + pD−1, ~p, p0 − pD−1), we have

p1 = (m1e
y1 ,−~q

2
, m1e

−y1) ; p2 = (m2e
y2 ,

~q

2
, m2e

−y2)

p4 = (−m1e
y1 ,−~q

2
,−m1e

−y1) ; p3 = (−m2e
y2 ,

~q

2
,−m2e

−y2) , (3.4)

where yi are the rapidities of the external particle andm2
1,2 = m2

1,2+
~q 2

4
. The intermediate

states with momentum k1, k2, k (all incoming) are given by

k1 = (−m′

1e
y′
1 ,
~q

2
− ~q1,−m′

1e
−y′

1) ; k2 = (−m′

2e
y′
2 ,−~q

2
− ~q2,−m′

2e
−y′

2) ,

k = (−|k|ey, ~k,−|k|e−y) , (3.5)

where (m′

1)
2 = m2

1 + ( ~q
2
− ~q1)

2 and (m′

2)
2 = m2

2 + ( ~q
2
+ ~q2)

2. In the double Regge limit,
one can use approximations such as q2i ∼ ~q 2

i and (3.1) reduces to the result of [6] and
Eq. (4.10) of [28] even if in those papers the external states are massless. This is not
surprising since we are keeping the masses m2

i fixed as the Mandelstam variables s, si
become large, however there is a point that deserves a further comment. By always
keeping the leading order when rewriting the D-dimensional kinematics in terms of the
transverse, we obtain that the ultra-relativistic limit of Eq. (3.2) agrees with the result

11This limit can be performed on the full 2 → 3 amplitude (3.1) by scaling kµ1 and kµ2 as s1,2 and one
obtains directly Eq. (4.10) of [28]; notice that the latter result is traceless showing explicitly that the
dilaton decouples in the double Regge limit.
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of [6]

ImA
(3p)
2 ≃ (16πGN)

3s3

2π

∫

dy

∫

dD−2~q1
(2π)D−2

∫

dD−2~q2
(2π)D−2

1

(~k2)2
(3.6)

×
[

[(~q1~q4)(~q2~q3) + (~q1~q2)(~q3~q4)− (~q1~q3)(~q2~q4)]
2

~q 2
1 ~q

2
2 ~q

2
3 ~q

2
4

+ 1− (~q1~q2)
2

~q 2
1 ~q

2
2

− (~q3~q4)
2

~q 2
3 ~q

2
4

]

,

where we used the delta function in (3.2) in order to perform the integrals over the

rapidities12 y′1,2 and over the spatial components ~k. This result has a milder than naively

expected IR behaviour since in (3.2) there are no terms diverging as q−2
1 q−2

2 (or as q−2
3 q−2

4 )
the the relevant qi are small. The cancellation of such contribution ensures that there are
no 1/ǫ2 contributions in the massless case and, crucially for us, no log2(s)-enhanced terms,
i.e. no contribution with p = 2 in (2.9). This can be seen as follows: terms where the
integration over the ~qi are factorised can produce 1/ǫ2 contribution if each integration is
independently IR divergent13, however in this case, one should keep subleading corrections
to the approximation q2i ∼ ~q 2

i by including terms that break the factorisation such as
q21 = ~q 2

1 +A(~q1+~q2)
2+ . . . and q22 = ~q 2

2 +B(~q1+~q2)
2+ . . .; then AB ∼ (m1m2/s)

2 acts as
regulator in the deep IR region producing a contribution proportional to ǫ−1 log(m1m2/s)
instead of 1/ǫ2. Since terms diverging as q−2

1 q−2
2 are absent in (3.1) then this mechanism

does not apply and the only possibility to generate a factor of log(s) is from the integration
over y.

Thus starting from (3.6) it is possible to follow the derivation of [6] and obtain

Im
˜
A

(3p)
2 (s, b) ≃ 1

2s

(8GNs)
3 log sΓ3(1− ǫ)

16(πb2)1−3ǫ

[

− 1

4ǫ
+

1

2
+O(ǫ)

]

. (3.7)

This result is nothing else than 2 Im(δ2) and we can use it in the general result (2.14).
First one can check that, as in [6] for the massless case, IR divergences cancel in Eq. (2.14)
and notice that for this cancellation to happen it is crucial that (3.7) implies that p = 1
in (2.9). Then the finite term provides finite, smooth, and universal result for the high-
energy limit of Re(δ2) in D = 4:

Re(2δ2) ≃
4G3

Ns
2

~b2
(3.8)

in agreement with [6, 8, 9].

4 Direct calculation of Re δ2

In order to corroborate with an explicit example the general results obtained in the
previous sections, in this section we provide an explicit expression for the four-point

12This is possible only if mt,ke
±y ≤ √

s, which provides the limits of integration for the rapidity
variable y.

13The UV divergences in (3.1) cancel, see [6].
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two-loop amplitude in N = 8 supergravity for the scattering of two scalar particles with
masses m1 and m2. This case has been already studied at one loop in [37] and at two
loops in [22]. We follow closely the procedure of [22] where the two-loop amplitude in
N = 8 massive supergravity is written in terms of a set of basic scalar integrals IT, where
the subscript T ∈ {III, III, IX, IX} indicates the diagram’s topology,

A2(s, q
2) =

(8πGN)
3

2

(

(s−m2
1 −m2

2)
4 + (u−m2

1 −m2
2)

4 − t4

)

×
[

(s−m2
1 −m2

2)
2 (IIII + IIX + IXI)

+(u−m2
1 −m2

2)
2 (IIII + IIX + IXI) + t2 (IH + IH + · · · )

]

. (4.1)

Here we follow the notation of Eq. (3.16) of [22] and, for the sake of simplicity, we have
taken the angle appearing in that reference specifying the Kaluza-Klein reduction to be
φ = π

2
; in addition we have chosen the incoming particles to be an axion and a dilaton to

give an amplitude that is symmetric under the exchange of s with u. Finally we neglected
all the integral structures that are subleading in the high energy regime we are interested
in or, equivalently, in limit of small momentum transfer.

The integrals IH and IH were computed in an ǫ expansion for arbitrary kinematics
in [38], while the remaining integrals in (4.1) were studied in [22]: they adapted the
differential equation approach, adopted in particular in [39] for the double box integral14,
by implementing the soft limit |t| ≪ s,m2

1, m
2
2 from the beginning and then further sim-

plified the problem by calculating the boundary conditions of the relevant differential
equation in the “potential” approximation. Here instead we do not take this extra ap-
proximation and we provide the result valid in the full soft region even if we focus on
the ultra-relativistic (s ≫ m2

i ) case. We collect in Appendix B the results for all scalar
integrals needed and leave a detailed discussion of the generic kinematics to a followup
paper [29].

When we add all the contributions we see that all log(s) in the real part of the
amplitude cancel and one is left only with a log(s) in the imaginary part. In conclusion
the complete ultra-relativistic amplitude is

A2(s, q
2) ≃ (8πGN)

3s3

(4π)4

{

− 2π2s

ǫ2q2

(

4πe−γE

q2

)2ǫ

− 4π(i− π)

ǫ2

(

4πe−γE

q2

)2ǫ

+
1

ǫ

(

4πe−γE

q2

)2ǫ [

4π2 + 8πi log
s

m1m2
− 8πi− i

π3

3

]

}

+O(ǫ0) .

(4.2)

14The double box and non-planar double box were also calculated in [40, 41, 39] via a Mellin–Barnes
representation; whenever possible we checked that the results in our Appendix B are consistent with the
papers mentioned above.
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Before proceeding further, let us notice that this amplitude perfectly satisfies some of
the general properties discussed in Sect. 2. In fact, the ratio between the leading and
the real part of the subleading term at the order 1

ǫ2
is equal to s

2t
in agreement with

the first line of Eq. (2.8), while, at the order 1
ǫ
, the first two terms of the square bracket

satisfy Eq. (2.10) for p = 1. This is the consequence of a non-trivial cancellation since the
individual integrals contain higher logp(s) contributions, see for instance the contribution
coming from IH in (B.15). There are also further non-trivial cancellations that ensure
that the leading term at large distance, proportional to (q2)−1+2ǫ, takes a particularly
simple form in line with the expectation of the eikonal exponentiation (2.4). This is more
easily seen in impact parameter space where we get

Ã2(s, b) ≃
{

G3
Ns

3(πb2)3ǫΓ3(1− ǫ)

6ǫ3
− 8G3

N(i− π)s2(πb2)3ǫΓ3(1− ǫ)

ǫπb2

+
2G3

Ns
2Γ3(1− ǫ)

(πb2)1−3ǫ

[

4π + 8i log
s

m1m2
− 8i− i

π2

3

]

+O(ǫ)

}

.

(4.3)

In order to compute the new contribution to the eikonal we must first subtract the
contribution of the lower eikonal δ0 and ∆1 that are equal to15

2δ0 ≃
GNsΓ(1− ǫ)(πb2)ǫ

−ǫ
; 2 Im∆1 ≃

8G2
Ns(πb

2)2ǫΓ2(1− ǫ)

b2

(

1 +
ǫ

2

)

. (4.4)

Using them we can write the real part of the amplitude in Eq. (4.3) as follows:

Re Ã2(s, b) ≃ − i

6
(2iδ0)

3 − Im(2∆1)2δ0 +
4G3

Ns
2(πb2)3ǫΓ3(1− ǫ)

b2
+O(ǫ) . (4.5)

The last term in this equation is the ultra-relativistic limit of Re(δ2) and is immediate
to check that in D = 4 one recovers the universal result (3.8) obtained in the previous
section by generalising the approach of [6].

For completeness, let us also present the real part of the eikonal to third post-
Minkowskian order for generic s = m2

1 +m2
2 + 2m1m2σ (with σ ≥ 1) [29],

Re(δ2) =
2G3

N(2m1m2σ)
2

b2

[

σ4

(σ2 − 1)2
− cosh−1(σ)

(

σ2

σ2 − 1
− σ3 (σ2 − 2)

(σ2 − 1)5/2

)]

. (4.6)

Furthermore, the corresponding 3PM contribution to the scattering angle as a function
of the angular momentum J reads

χ3PM =− 16m3
1m

3
2σ

6G3
N

3J3 (σ2 − 1)3/2
+

32m4
1m

4
2σ

6G3
N

J3 (σ2 − 1) s
(4.7)

− 4

J3s

(

16m4
1m

4
2σ

4G3
N − 16m4

1m
4
2σ

5 (σ2 − 2)G3
N

(σ2 − 1)3/2

)

arcsinh

√

σ − 1

2
.

15The result for Im(2∆1) is apparently different from the one obtained in [8] because of the different
conventions mentioned in footnote around Eq. (2.4)
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Let us conclude with a few comments on the 3PM result (4.7)16. The first term in the
first line is entirely determined by χ1PM, while the first term in the second line is due to
integrals IH and IH, see (B.15). Together they reproduce exactly Eq. (6.41) of [22]. The
second term in the second line is a contribution coming from the full soft-region analysis
of the crossed double-box integrals. In the ultra-relativistic limit σ ≫ 1 the leading
term O(σ4) in each term in the round parenthesis in the second line cancels and only
the first line survives reproducing the universal and finite ultra-relativistic result which
was the main focus of this paper. Thanks to analyticity/crossing argument in Section 2,
this cancellation is a consequence of the cancellation in the imaginary part mentioned
below Eq. (4.2). Notice that the functional form of (4.7) matches exactly Eq. (3.65)
of [24] (where of course the Schwarzschild contribution is substituted by the probe-limit
relevant to this supersymmetric case) and so it is possible to define a function C(σ) also
for the N = 8 case.

It is interesting to look at the opposite limit σ → 1 which is relevant to the PN
(Post-Newtonian) limit: the terms already present in Eq. (6.41) of [22] have a standard
nPN expansion where n is integer. The new terms yield contributions only at half-integer
PN orders, starting at 1.5PN, and so they do not modify the integer PN data. However,
these half-integer PN terms, usually associated with dissipative phenomena, are somehow
unexpected at order G3

N , so it would certainly be interesting to repeat the same analysis
for pure GR, instead of N = 8 supergravity case. If a similar pattern appears also in
GR, as it seems reasonable since the same integrals IT appear in all cases, that would of
course be the best setup where to investigate these issues in more detail.
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A Asymptotic ρ ≡ ReA
ImA from analyticity and crossing

Consider a crossing-symmetric (under s ↔ u), real-analytic amplitude A(s∗, t) = A∗(s, t)
as a function of the complex variable s at t ≤ 0 and assume that, as s → ∞,

ImA(s, t) ∼ sn logp s , |A|s−n−1 → 0 ; (n, p ≥ 0) (A.1)

Since real-analyticity and crossing symmetry imply ImA(−s + i0) = − ImA(s+ i0), we
can write an (n+ 1)-times subtracted dispersion relation in the form:

ReA(s, t) = Q2m(s, t) +
2

π
s2m+2 P

∫

∞

s0

ds′
ImA(s′, t)

s′2m+1(s′2 − s2)
(A.2)

where s0 = (m1 + m2)
2 is the s-channel threshold, Q2m(s, t) is a polynomial of degree

2m, P denotes the principal part, and the integer m is defined by n = 2m for n even or
by n = 2m + 1 for n odd17. Because of Eq. (A.1) the integral in Eq. (A.2) converges.
From Eq. (A.2) we can compute ρ distinguishing the two cases.

For n even we get:

ReA(s, t)

sn
=

2

π
s2P

∫

∞

s0

ds′
ImA(s′, t)s′−n

s′(s′2 − s2)
+

Qn(s, t)

sn

⇒ ρ =
2

π
s2(log s)−pP

∫

∞

s0

ds′
logp s′

s′(s′2 − s2)
+

Qn(s, t)

sn logp s
∼ − 2 log s

(1 + p)π
, (A.3)

while for n odd:

ReA(s, t)

sn
=

2

π
sP
∫

∞

s0

ds′
ImA(s′, t)s′−n

(s′2 − s2)
+

Qn−1(s, t)

sn

⇒ ρ =
2

π
s(log s)−pP

∫

∞

s0

ds′
logp s′

(s′2 − s2)
+

Qn−1(s, t)

sn logp s
∼ πp

2 log s
, (A.4)

where we have used the high-energy limit of the principal-part integrals appearing in
Eq. (A.3) and Eq. (A.4). These are explicitly known in terms of special functions.

An exceptional case (which we encounter for the amplitude A
(1)
1 of Eq. (2.6)) is the

one of Eq. (A.4) with p = 0. In that case ρ is suppressed by a full power of s but the
leading term comes from picking up the first subleading n-even correction in Eq. (A.1),
which is fixed by crossing symmetry, and from applying to it Eq. (A.3). The last case

needed, the one of A
(1)
2 , is instead trivial since the amplitude is purely real and crossing

symmetry forces the combination s4 + 2ts3 +O(t2s2).

17We have neglected corrections from the finite-s, u regions since they give sub-leading contributions
similar to those coming from Q2m(s, t).
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B Summary of the soft integrals

In this appendix, we collect the expressions for the scalar integrals that enter the N = 8
two-loop amplitude. We focus on the contributions that are non-analytic in q2, which
emerge from the soft region in the small-q expansion. In order to exhibit the relevant
expressions for each topology T ∈ {III, III, IX, IX}, let us denote

IT =
1

(4π)4

(

4πe−γE

q2

)2ǫ
(

I
(2,2)
T

ǫ2q2
+

I
(1,2)
T

ǫ q2
+

I
(2,0)
T

ǫ2
+

I
(1,0)
T

ǫ
+ · · ·

)

. (B.1)

Here the dots stand for terms that are subleading in ǫ or in q, and we omit terms
proportional to 1

q
which are not needed to extract δ2 from the amplitude but only to

check the δ0δ1 term arising from the exponentiation. Let us also introduce the rescaled
Mandelstam variable

s̃ =
s

m1m2

. (B.2)

Then one has, up to subleading orders for s ≫ m2
i ,

I
(2,2)
III ≃ 2 (log s̃− iπ) 2

s2
, I

(2,0)
III ≃ 0 , (B.3)

I
(1,2)
III ≃ 1

s2

(

2

3
log3 s̃− 2iπ log2 s̃− 5

3
π2 log s̃− 2ζ3 +

iπ3

3

)

, (B.4)

I
(1,0)
III ≃ (m2

1 +m2
2) (log s̃− iπ)

2m2
1m

2
2s

2
(B.5)

+
1

s3

(

−2 log2 s̃+
(

m2
1

m2

2

+
m2

2

m2

1

+ 4iπ + 4
)

log s̃− i(2π − i)

2

(

m2
1

m2

2

+
m2

2

m2

1

)

+ 2π2 − 4πi− 1

)

,

I
(2,2)

III
≃ 2 log2 s̃

s2
, I

(2,0)

III
≃ 4 (log s̃− 1) log s̃

s3
, (B.6)

I
(1,2)

III
≃ 2 log3 s̃+ π2 log s̃− 6ζ3

3s2
, (B.7)

I
(1,0)

III
≃ (m2

1 +m2
2) log s̃

2m2
1m

2
2s

2
(B.8)

+
1

6s3

(

8 log3 s̃+ 4π2 log s̃ +
3 (m4

1 +m4
2) (2 log s̃− 1)

m2
1m

2
2

− 2
(

12ζ3 + 3 + π2
)

)

,
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I
(2,2)
IX ≃ −(log s̃− iπ) log s̃

s2
, I

(2,0)
IX ≃ −(log s̃− 1) (log s̃− iπ)

s3
, (B.9)

I
(1,2)
IX ≃ 1

s2

(

−1

3
log3 s̃+ 2iπ log2 s̃+

11

6
π2 log s̃+ ζ3 −

iπ3

3

)

, (B.10)

I
(1,0)
IX ≃ i (m2

1 +m2
2) (2π + i log s̃)

4m2
1m

2
2s

2
+

1

s3

(

1

6
log s̃ (2 (log s̃− 12) log s̃+ π(π + 24i) + 12)

)

+
1

s3

(

(m4
1 +m4

2) (−2 log s̃ + 4iπ + 1)

4m2
1m

2
2

− ζ3 − iπ +
1

2

)

, (B.11)

I
(2,2)

IX
≃ −(log s̃− iπ) log s̃

s2
, I

(2,0)

IX
≃ −(log s̃− 1) (log s̃− iπ)

s3
, (B.12)

I
(1,2)

IX
≃ 1

s2

(

−1

3
log3 (s̃)− iπ log2 (s̃)− 7

6
π2 log (s̃) + ζ(3) +

iπ3

6

)

, (B.13)

I
(1,0)

IX
≃ −(m2

1 +m2
2) (log s̃+ iπ)

4m2
1m

2
2s

2

+
1

12s3

(

3(1− 2iπ) (m4
1 +m4

2)

m2
1m

2
2

+ 36ζ3 + 2π(7π − 6i+ iπ2) + 6

)

+
1

s3

(

− log3 s̃+ (5− iπ) log2 s̃+
1

2

(

−m4
1 +m4

2

m2
1m

2
2

− π(3π + 4i)− 8

)

log s̃

)

. (B.14)

Finally the contribution of the H diagram and of its crossed counterpart is equal to

IH ≃ 1

ǫ(4π)4

(

4πe−γE

q2

)2ǫ 2 log s̃
(

log2 s̃− 3iπ log s̃− 2π2
)

3q4s
, (B.15)

IH ≃ − 1

ǫ(4π)4

(

4πe−γE

q2

)2ǫ 2 log s̃
(

log2 s̃+ π2
)

3q4s
. (B.16)
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