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scattering are power-suppressed near threshold x → 1. We address the next-to-leading

power (NLP) resummation of large double logarithms of 1 − x to all orders in the strong

coupling, which are present even in the off-diagonal DGLAP splitting kernels. The appear-

ance of divergent convolutions prevents the application of factorization methods known

from leading power resummation. Employing d-dimensional consistency relations from re-

quiring 1/ε pole cancellations in dimensional regularization between momentum regions,

we show that the resummation of the off-diagonal parton-scattering channels at the lead-

ing logarithmic order can be bootstrapped from the recently conjectured exponentiation

of NLP soft-quark Sudakov logarithms. In particular, we derive a result for the DGLAP

kernel in terms of the series of Bernoulli numbers found previously by Vogt directly from

algebraic all-order expressions. We identify the off-diagonal DGLAP splitting functions

and soft-quark Sudakov logarithms as inherent two-scale quantities in the large-x limit.

We use a refactorization of these scales and renormalization group methods inspired by

soft-collinear effective theory to derive the conjectured soft-quark Sudakov exponentiation

formula.
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1 Introduction

Resummations of logarithmically enhanced loop corrections are a powerful and often essen-

tial tool to enlarge the predictivity of QCD perturbation theory. Resummation is necessary

when a ratio of kinematic invariants, λ, becomes small such that αs lnk λ, where αs is the

strong coupling and k = 1 or 2, is no longer a good expansion parameter. Recent interest

in this subject has focused on understanding the structure of such logarithmic terms at

next-to-leading power (NLP) in λ with the aim of summing them to all orders in αs. This

has been accomplished at the leading-logarithmic (LL) order in various contexts, covering

final-state event shapes [1, 2], threshold resummation in Drell-Yan and Higgs production [3–

5], and Higgs production or decay through light-quark loops [6–8]. A number of methods

has been used, but it has become evident that a generalization to the next-to-leading-

logarithmic (NLL) order is not straightforward. This is to be compared to the situation

at leading power (LP), where resummation is often understood to any logarithmic order,

even though one faces technical challenges of high-order loop calculations in practice.

The most natural framework to formulate resummation is through the factorization

of scales and evolution equations. The all-order resummed expression is then obtained as

the product or convolution of the factorized pieces. At NLP, one faces the new difficulty

that these convolutions are divergent. While divergent convolutions are familiar from

rapidity divergences, which are not regulated dimensionally and may occur already at

LP, such as in transverse-momentum dependent factorization, the problem at NLP is of a

different nature. The divergences can be regulated dimensionally and arise in convolutions

of factors containing the physics at different virtualities. However, since factorization and

resummation refer to the renormalized factors before convolution, the standard formalism

fails to deal with this situation. An explicit example can be found in [9] for the case of

next-to-leading logarithms near the qq̄ → γ∗ Drell-Yan threshold.

In the present paper, we address these difficulties for the threshold of off-diagonal

deep-inelastic parton scattering. The off-diagonal channels vanish at LP near threshold

x→ 1, since they do not contain 1/[1− x]+ distributions at any order in αs. However, the

failure of standard resummation methods appears already at the LL order for the DGLAP

splitting functions. Vogt and collaborators [10–12] found that the all-order quark-gluon

splitting function with LL accuracy is given in moment space by

PLL
gq (N) =

1

N

αsCF
π
B0(a), a =

αs
π

(CF − CA) ln2N , (1.1)

where

B0(x) =

∞∑
n=0

Bn
(n!)2

xn (1.2)

is the Borel transform of the generating function of the Bernoulli numbers B0 = 1,

B1 = −1/2, . . . .1 The existence of an infinite series of double logarithmic terms shows

1Here and in the remainder of the paper αs without argument denotes the strong coupling in the MS

scheme at the renormalization/factorization scale µ. With our definition (3.68) of the anomalous dimensions,

the splitting kernel differs by a factor of two from [10].
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that in the off-diagonal channels even the anomalous dimension is a two-scale quantity

as N � 1, contrary to the diagonal anomalous dimension, a distinction that has not re-

ceived as much attention as it deserves, except for [10–12]. This remarkable result was

obtained from the structure of 1/ε poles of the unfactorized parton-scattering cross sec-

tions in the exactly known d = 4− 2ε dimensional low-order results, and their consistency

with factorization. These structures were then extrapolated to all orders to find closed

functional forms, including the reconstruction of the series of Bernoulli numbers. To our

understanding (1.1) has not yet been proven by deriving it directly from algebraic all-order

expressions. With this method, further results on the finite short-distance coefficients of

the off-diagonal channels in deep-inelastic scattering and Drell-Yan production at large N

were also obtained [10, 11].

What distinguishes the off-diagonal splitting functions from the diagonal ones in the

x → 1 / large-N limit is that the former describe the splitting into an energetic parton

and a soft quark. We further notice that the double-logarithmic series involves the colour

factor CF − CA. A connection between soft quarks and this colour factor of the large

logarithms also appears for the Sudakov resummation of the qq̄ → φ∗ form factor, where

φ∗ denotes a Higgs boson, effectively coupled to two gluons, and q a light quark [13, 14].

The leading logarithms here originate from soft quark exchange. Further, the authors

of [15] investigated the all-order structure of the e+e− → qq̄g amplitude in the kinematic

configuration where the quark and anti-quark are nearly collinear with small virtuality

s � Q2 and momentum fractions z and z̄ = 1 − z, respectively, recoiling against the

energetic gluon. Keeping the leading double poles 1/ε2 and logarithms of z or z̄, as the

quark or anti-quark become soft, they conjectured the exponentiation of the corresponding

one-loop terms to all orders

Pqq̄(z) = Ptree
qq̄ (z) exp

[
αs
πε2

{
T1 ·T3

(
µ2

zQ2

)ε
+ T2 ·T3

(
µ2

z̄Q2

)ε
+ T1 ·T2

(
µ2

s

)ε

+T1 ·T2

((
µ2

Q2

)ε
−
(

µ2

zz̄Q2

)ε)
−T1 ·T2

((
µ2

s

)ε
−
(
µ2

zz̄s

)ε)}]
. (1.3)

Here T1, T2, T3 are the colour operators of the quark, antiquark and gluon, respectively,

such that T1 ·T2 = CA/2−CF , T1 ·T3 = T2 ·T3 = −CA/2. If we now take z → 0, which

corresponds to the quark becoming soft, and focus on the terms involving Q2, we see that

the coefficient of Q−2ε has the colour factor T2 · T3 + T1 · T2 = −CF . The coefficient

of (zQ2)−ε, which involves the new scale
√
zQ � Q in the soft-quark limit, however, is

T1 ·T3−T1 ·T2 = CF −CA. It is tempting to conjecture that in a splitting 1 → 2+3 with

soft 3, the endpoint divergence, which occurs when integrating over z since Ptree
qq̄ (z) ∝ 1/z,

and which requires extra resummation of the logarithms of z or z̄ not captured by the

usual formalism, is related to the difference of the Casimir charge of the energetic particles

1 and 2. Along this line, it was noted in [2, 15] that in supersymmetric QCD with quarks

in the adjoint representation, the endpoint divergences and extra logarithms are absent.

All three examples of the appearance of CF − CA in front of double logarithms have in
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common that the resummed result was obtained without explicit factorization of the scales

involved, using either d-dimensional arguments, diagrammatic arguments, or a conjecture.

In this paper, we establish a connection between some of these results in the context

of NLP LL resummation for off-diagonal deep-inelastic parton scattering as x→ 1. To this

end we adapt the soft-quark Sudakov exponentiation conjecture [15] from event shapes to

deep-inelastic scattering (DIS). We then

• prove (1.1) for the resummed off-diagonal splitting function and the finite coefficient

function from the soft-quark Sudakov exponentiation conjecture via d-dimensional

consistency relations that follow from the requirement of pole cancellation between

momentum regions. The adapted version of (1.3) plays the role of a “boundary con-

dition” in the purely hard contribution to the process, from which the resummation

of the full process follows in closed all-order form.

• derive the previously conjectured exponentiation formula through the refactorization

of certain power-suppressed operators in soft-collinear effective theory (SCET) which

have endpoint-singular matching coefficients. The renormalization group equations

(RGEs) then exhibit the origin of the CF − CA colour factor.

The outline of the paper is as follows. In section 2 we consider the q + φ∗ → q + g

amplitude, define the light-cone momentum distribution for the qg-final state, and calculate

its leading poles at the one-loop order. We then apply the exponentiation conjecture

analogous to (1.3) to the soft-quark limit of this amplitude. Sections 3 and 4 contain

the material related to the two bullet points above, respectively. We conclude in section 5.

Appendices A and B collect SCET conventions and the field modes which appear in different

parts of the paper, and some basic facts on DIS at large x. In appendices C and D we

provide alternative derivations of a) the solution of the consistency relations at LP, and b)

the resummation of the refactorized SCET operator, which confirms the result of section 4.

The application of consistency relations to the thrust event shapes considered in [15] is

presented in appendix E in order to note the similarities and differences between the two

processes.

2 Off-diagonal DIS cross section and soft-quark Sudakov exponentiation

We begin by considering deep-inelastic scattering

q(p) + φ∗(q)→ X(pX) (2.1)

of a quark off a Higgs boson, which couples to quarks and gluons through the gluonic

interaction

L = κφ tr [GµνGµν ] . (2.2)

The coupling κ is related to the effective Higgs-gluon coupling in the infinite top-quark

mass limit.2 We are interested in the kinematic situation when the final state has small
2See (B.3) in appendix B. We refer to this appendix for a summary of the kinematics of DIS, the

factorization of the hadronic structure function at leading power, and the relevant momentum regions at

large x.
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q(p1)

1/z

z

(1− z)

φ∗(q)
g(p2)

q(p)

Figure 1. Scattering of a quark off a virtual Higgs boson at tree level.

invariant mass, p2
X � Q2 ≡ −q2, which corresponds to the limit x → 1 for the Bjorken

scaling variable x ≡ Q2/(2p · q). The reason for considering this exotic process is that it

is related to Drell-Yan production of a Higgs boson in the quark-gluon channel near the

partonic threshold. The above DIS process allows us to extract the quark-gluon splitting

kernel Pgq [10], which enters Higgs production. All these quantities are NLP, i.e. suppressed

by one power of (1 − x) as x → 1 relative to the leading diagonal gluon-gluon coupling.

The off-diagonal channel g + γ∗ → q + g for the more standard scattering on the vector

current can be obtained by substitution of colour factors [10].

We consider the dimensionally regularized and unfactorized partonic DIS cross sections.

Following [10], we introduce the partonic structure functions Wφ,g, Wφ,q by defining

Wφ,i =
1

8πQ2

∫
d4x eiq·x

〈
i(p)

∣∣[GAµνGµνA](x)
[
GBρσG

ρσB
]
(0)
∣∣i(p)〉, (2.3)

where i = g or q. At the lowest non-vanishing order in αs, to NLP in (1−x), and neglecting

O(ε0) terms not multiplied by logarithms of (1 − x) one has

Wφ,g = δ(1− x) +O(αs), Wφ,q = −1

ε

αsCF
2π

(1− x)−ε +O(α2
s) . (2.4)

The exact result is provided in (B.11) and (B.13).

2.1 Momentum distribution function and lowest-order result

At the lowest order the quark-scattering off the Higgs boson is realized by the process

q(p) + φ∗(q)→ q(p1) + g(p2) . (2.5)

The tree-level amplitude is shown in figure 1. We write the d = 4 − 2ε dimensional two-

particle phase space as

dΦ2(pX ; p1, p2) =
µ̃2εddp1

(2π)d
2πδ(p2

1)θ(p0
1) 2πδ

[
(pX − p1)2

]
θ(p0

X − p0
1)

=
eγEε

8πΓ(1− ε) dz
(

µ2

sqgzz̄

)ε
θ(z)θ(z̄)θ(sqg) , (2.6)

where µ̃2 = µ2eγE/(4π), sqg = p2
X . We introduced the variable

z ≡ n−p1

n−p1 + n−p2
, z̄ = 1− z , (2.7)

– 5 –
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which represents the distribution of the light-cone final-state momentum between the nearly

collinear quark and gluon in the final state. The vector n− represents a light-like vector

which projects on the large momentum components of the final state particles.3

We can represent the matrix element squared of the process (2.5) integrated over the

phase space in the form

Wφ,q

∣∣
qφ∗→qg =

∫ 1

0
dz

(
µ2

sqgzz̄

)ε
Pqg(sqg, z)

∣∣∣
sqg=Q2 1−x

x

, (2.8)

which holds to any order in perturbation theory in the strong coupling αs. The momentum

distribution function is defined as

Pqg(sqg, z) ≡ eγEεQ2

16π2Γ(1− ε)
|Mqφ∗→qg|2
|M0|2

, (2.9)

where |M0|2 denotes the tree-level matrix element squared, averaged (summed) over the

spin and colour of the initial (final) state for the leading diagonal channel process g+φ∗ → g.

For x → 1, we can expand Pqg(sqg, z) in sqg/Q
2 or λ ∼

√
1− x � 1. For this purpose we

note that

sqg = (p+ q)2 =
Q2(1− x)

x
= Q2(1− x) +O(λ4) . (2.10)

From (B.10) we have

|M0|2 ≡
∣∣Mgφ∗→g

∣∣2
tree

=
κ2Q4

x2
(1− ε) = κ2Q4 (1− ε) +O(λ2) . (2.11)

Similarly, the expansion of |Mqφ∗→qg|2, given in (B.12), which is itself a function of sqg or

x and of the momentum fraction z, gives∣∣M(1)
qφ∗→qg

∣∣2 = 2κ2 g2
sCF (1− ε)Q2 z̄

2

z
+O(λ2) (2.12)

at the lowest non-vanishing order in the coupling expansion, which implies

Pqg(sqg, z)
∣∣
tree

=
αsCF

2π

z̄2

z
+O(ε, λ2) . (2.13)

Integrating and neglecting O(ε) corrections that are not multiplied by logarithms (i.e.

counting ε� 1 but ε ln(1− x) ∼ 1, (1− x)−ε ∼ 1 and ε ln(µ/Q) ∼ 1), gives

Wφ,q

∣∣NLP

O(αs), leading pole
= −1

ε

αsCF
2π

(
µ2

Q2(1− x)

)ε
, (2.14)

in agreement with (2.4). Wφ,q

∣∣
qφ∗→qg represents the contribution to the partonic DIS

structure function when only two partons are present in the final state. As such it is an

infrared (IR) divergent quantity. In lowest order in αs, the IR divergence is a single 1/ε pole,

which arises from the z → 0 region of the integral (2.8) owing to the 1/z behaviour of the

tree-level momentum distribution function. The z → 0 limit corresponds to the kinematic

configuration where the initial quark transfers all of its momentum to the final-state gluon,

and the final-state quark becomes soft. It is therefore essential that the integration over z

in (2.8) is done in d dimensions, a fact that will be of importance later on.

3See appendix A for more details on the definition of SCET reference vectors and of the power counting

parameters relevant for DIS near threshold.

– 6 –



J
H
E
P
1
0
(
2
0
2
0
)
1
9
6

(2) (3) (4) (5)(1)

(6) (7) (8) (9)

Figure 2. One-loop corrections to the scattering of a quark off a virtual Higgs boson. Only the

triangle and box diagrams are shown.

2.2 One-loop momentum distribution function

In this subsection, we calculate the one-loop (virtual) correction to the 2 → 2 scattering

process qφ∗ → qg and obtain the corresponding momentum distribution function (2.9). We

are interested in the leading double poles and logarithms. We therefore need the leading

pole 1/ε2 without expanding its coefficient in a series of ε. The relevant Feynman diagrams

are shown in figure 2. We find that only the first five diagrams give non-vanishing leading

poles. Calculating the interference of these one-loop diagrams with the tree diagram, we

obtain for the leading-pole terms

Pqg(sqg, t, u)|1-loop = Pqg(sqg, t, u)|tree
αs
π

µ2ε

ε2{[
T1 ·T2 (−sqg)−ε + T1 ·T0 (−t)−ε + T2 ·T0 (−u)−ε

]
+ T1 ·T2

(
(Q2)−ε − (−t)−ε − (−sqg)−ε +

(−sqg)−ε(−t)−ε
(Q2)−ε

)
+ T1 ·T0

(
(Q2)−ε − (−sqg)−ε − (−u)−ε +

(−sqg)−ε(−u)−ε

(Q2)−ε

)
+ T2 ·T0

(
(Q2)−ε − (−t)−ε − (−u)−ε +

(−t)−ε(−u)−ε

(Q2)−ε

)}
(2.15)

with t = (p1 − p)2, u = (p2 − p)2, and

Pqg(sqg, t, u)|tree =
αsCF

2π

s2
qg + u2

−tQ2
+O(ε) , (2.16)

employing colour operator notation, Ti, for particle i (i = 0 for the incoming quark).

Eq. (2.15) is valid for general values of the Mandelstam variables sqg, t, u. The first line

in the curly bracket is the familiar double-pole structure when all sqg, t, u are of order

– 7 –
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of the hard scale Q2. The last three lines represent additional contributions, which are

suppressed by ε2 compared to the first line. Although technically finite as ε → 0, these

cannot be simply omitted because after integration over the phase space to obtain Wφ,q,

they may generate poles and logarithms of equal order as the pole terms from the first line,

as will be shown below.

When the final-state quark and gluon become collinear, sqg � Q. With sqg + t+ u =

−Q2, we can parameterize t = −zQ2 − sqg/2, u = −z̄Q2 − sqg/2. The collinear expansion

amounts to expanding in sgq/Q
2 ∼ (1− x) ∼ λ2 at fixed z, which yields

Pqg(sqg, z)|1-loop = Pqg(sqg, z)|tree
αs
π

µ2ε

ε2{[
T1 ·T2 (−sqg)−ε + T1 ·T0 (zQ2)−ε + T2 ·T0 (z̄Q2)−ε

]
+ T1 ·T2

[
(Q2)−ε − (zQ2)−ε − (−sqg)−ε + (−zsqg)−ε

]
+ T1 ·T0

[
(Q2)−ε − (z̄Q2)−ε − (−sqg)−ε + (−z̄sqg)−ε

]
+ T2 ·T0

[
(Q2)−ε − (zQ2)−ε − (z̄Q2)−ε + (zz̄Q2)−ε

]}
. (2.17)

Given that the leading order result (2.12) becomes singular only at the end point z = 0, we

can safely expand the z̄−ε terms in a series of ε in the above equation. Therefore, keeping

only terms contributing to the leading poles after integration over the phase space, we have

Pqg(sqg, z)|1-loop = Pqg(sqg, z)|tree
αs
π

1

ε2

(
T1 ·T0

(
µ2

zQ2

)ε
+ T2 ·T0

(
µ2

z̄Q2

)ε
+ T1 ·T2

[(
µ2

Q2

)ε
−
(
µ2

zQ2

)ε
+

(
µ2

zsqg

)ε ])
. (2.18)

In the framework of SCET this result exhibits a profound problem. The tree amplitude

represented in figure 1 corresponds to a JB1 SCET operator (see appendix A) with a

quark field in the collinear direction, and a quark and a gluon field in the anti-collinear

direction with light-cone momentum fractions z and z̄, respectively. The tree-level matching

coefficient of this operator from the diagram in figure 1 is proportional to 1/z, which gives

the 1/z behaviour of Pqg(sqg, z)|tree after squaring the amplitude and accounting for a

factor of z from the sum of the final-state quark spin. From the general formula for the

anomalous dimension of subleading power operators [16, 17], we get the double pole terms

with T1 ·T0 and T2 ·T0 from the standard cusp anomalous dimension terms. However, one

cannot obtain a cusp term for the two fields within the same collinear sector, i.e. the T1 ·T2

term. In this part, there are three terms involving three different scales. The third contains

the scale zsqg. We may disregard it here because the dependence on sqg identifies it as

a term related to the final-state jet function, rather than the renormalization of the JB1

operator at the hard DIS vertex. The first two terms, however, contain the hard scales Q2

and zQ2, and they are supposed to be predicted by the corresponding anomalous dimension.

However, the anomalous dimension given in [16, 17] applies when the convolution of the

– 8 –
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coefficient function with the anomalous dimension is convergent, which is not the case here

as discussed next.

The difference between these two terms in the coefficient of T1 ·T2 is O(ε) and hence

does not contribute to the double pole. Instead, the expansion in ε produces 1/ε× ln z. The

important point is that the 1/z singularity of the matching coefficient promotes this term

to the same leading-pole order 1/ε3 as the standard double pole terms after integration over

z as in (2.8). Moreover, the integral over z must itself be regularized due to the singularity

at z = 0, and the correct result is obtained by not expanding (2.18) before integration.

This can easily be seen by comparing (no expansion before integration)

1

ε2

∫ 1

0
dz

1

z1+ε
(1− z−ε) = − 1

2ε3
(2.19)

to (expansion of (2.18) before integration)

1

ε2

∫ 1

0
dz

1

z1+ε

(
ε ln z − ε2

2!
ln2 z +

ε2

3!
ln3 z + · · ·

)
= − 1

ε3
+

1

ε3
− 1

ε3
+ · · · . (2.20)

If only the pole part of the integrand were kept, the result would be incomplete. This

explains why it was necessary to keep the exact d-dimensional coefficient of the double

pole terms in the one-loop momentum distribution function.

To summarize, when we attempt to interpret (2.18) in the SCET framework, we dis-

cover two problems with the standard treatment of factorization in SCET. First, the renor-

malization and logarithmic terms of some SCET operators with singular matching coeffi-

cients are not obtained correctly. Second, the convolution integrals of the hard matching

coefficients with the jet functions — the integral over z above — diverge and must them-

selves be regularized, for instance dimensionally. These obstacles appear first at NLP.

2.3 Exponentiation conjecture

We shall pursue the SCET interpretation further in section 4. Here, we observe that

crossing symmetry relates qφ∗ → qg to H → qq̄g discussed in [15], and we follow [15] by

conjecturing that the leading poles are given correctly to all orders in αs by exponentiating

the one-loop expression (2.18):

Pqg(sqg, z) = Pqg(sqg, z)|tree exp

[
αs
π

1

ε2

(
T1 ·T0

(
µ2

zQ2

)ε
+ T2 ·T0

(
µ2

z̄Q2

)ε

+T1 ·T2

((
µ2

Q2

)ε
−
(
µ2

zQ2

)ε
+

(
µ2

zsqg

)ε))
+O

(
1

ε

)]
, (2.21)

where, for the qg case, T1 ·T0 = CA/2−CF , T2 ·T0 = T1 ·T2 = −CA/2, but the colour-

operator notation is used to emphasize the generality of the conjecture. The exponentiation

refers to the d-dimensional expression, since it must be integrated in d dimensions over z

as discussed above.

In the subsequent section, we employ consistency relations from the cancellation of

poles between all relevant momentum regions to infer the structure of the DIS structure
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function from the contribution with only hard loops and a single anti-hardcollinear loop,

as shown in the left diagram of figure 4 below. The term involving sqg in the exponent

in (2.21) arises from the exponentiation of the one-loop anti-hardcollinear leading pole

to all orders, and should therefore be dropped for this consideration. Also the tree-level

momentum distribution function is non-singular as z → 1, hence for the leading poles after

the z-integration, we may replace z̄ → 1. We can therefore simplify (2.21) to

Pqg,hard(sqg, z) =
αsCF

2π

1

z
exp

[
αs
π

1

ε2

(
(T2 ·T0 + T1 ·T2)

(
µ2

Q2

)ε

+ (T1 ·T0 −T1 ·T2)

(
µ2

zQ2

)ε )
+O

(
1

ε

)]
, (2.22)

where, for the qg case, T2 · T0 + T1 · T2 = −CA and T1 · T0 − T1 · T2 = CA − CF . In

SCET we interpret this as the resummation of the matching coefficient of a non-standard

B1 operator, squared and convoluted with the tree-level jet function. We shall come back

to this in section 4, where we provide a derivation of this result with factorization methods.

Notice that the above expression has a homogeneous power counting even when z � 1,

since in a d-dimensional treatment we count z−ε as an O(1) quantity.

Integrating (2.22) over z yields the contribution to the off-diagonal quark DIS structure

function from any number of hard loops and a single anti-hardcollinear loop from the two-

particle phase-space, which corresponds to the integral over the tree-level final state jet

function. We obtain

Wφ,q

∣∣∣hard

qφ∗→qg
=

∫ 1

0
dz

(
µ2

sqgz

)ε
Pqg,hard (sqg, z)

∣∣∣
sqg=Q2(1−x)

=
αsCF

2π

(
−1

ε

) (
µ2

Q2(1− x)

)ε
exp

[
− αsCA

π

1

ε2

(
µ2

Q2

)ε ]

×
exp

[
αs(CA−CF )

π
1
ε2

(
µ2

Q2

)ε]
− 1

αs(CA−CF )
π

1
ε2

(
µ2

Q2

)ε (2.23)

in the leading-pole approximation. We note that the expression contains the standard

Sudakov factor with colour factor CA and a non-standard factor involving the colour factor

CF − CA. The latter arises from the integral∫ 1

0
dz

exp[az−ε]

z1+ε
= −1

ε

ea − 1

a
. (2.24)

3 Resummed off-diagonal partonic cross section and qg splitting function

from consistency relations

The theory of deep-inelastic scattering and of resummation for x→ 1 is based on factoriza-

tion formulas for the scattering of hadrons in terms of partonic quantities. The latter are

usually IR and ultraviolet (UV) divergent, but can be defined in terms of a renormalization
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prescription. Consistency relations follow from the requirement that an observable must

be finite as ε → 0 and allow one to deduce the expansion in ε of unrenormalized partonic

quantities based on partial information.

The LL resummation of the quark-gluon splitting function (1.1) was obtained in [10]

from the requirement that the DIS cross section is an observable and hence must be fi-

nite, together with additional assumptions on the all-order colour structure as well as an

exponentiation ansatz for the full partonic cross section. A stronger form of consistency

relations from pole cancellations can be obtained when the regions of virtuality relevant

to the observable are known. The different scaling of every region with the dimensionless

parameters of the problem implies a larger number of consistency relations [18]. For ex-

ample, the LL resummation of the thrust event shapes at NLP was derived in [1] from

the contributions with a single collinear and an arbitrary number of hard loops alone and

invoking pole cancellations between all regions.

In this section we use consistency relations to derive the NLP LL resummation of the

off-diagonal DGLAP kernel (1.1) and short-distance coefficient function from the expo-

nentiation conjecture (2.23). In this way, we infer the resummation of the short-distance

functions in the DIS factorization formula from the resummation in a single momentum

region. In this section we work in moment space, following [10], to avoid dealing with

convolutions. Moments of functions g(x) of the Bjorken scaling variable x are taken with

the standard definition g(N) ≡
∫ 1

0 dxx
N−1g(x). The x → 1 limit corresponds to N → ∞

in moment space.

3.1 Consistency relations for DIS

In this section, we consider the hadronic DIS process p+ φ∗ → X. From standard factor-

ization theorems at leading twist in Λ/Q, where Λ denotes the QCD scale, we can write

the hadronic tensor as

W =
∑
i

Wφ,i fi , (3.1)

where i sums over all partonic scattering channels,4 and fi denotes the unfactorized (un-

renormalized) parton distribution function (PDF) of i in the proton p. Thus fi contains

dimensionally regulated UV divergences. The finite, MS subtracted parton distributions

and short-distance coefficients (partonic cross sections) are related to Wφ,i, fi by

f̃k = Zkifi, Wφ,i = C̃φ,kZki , (3.2)

such that

Wφ,ifi = C̃φ,kf̃k . (3.3)

Note that the short-distance coefficients C̃φ,k have finite limits for ε → 0, but are still

d-dimensional. The splitting kernels are given by

Pij = −γij =
dZik
d lnµ

(Z−1)kj . (3.4)

4In the following, we imply the summation convention over repeated partonic channel indices and often

leave out the sum symbol.

– 11 –



J
H
E
P
1
0
(
2
0
2
0
)
1
9
6

For generic N the leading-twist DIS factorization formula involves hard and collinear

physics related to the scales Q and Λ. The latter is non-perturbative and factorized into

the PDFs. For large N , the small invariant mass of the final state (see also appendix B)

introduces a new scale into the problem, which is also the source of the large logarithms

that we wish to sum. The four relevant virtualities are:

• hard, p2 = Q2

• anti-hardcollinear, p2 = Q2λ2 = Q2/N

• collinear, p2 = Λ2

• softcollinear, p2 = Λ2λ2 = Λ2/N

The anti-hardcollinear virtuality arises from the requirement of a small-mass final state X.

In the adopted large-momentum frame, its large momentum is in the opposite direction

of the incoming proton, hence “anti-hardcollinear”. We also need a softcollinear virtuality

Λ/N � Λ, which accounts for the anomalously small momentum of the target remnant as

x→ 1 [19]. Note, however, that there is no soft region in DIS.

The calculation of the DIS process is imagined to be strictly factorized into contribu-

tions from the different virtualities. A multi-loop diagram is considered as a sum of terms,

in which every loop momentum has one of the above virtualities, in the spirit of the strat-

egy of expanding by regions [20]. Each loop is then associated with a factor (µ2/p2)ε times

a function of ε, which will usually be singular. The consistency relations follow from the

requirement that the sum of all terms is non-singular as ε→ 0. We note that dimensional

regularization only factorizes regions with different virtualities. It is not sensitive to the

scaling of the momentum components separately. However, for the present problem, this

will be sufficient to obtain non-trivial consistency constraints.

3.1.1 Leading power

The resummation of leading large-N logarithms at leading power is simple and well-known.

We rederive it here from consistency relations and the RGE for the hard function to illus-

trate the method.

At LP there is no mixing of partonic channels. Only the gluon channel contributes to

the DIS cross section. We expand the diagonal gluon channel in αs according to

Wφ,g fg = fg(Λ)×
∑
n

(αs
4π

)n 1

ε2n

n∑
k=0

n∑
j=0

b
(n)
kj (ε)

(
µ2nN j

Q2kΛ2(n−k)

)ε
+O

(
1

N

)
. (3.5)

Here k denotes the number of hard plus anti-hardcollinear loops, which determines the

dependence Q−2kε on Q, j is the number of anti-hardcollinear and softcollinear loops,

which determines the number of times the factor N ε appears. n− k is then the number of

collinear plus softcollinear loops related to the PDF. At O(αns ), the leading singularity is

1/ε2n. This factor has been extracted, such that the coefficients b
(n)
kj (ε) can be expanded in

non-negative powers of ε. For the LL resummation, we focus on the leading poles, and need

only the constant part b
(n)
kj ≡ b

(n)
kj (0). At LP, we also drop the O(1/N) correction. The
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above expansion holds when expressed in terms of the dimensionless bare coupling µ−2εαs0,

since some of the poles are related to coupling renormalization. However, since the relation

between the bare and renormalized coupling involves at most a single pole per loop, we

can identify the expansion parameter with the renormalized MS coupling αs ≡ αs(µ) to

leading-pole accuracy.

We regard fg on the left-hand side as the unrenormalized gluon PDF at the factoriza-

tion scale µ. To make the dependence on the collinear and softcollinear scale explicit, we

relate it to a non-perturbative reference PDF via

fg(µ) = Ugg(µ)fg(Λ) = fg(Λ) [1 +O(αs)] , (3.6)

where Ugg(µ), defined by this equation, contains the evolution from the scale Λ to µ.

Another way of reading (3.5) is that it represents DIS on a gluon with IR singularities

regulated non-dimensionally rather than DIS on a hadron. It is only important that the left-

hand side is finite as ε→ 0, so all poles on the right-hand side originate from factorization,

and have to cancel.

The requirement of pole cancellation implies not only the obvious consistency condition

n∑
k=0

n∑
j=0

b
(n)
kj = 0 , (3.7)

from the vanishing of the coefficient of the 1/ε2n pole. In addition, the coefficients of all

terms of the form

(lnN)r
(

ln
Λ

Q

)s
× 1

ε2n−r−s
, (3.8)

must vanish for s+r < 2n, r, s ≥ 0, since other subleading pole terms from the ε expansion

of b
(n)
kj (ε) cannot produce the same logarithmically enhanced coefficients. This gives the

conditions
n∑
k=0

n∑
j=0

jr(n− k)s b
(n)
kj = 0 . (3.9)

Using the binomial expansion of (n− k)s, they are equivalent to the consistency relations

n∑
k=0

n∑
j=0

jrks b
(n)
kj = 0 for s+ r < 2n, r, s ≥ 0 . (3.10)

At order O(αns ) this provides 2n2 + n equations, but only n2 + 2n of them are linearly

independent. There are (n+1)2 coefficients b
(n)
kj , hence at any order in perturbation theory

we can determine all b
(n)
kj through consistency equations in terms of a single remaining one.

A particularly convenient choice is b
(n)
n0 , which corresponds to n-loop diagrams with

only hard loops. We show below that b
(n)
n0 can be determined from the one-loop hard

coefficient b
(1)
10 by solving a RGE, such that the purely hard-loop contribution is given to

all orders by

WLP,LL
φ,g

∣∣∣
hard loops

= exp

[
−αsCA

π

1

ε2

(
µ2

Q2

)ε ]
, (3.11)
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which captures the leading-pole part, denoted by “LL”, and implies

b
(n)
n0 = (−4CA)n . (3.12)

This provides the single condition required at LP to fix all of the b
(n)
kj . We make the ansatz

(Wφ,g fg)
LP,LL = exp

[
αsCA
π

1

ε2

{(
µ2

Q2

)ε
−
(
µ2

Λ2

)ε}
(N ε − 1)

]
fg(Λ) , (3.13)

which is finite for ε → 0 and contains only products of factors of the form (µ2/p2)ε, with

p2 any of the four relevant virtualities. This corresponds to

b
(n)
kj = (4CA)n

∑
m1,m2,m3,m4≥0

(−1)m2(−1)m3

m1!m2!m3!m4!
δm1+m2,kδm3+m4,n−kδm1+m3,j

= (−1)k+j (4CA)n
min(j,k)∑
m=m0

1

m!(k −m)!(j −m)!(n− k − j +m)!
, (3.14)

where m0 = max(0, k+ j−n). We checked (up to n = 10) that this ansatz indeed satisfies

the consistency conditions (3.10). Since the system is fully constrained (equal number

of free coefficients and linearly independent consistency conditions), this solution is the

unique solution of the consistency relations given (3.11).

Clearly, (3.13) factorizes into

WLP,LL
φ,g = exp

[
αsCA
π

1

ε2

(
µ2

Q2

)ε
(N ε − 1)

]
, (3.15)

fLP,LL
g = exp

[
−αsCA

π

1

ε2

(
µ2

Λ2

)ε
(N ε − 1)

]
fg(Λ) , (3.16)

where the first expression is the unfactorized partonic cross section, and the second the

unfactorized PDF. The latter shows that the gluon PDF in the x → 1 limit must be

considered as a two-scale object already at LP, since fLP,LL
g depends on the softcollinear

in addition to the collinear virtuality. Recall that in the derivation of these expressions N ε

is treated as an O(1) quantity that must not be expanded in ε. However, by definition of

the MS scheme, to define the MS renormalization constants, the pole part is extracted by

expanding in ε at fixed (large) N . From (3.16) and the requirement that f̃g in (3.2) be

finite, we obtain

ZLP,LL
gg = exp

[
αsCA
π

lnN

ε

]
, (3.17)

C̃φ,g = exp

[
αsCA
π

1

ε2

((
µ2

Q2

)ε
(N ε − 1)− ε lnN

)]
. (3.18)

The anomalous dimension in the gluon channel is obtained from

γgg(N) = −
(

d

d lnµ
Zgg

)
Z−1
gg . (3.19)
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In the leading (double) pole approximation, the evolution of d-dimensional MS coupling is

given by
dαs
d lnµ

= −2εαs , (3.20)

hence

γLP,LL
gg (N) =

αsCA
π

2 lnN , (3.21)

with no (αs ln2N)k corrections. This corresponds to the well-known fact that the DGLAP

kernel for x→ 1 at LP is

Pgg(x) =
2Γcusp(αs)

[1− x]+
+ 2γg(αs)δ(1− x) +O((1− x)0) , (3.22)

with no lnn(1− x)/[1− x]+ corrections to the 1/[1− x]+ term to any order in αs.

3.1.2 Derivation of the resummed hard function (3.11)

In the x → 1 limit the QCD part of the Higgs-gluon interaction is closely related to the

Sudakov form factor for gluon scattering. In SCET notation (see appendix A), it matches

to the operator

JA0 = 2gµν n−∂AµA⊥hc(sn−)n+∂AνA⊥c (tn+) , (3.23)

with a collinear gauge-invariant transverse gluon field in the collinear direction of the initial-

state gluon and an anti-hardcollinear one for the outgoing gluon. The square of the hard

matching coefficient CA0 of this operator contains the large logarithms at LP as x → 1

in the DIS structure functions, which we associated with WLP,LL
φ,g |hard loops above.5 Here

we need the resummation of the pole part of the bare coefficient rather than of the large

logarithms in the renormalized coefficient.

The anomalous dimension of JA0 takes the general form

Γ(αs, µ) ≡ − dZ

d lnµ
Z−1 = Γcusp(αs) ln

Q2

µ2
+ γ(αs) . (3.24)

With
dαs
d lnµ

≡ −2εαs + β(αs) , (3.25)

we can solve (3.24) for [21]

lnZ(µ) =

∫ αs(µ)

0

dα

α

1

2ε− β(α)/α

(
Γ(α, µ)−

∫ α

0

dα′

α′
2Γcusp(α′)

2ε− β(α′)/α′

)
. (3.26)

The bare coefficient function is given by

CA0
bare = Z(µ)CA0(µ) , (3.27)

where CA0(µ) is free of poles. The bare coefficient does not depend on µ and is a function of

the dimensionless quantities αs0/Q
2ε and ε. The resummation of the pole part is obtained

5See appendix B for a very brief summary of factorization for x→ 1 at LP.
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pdfc

φ∗

Figure 3. Diagrammatic SCET representation of LP resummation. The Wilson lines attached to

SCET operators are set to 1 in this graph.

most easily by choosing µ = Q, in which case CA0(Q) contains no large logarithms, and

by expressing αs(Q) in terms of the bare coupling αs0.

The cusp anomalous dimension is responsible for the double logarithms. To sum the

leading poles, the one-loop approximation suffices. We therefore set

Γcusp(αs) =
αsCA
π

, γ(αs) = 0 , β(αs) = 0 , (3.28)

and obtain

lnZLL(Q) = −αs(Q)CA
2π

1

ε2
= −αs0CA

2π

1

ε2
1

Q2ε
= −αs(µ)CA

2π

1

ε2

(
µ2

Q2

)ε
. (3.29)

It is sufficient to use the tree-level coefficient CA0(Q) = 1 to obtain the leading poles. We

then find

WLP,LL
φ,g

∣∣∣
hard loops

= |CA0
bare|2LL = exp

(
2 lnZLL(Q)

)
= exp

[
−αsCA

π

1

ε2

(
µ2

Q2

)ε ]
, (3.30)

which proves (3.11). The above method can be used to include running coupling and

higher-order effects. However, we restrict ourselves to the leading double logarithms here.

3.1.3 SCET intepretation

The SCET interpretation of DIS at LP as x → 1 is sketched in figure 3. A collinear

gluon from the PDF is converted into an anti-hardcollinear gluon by the A0 current (3.23),

which sources the final-state jet. The figure shows the cross section Wφ,g fg with hard

vertices and lines corresponding to the (anti-hard) collinear fields. It does not show the

Wilson lines attached to these fields. Since the softcollinear PDF modes enter at LP

only through Wilson lines, they do not appear in the graph, despite the fact that the

result (3.16) for the resummed PDF shows that they are necessary at LP to achieve pole

cancellation. The picture is consistent with the explicit SCET computations [19]. The

appearance of softcollinear modes only in Wilson lines is also the reason why they do

not appear explicitly in the LP factorization theorem [19], once the standard PDFs are

introduced. Their presence in (3.16) leads us to suspect that this will no longer hold at

NLP. There is some similarity of this with collinear functions in the factorization of the

Drell-Yan process near the kinematic threshold. These do not appear in the well-known

LP factorization theorem, because soft modes appear only through Wilson lines. However,

this no longer holds beyond LP, and collinear functions do appear at NLP [3, 9].
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3.2 Next-to-leading power

Having introduced the method for the well-understood case of LP large-N resummation,

we proceed to the main subject of this paper, the NLP suppressed off-diagonal quark-

Higgs scattering channel. All partonic channels are relevant at NLP, hence we consider the

expansion of
∑

i (Wφ,ifi) in powers of 1/N . The LP term WLP
φ,g f

LP
g was considered before

in (3.5). The NLP term in the hadronic cross section consists of∑
i

(Wφ,ifi)
NLP = WNLP

φ,q fLP
q +WNLP

φ,q̄ fLP
q̄ +WNLP

φ,g fLP
g +WLP

φ,g f
NLP
g . (3.31)

The evolution factors that express the unrenormalized PDF at the scale µ in terms of the

PDFs at the initial scale Λ must also be expanded. We generalize (3.6) to

fi(µ) = Uij(µ)fj(Λ) , (3.32)

and find

fLP
g (µ) = ULP

gg (µ)fg(Λ) ,

fLP
q (µ) = ULP

qq (µ)fq(Λ) (similarly for q̄) ,

fNLP
g (µ) = UNLP

gg (µ)fg(Λ) + UNLP
gq (µ) (fq(Λ) + fq̄(Λ)) . (3.33)

The LP leading-pole resummed factor

ULP,LL
gg (µ) = exp

[
−αsCA

π

1

ε2

(
µ2

Λ2

)ε
(N ε − 1)

]
, (3.34)

can be inferred from (3.16). ULP,LL
qq (µ) and ULP,LL

q̄q̄ (µ) are obtained by replacing CA →
CF . The hadronic cross section should be finite for any choice of non-perturbative initial

conditions fg(Λ), fq(Λ) and fq̄(Λ). For the off-diagonal quark-gluon channel we focus on

the terms proportional to fq(Λ), given by∑
i

(Wφ,ifi)
NLP

∣∣∣
∝fq(Λ)

=
(
WNLP
φ,q ULP

qq +WLP
φ,gU

NLP
gq

)
fq(Λ) . (3.35)

3.2.1 Consistency relations

Assuming that the same hard, anti-hardcollinear, collinear and softcollinear virtualities

describe the physics of large-x DIS at NLP, we expand the hadronic cross section as

∑
i

(Wφ,ifi)
NLP = fq(Λ)× 1

N

∑
n=1

(αs
4π

)n 1

ε2n−1

n∑
k=0

n∑
j=0

c
(n)
kj (ε)

(
µ2nN j

Q2kΛ2(n−k)

)ε
+ fq̄(Λ), fg(Λ) terms . (3.36)

Compared to the previous LP expansion formula (3.36), we note the overall NLP factor

1/N , the power 2n− 1 rather than 2n for the leading pole and the absence of a tree term

n = 0. This follows from the fact that a quark must be radiated into the final state in the

off-diagonal quark-gluon channel. This first emission brings a factor of αs but produces
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only a single 1/ε pole. As mentioned above, the poles must cancel in all channels separately,

and we can therefore disregard the fq̄(Λ), fg(Λ) terms.6 In the following we will only be

interested in the leading pole at any order, in which case we can replace c
(n)
kj (ε) by their

four-dimensional values c
(n)
kj ≡ c

(n)
kj (0).

The similarity of (3.5) and (3.36) implies that the consistency relations from pole

cancellation take the same form:

n∑
k=0

n∑
j=0

jrksc
(n)
kj = 0 for s+ r < 2n− 1, r, s ≥ 0 . (3.37)

However, the absence of the 1/ε2n pole now leads to the condition s+r < 2n−1 as compared

to s+ r < 2n at LP, (3.10). There are still (n+ 1)2 coefficients c
(n)
kj at order n, but (3.37)

provides only 2n2−n equations. Moreover, not all of them are linearly independent. We can

write c
(n)
kj as a (n + 1)2 dimensional vector c(n) in the compound index [kj] with ordering

00, 01, . . . 0n, 10, . . . nn, and regard jrks as the entries of a (n + 1)2 × (2n2 − n) matrix

M (n) with indices [kj] and [sr] (these ordered as 00, 10, 01, 20, 11, 02, . . .). Then (3.37) is

expressed as M (n)c(n) = 0. For example, for n = 2, the 2n2− n = 6 consistency conditions

read in matrix form



1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 2 2 2

0 1 2 0 1 2 0 1 2

0 0 0 1 1 1 4 4 4

0 0 0 0 1 2 0 2 4

0 1 4 0 1 4 0 1 4


·



c
(2)
00

c
(2)
01

c
(2)
02

c
(2)
10

c
(2)
11

c
(2)
12

c
(2)
20

c
(2)
21

c
(2)
22



= 0 . (3.38)

The number of linearly independent consistency relations is related to the rank of matrix

M (n), which is (n + 1)2 − 3. Hence, the consistency relations allow us to determine all

(n+ 1)2 coefficients c
(n)
kj in terms of three unknowns at every order n.

3.2.2 Solution

Two of the three “initial conditions” at every n for solving the consistency relations can

be fixed trivially. In the absence of collinear and softcollinear loops (k = n), there must be

at least one anti-hardcollinear loop, since the final state cannot be made up of hard modes

for x→ 1. This implies

c
(n)
n0 = 0 , (3.39)

6The fg(Λ) terms can be used to formulate consistency relations for the NLP resummation of the gluon

channel. The antiquark scattering terms are completely analogous to the quark terms and need not be

considered separately.
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for all n. Similarly, without any hard or anti-hardcollinear loops (k = 0), the necessary

off-diagonal q → qg splitting always produces a softcollinear quark. Thus there must be at

least one softcollinear loop, such that

c
(n)
00 = 0 for all n . (3.40)

The third “initial condition” is provided by the Sudakov exponentiation conjecture (2.23).

Recall that this refers to the all-hard loop corrections to the square of the qφ∗ → qg

amplitude integrated over the anti-hardcollinear two-particle phase space, which gives the

series of terms c
(n)
n1 in present notation. In moment space, we replace (1 − x) → 1/N

in (2.23). Expanding in αs, we obtain

Wφ,q

∣∣∣hard

qφ∗→qg
=
∑
n=1

(αs
4π

)n
c

(n)
n1

1

ε2n−1

(
µ2nN

Q2n

)ε
, (3.41)

with

c
(n)
n1 =

1

2
(−4)n

CF
CF − CA

CnF − CnA
n!

=
(−4)n

2n!
CF
(
Cn−1
F + Cn−2

F CA + · · ·+ Cn−1
A

)
. (3.42)

This particular finite series of CF and CA terms has already been seen in [10, 15].

The consistency equations can now be solved. For example, at n = 2, we can

rewrite (3.38) as equations for the unknown coefficients as



1 1 1 1 1 1

0 0 1 1 1 2

1 2 0 1 2 2

0 0 1 1 1 4

0 0 0 1 2 4

1 4 0 1 4 4


·



c
(2)
01

c
(2)
02

c
(2)
10

c
(2)
11

c
(2)
12

c
(2)
22


= −



1

2

1

4

2

1


c

(2)
21 , (3.43)

where we used c
(2)
00 = c

(2)
20 = 0, and c

(2)
21 is given by (3.42) for n = 2. All unknown

coefficients are uniquely determined, since the matrix has full rank (equal to 6) and is

therefore invertible. At general n we can proceed analogously, and write the n(2n − 1)

consistency conditions in the form

n∑
k=0

n∑
j=0

(jk) 6=(00),(n0),(n1)

jrksc
(n)
kj = −nsc(n)

n1 for s+ r < 2n− 1, r, s ≥ 0 , (3.44)

where the right-hand side is fixed by (3.42) and the left-hand side can be written as a

matrix-vector multiplication with a matrix of dimension ((n + 1)2 − 3) × n(2n − 1). This

matrix is quadratic only for n = 1 and n = 2, and has more rows than columns for n ≥ 3.

This means the free coefficients are over-constrained. Nevertheless, as expected from the

previous discussion, not all consistency conditions are linearly independent, and the rank

of the matrix is such that there is a solution, which is then the unique solution.
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Rather than attempting a direct solution of these linear systems, we will guess a

suitable ansatz. From (3.35), (3.36), we deduce that we must match

WNLP
φ,q ULP

qq +WLP
φ,gU

NLP
gq

(3.15), (3.34)
= WNLP

φ,q exp

[
−αsCF

πε2

(
µ2

Λ2

)ε
(N ε − 1)

]
+ exp

[
αsCA
πε2

(
µ2

Q2

)ε
(N ε − 1)

]
UNLP
gq

!
=

1

N

∑
n=1

(αs
4π

)n 1

ε2n−1

n∑
k=0

n∑
j=0

c
(n)
kj

(
µ2nN j

Q2kΛ2(n−k)

)ε
, (3.45)

while satisfying (3.42). The form of the LP leading-pole solution (3.13) together with the

fact that

1

ε2

{(
µ2

Q2

)ε
−
(
µ2

Λ2

)ε}
(N ε − 1) (3.46)

appears to be the unique finite combination of all four regions in the leading-pole approx-

imation, suggests the ansatz

WNLP
φ,q ULP

qq +WLP
φ,gU

NLP
gq = n(ε)×

{
exp

[
αsCF
π

1

ε2

{(
µ2

Q2

)ε
−
(
µ2

Λ2

)ε}
(N ε − 1)

]

− exp

[
αsCA
π

1

ε2

{(
µ2

Q2

)ε
−
(
µ2

Λ2

)ε}
(N ε − 1)

]}
, (3.47)

where n(ε) is a normalization factor yet to be determined.7 At O(αs), (3.37) implies

c
(1)
01 + c

(1)
11 = 0, given that c

(1)
00 = c

(1)
10 = 0. Expanding (3.47) to O(αs) and matching it

to (3.45) gives

n(ε)
αs
π

CF − CA
ε2

{(
µ2

Q2

)ε
−
(
µ2

Λ2

)ε}
(N ε − 1)

!
=

1

N

αs
4π

1

ε
c

(1)
11

{(
µ2

Q2

)ε
−
(
µ2

Λ2

)ε}
N ε ,

(3.48)

which yields

n(ε) =
c

(1)
11

4N

1

CF − CA
εN ε

N ε − 1

(3.42)
= − 1

2N

CF
CF − CA

εN ε

N ε − 1
. (3.49)

With the normalization determined, (3.47) reproduces all c
(n)
n1 or (2.23). Since (3.47) is

finite as ε → 0, and since the content of consistency relations is the finiteness of the

physical cross section assuming (2.23), (3.47) provides the unique solution.

7The relative factor between the two terms follows, because there is no O(α0
s) term in the off-diagonal

channel.
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Given that WNLP
φ,q must not depend on (µ2/Λ2), while UNLP

gq must not depend on

(µ2/Q2), the solution (3.47) implies

WNLP,LL
φ,q = − 1

2N

CF
CF − CA

εN ε

N ε − 1

(
exp

[
αsCF
π

1

ε2

(
µ2

Q2

)ε
(N ε − 1)

]

− exp

[
αsCA
π

1

ε2

(
µ2

Q2

)ε
(N ε − 1)

])
, (3.50)

UNLP,LL
gq = − 1

2N

CF
CF − CA

εN ε

N ε − 1

(
exp

[
−αsCF

π

1

ε2

(
µ2

Λ2

)ε
(N ε − 1)

]

− exp

[
−αsCA

π

1

ε2

(
µ2

Λ2

)ε
(N ε − 1)

])
. (3.51)

The first of these equations reproduces eq. (17) in [10] for µ = Q and CA = 0 as assumed

there, and therefore proves and generalizes the conjectured all-order structure of the full

partonic cross section. In addition, the dependence of WNLP,LL
φ,q on CF and CA is consistent

with the colour structure conjectured in eq. (13) of [10].

It is remarkable that in the leading-pole approximation, the full result follows from

the exponentiation conjecture for the hard-only amplitude (2.23) by a simple substitution.

Let us define

A ≡ αs(CF − CA)

π

1

ε2

(
µ2

Q2

)ε
, S ≡ αsCA

π

1

ε2

(
µ2

Q2

)ε
. (3.52)

Then the solution of the consistency equations in terms of the hard-only amplitude (2.23)

can be summarized in moment space as

Wφ,q

∣∣∣hard

qφ∗→qg
=

1

N

αsCF
2πε

(
µ2N

Q2

)ε
exp [−S] × exp(−A)− 1

A

−→ WNLP,LL
φ,q = − 1

N

αsCF
2πε

(
µ2N

Q2

)ε
exp [S (N ε − 1)]

× exp(A (N ε − 1))− 1

A (N ε − 1)
, (3.53)

i.e. A→ A (1−N ε), S → S (1−N ε). The appearance of the factor (N ε−1) is characteristic

of the leading-pole solution. The prefactor of the Sudakov factors accounts for the anti-

hardcollinear O(αs) contribution that must always be present at NLP.

3.2.3 DGLAP kernel and coefficient function

To determine the resummed off-diagonal splitting function and the MS-subtracted short-

distance partonic cross section, we decompose the unfactorized partonic cross section

WNLP,LL
φ,q into its finite and divergent parts. From (3.2) we deduce

WNLP
φ,q = C̃NLP

φ,q ZLP
qq + C̃LP

φ,gZ
NLP
gq , (3.54)
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where ZLP
qq and CLP

φ,g are known from (3.17) (replacing CA by CF ) and (3.18), respectively,

and the NLP off-diagonal factors ZNLP
gq , C̃NLP

φ,q are to be determined.

From the structure of the LP expressions (3.17), (3.18) it is apparent that the split

into pole and finite part in the exponents must be done according to

1

ε2

(
µ2

Q2

)ε
(N ε − 1) =

lnN

ε
+

1

ε2

{(
µ2

Q2

)ε
(N ε − 1)− ε lnN

}
. (3.55)

It will be convenient to introduce the abbreviations

w ≡ −ε lnN, a =
αs
π

(CF − CA) ln2N , (3.56)

Ŝi =
αsCi
π

1

ε2

{(
µ2

Q2

)ε
(N ε − 1)− ε lnN

}
, i = A,F , (3.57)

which allow us to write (3.50) as

WNLP,LL
φ,q =

1

2N lnN

CF
CF − CA

exp

[
αsCF
π

lnN

ε

]
w

ew − 1

(
ea/weŜA − eŜF

)
. (3.58)

Next we note that w/(ew − 1), eŜA and eŜF do not have poles in 1/ε, while exp
[
αsCF
π

lnN
ε

]
matches ZLP,LL

qq , hence to obtain C̃NLP
φ,q in (3.54), we must separate

F (w, a) ≡ wea/w

ew − 1
(3.59)

into its pole and finite part. Using

F (w, 0) =
w

ew − 1
=

∞∑
n=0

Bn
n!
wn , (3.60)

where

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, . . . (3.61)

are the Bernoulli numbers, we obtain by expanding ea/w that

Fpole(w, a) =
∑
k≥1

1

wk

∑
n≥0

Bn
n!(n+ k)!

an+k , (3.62)

Ffin(w, a) =
∑
k≥0

wk
∑
n≥k

Bn
n!(n− k)!

an−k , (3.63)

where the sums over n on the right-hand side can be regarded as a generalization of

Bernoulli polynomials. Inserting this decomposition into (3.58) and matching the resulting

expression to (3.54), we identify the splitting kernel and short-distance coefficient as

ZNLP,LL
gq =

1

2N lnN

CF
CF − CA

exp

[
αsCF
π

lnN

ε

]
Fpole(w, a) , (3.64)

C̃NLP,LL
φ,q =

1

2N lnN

CF
CF − CA

(
Ffin(w, a) exp

[
αsCA
π

1

ε2

((
µ2

Q2

)ε
(N ε − 1)− ε lnN

)]

− w

ew − 1
exp

[
αsCF
π

1

ε2

((
µ2

Q2

)ε
(N ε − 1)− ε lnN

)])
. (3.65)
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Note that by construction ZNLP,LL
gq is a pure pole term, hence corresponds to the MS PDF

renormalization factor, while the short-distance coefficient is finite as it should be. Indeed,

for ε→ 0 at fixed N , which implies w → 0, we find

C̃NLP,LL
φ,q

∣∣∣
ε→0

=
1

2N lnN

CF
CF − CA

(
B0(a) exp

[
CA

αs
π

(
1

2
ln2N + lnN ln

µ2

Q2

)]

− exp

[
αsCF
π

(
1

2
ln2N + lnN ln

µ2

Q2

)])
, (3.66)

which agrees eq. (29) of [10] for µ = Q, and generalizes it to µ 6= Q. Here

B0(a) = Ffin(0, a) (3.67)

is the Borel transform of the generating function F (w, 0) of the Bernoulli numbers, already

defined in (1.2).

The anomalous dimension in the q → gq splitting channel is obtained from

γgq(N) = −
∑

k=g,q,q̄

(
dZgk
d lnµ

)
(Z−1)kq = γLP

gg

−ZNLP
gq

ZLP
qq

−
(
dZNLP

gq

d lnµ

)
(Z−1)LP

qq , (3.68)

where the second equality holds to NLP accuracy and uses the vanishing of the off-diagonal

terms at LP. Inserting the leading-pole resummed results for the Z-factors and the LP

leading-pole anomalous dimension (3.21) in the gluon-gluon channel, we obtain after a

short calculation

γNLP,LL
gq (N) =

1

N

αsCF
π

[
Fpole(w, a)− w d

da
Fpole(w, a)

]
= − 1

N

αsCF
π
B0(a) , (3.69)

which has no poles as it must be and proves (1.1) first given in [10]. We close this derivation

with three observations:

• Comparison of the summed large-N anomalous dimensions (3.21), (3.69) shows that

there is an infinite series of (double) logarithmic terms only for the off-diagonal chan-

nel. This implies that not only the short-distance coefficient, but also the anomalous

dimension is a two-scale object in the off-diagonal channel. The double logarithms

are associated with the colour charge change CF −CA of the partons that carry large

momentum. The absence of large logarithms in the diagonal channel seems related

to the fact that the energetic particles have the same colour charge.

• The Sudakov exponentiation conjecture was originally proposed and explored in [15]

for the case of e+e− or Higgs-decay event-shape distributions in the two-jet limit,

when the final state includes a soft quark. There are interesting differences and

similarities between the DIS and event-shape case, which we elaborate on in ap-

pendix E. The solution of the consistency relations takes a form similar to (3.50).

The Bernoulli series does not arise for event shapes. Event shapes are infrared fi-

nite, and the Bernoulli numbers arise in DIS from the need to factorize the pole part

of (3.50) to obtain the renormalized short-distance coefficient and parton distribution,

as seen above.
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pdfc

φ∗

pdfc

φ∗

Figure 4. SCET representation of the content of (3.35) for quark-Higgs scattering at NLP as

x→ 1. Wilson lines are set to 1.

• Let us comment on similarities and differences compared to the derivation of (3.69)

presented in [10]. Both derivations use finiteness and pole cancellation. In addi-

tion, [10] conjectures a specific form of the full unfactorized partonic cross section

(including hard and hardcollinear contributions to all orders) as well as a partic-

ular assumption for the colour structure (as stated in eqs. (13) and (14) in [10]).

We require (2.22) as an input for the derivation, which involves a single region only

(specifically the hard region), that we consider as a weaker assumption compared to

those used in [10]. In addition, the exponentiation conjecture (2.22) lends itself to a

derivation based on RGE methods, that we turn to in section 4. Finally, we obtain

the Bernoulli series in (3.69) by an algebraic derivation in a closed form.

3.2.4 SCET interpretation

The SCET interpretation of DIS at NLP as x → 1 in the off-diagonal channel is sketched

in figure 4. The figure shows (
WNLP
φ,q ULP

qq +WLP
φ,gU

NLP
gq

)
fq(Λ) (3.70)

from (3.35), the external quark line representing the quark PDF fq(Λ). As before, Wilson

lines of whatever fields are set to 1.

The left diagram in figure 4 represents the first term in this expression and describes

the hard scattering of a quark off the Higgs boson. The corresponding hard vertex is of

the B1 type with field content Ahc⊥χ̄hcχc (see appendix A), and the presence of two anti-

hardcollinear fields provides the power suppression. The circled operator vertex labelled

“B1” in the graph represents the hard subgraph, which corresponds to figure 1 at tree level,

and to the hard region of the diagrams shown in figure 2 at one-loop order, respectively.

At this vertex the incoming quark is converted into the anti-hardcollinear quark and gluon

in the final state. The right diagram describes the second term in (3.70). Here the hard

scattering occurs through the LP gluon-Higgs scattering vertex of the A0 type with field

content Ahc⊥A c⊥. In the x→ 1 limit, the gluon in the q → gq splitting carries almost the

entire momentum of the initial quark, leaving a remnant softcollinear q. The interaction

that couples soft(collinear) quarks to collinear modes is power-suppressed, and part of the

NLP L(1) SCET Lagrangian [22, 23]. In (3.70) this process is part of UNLP
qg , the off-diagonal

evolution of the PDF in the x→ 1 limit. Now there is a softcollinear mode in the final state,

which does not arise from a Wilson line, which is shown explicitly in the right diagram in

figure 4.

– 24 –



J
H
E
P
1
0
(
2
0
2
0
)
1
9
6

It is evident that both diagrams in the figure are related. If the gluon propagators

labelled pdfc in the right diagram became hard, the diagram would turn into the left one.

What prevents standard SCET factorization methods to be applied to this situation, is

that the convolution of the short-distance coefficient of the B1 operator with the final-

state jet function is divergent after SCET renormalization of the hard and jet functions.

The above treatment through consistency relations circumvents this problem, since it is

d-dimensional to the end. The divergent convolutions do not appear, but they are implicit,

and done in d dimensions, where they exist. In the LL NLP resummation of the diagonal

quark-quark and gluon-gluon channels for Drell-Yan production near threshold with SCET

methods [3, 4] these complications did not appear, but they do at the next-to-leading

logarithmic order [9].

The appearance of an endpoint divergence and the breakdown of standard SCET

factorization points to the emergence of a new scale in the problem, which requires a

refactorization of the B1-type SCET operator. In the following, we show how this idea can

be implemented. The resummation of logarithms from the new scale will allow us to derive

the exponentiation conjecture that was used above as a boundary condition to solve the

consistency equations for the NLP LL resummation of the quark-gluon channel.

4 Derivation of the soft-quark Sudakov factor

In the previous sections, we have seen that the SCET interpretation of NLP off-diagonal

DIS involves a B1-type current, i.e. an operator constructed from one collinear and two

anti-hardcollinear SCET fields, where the latter two are light-like separated. The operator

creates the anti-hardcollinear final-state quark and gluon carrying momentum fractions z

and 1−z, respectively, of the total anti-hardcollinear final-state momentum. The peculiar-

ity of our problem manifests itself in the fact that the convolution of tree-level matching

coefficient and the anomalous dimension is not well defined, because the integral exhibits

an endpoint divergence as z → 0, i.e. when the quark becomes soft. This prevents the

standard application of the RGE to the summation of the large logarithms. Instead, we

must first consider the limit z → 0 and sum ln z terms, which become large in the singular

region, to all orders, while still working in d dimensions. This goes beyond the standard

paradigm of SCET, where the large component of collinear momenta are assumed to be of

the order of the hard scale, hence the momentum fraction z appearing in a B-type current

is treated as an order one parameter z = O(1). z is nevertheless integrated from 0 to 1.

This is justified since the contribution to the integral from an interval [0, δ] can be made

arbitrarily small as δ → 0, as long as the matching coefficient is less singular than 1/z.

A similar problem has recently been discussed in [24], where it was noted that the

singular part of the hard matching coefficient can be included into the definition of the

operator. This leads to the concept of singular and regular B1 operators. In that case, the

singular B1 operator was related by reparameterization invariance (RPI) to the leading-

power A0 operator. The singular B1 operator can then be combined with the time-ordered

product of the leading-power A0 operator and the NLP Lagrangian to obtain a well-defined

operator, whose evolution is governed by the standard RGE. The analogous construction
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does not work for DIS considered here, as there is no RPI relation of the NLP B1 operator

to the LP one. This fact is easily understood from the observation that the LP and NLP

operators relevant to the dicussion of off-diagonal DIS have different fermion numbers in

the collinear and anti-collinear sectors, unlike in [24], where the NLP current was obtained

by adding a gluon building block to the LP current.

From figure 1 it is evident that the intermediate gluon propagator is proportional to

1/z as z → 0. When the momentum fraction of the outgoing quark is O(1), the interme-

diate gluon propagator is hard, and it has to be integrated out, which gives the matching

coefficient of the B1 operator that behaves as 1/z for z → 0. In this limit, however, the vir-

tuality of the intermediate propagator approaches zero, and the intermediate gluon should

still be present as a dynamical mode in the effective theory (EFT) rather than having been

integrated out. This causes a breakdown of the standard application of SCET to this prob-

lem, and its failure to reproduce the IR singularity structure of full QCD correctly. We are

therefore forced to revise the structure of the modes in the presence of an endpoint-singular

matching coefficient.

4.1 Scales relevant for the endpoint-singular B1 operator

To cure the lack of proper scale separation due to the endpoint singularity, we must identify

the intermediate scales and modes relevant to the z → 0 limit, which goes beyond the

SCETI paradigm. Only then, the soft-quark Sudakov expoentiation conjecture (2.22) can

be derived with EFT methods.

To understand the scales relevant for our problem, we perform a method-of-region

analysis [20] of the integrals appearing in the one-loop diagrams shown in figure 2. We

assume that the external momenta are slightly off-shell so that we can identify all modes

which contribute to the loop integrals when there is a dimensionful infrared scale. As

elsewhere in this paper, we focus on the terms giving rise to the leading logarithms. This

means that we want to capture terms which diverge in the limit when the quark momentum

fraction goes to zero, z → 0, and we focus on the double poles in ε or single ε poles multiplied

by ln z. This allows us to drop many terms and perform simplifications such that the final

expression for the leading one-loop correction takes the form

A =M(1)
qφ∗→qg × 2i g2

s (T1 ·T0 I1 + T2 ·T0 I2 + T1 ·T2 I12) , (4.1)

withM(1)
qφ∗→qg the Born amplitude for the process q(p) +φ∗(q)→ q(p1) +g(p2). The result

can be expressed in terms of the three master integrals

I1 = 2p1 · p µ̃2ε

∫
ddk

(2π)d
1

k2

1

(k − p1)2

1

(k − p)2 , (4.2)

I2 = 2p2 · p µ̃2ε

∫
ddk

(2π)d
1

k2

1

(k − p2)2

1

(k − p)2 , (4.3)

I12 = 2p2 · p µ̃2ε

∫
ddk

(2π)d
1

k2

1

(k − p2)2

1

(k − p+ p1)2 . (4.4)
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The integral I1 corresponds to diagram (1) of figure 2, while the sum of diagrams (2) and (5)

can be expressed in terms of the integrals I2 and I12. The remaining diagrams in figure 2

do not contribute to the terms that we consider here. The modes relevant to the endpoint

problem can be identified by expanding these integrals. To perform the expansion by

regions we introduce the variable z as defined in (2.7) as a new power counting parameter

and take the limits 1 � z � λ. We work to leading order in the z and λ expansion. We

assume the following scaling for the external momenta p1, p2, p, respectively:

z-anti-softcollinear p1 ∼ Q(λ2,
√
zλ, z) p2

1 ∼ zλ2Q2 , (4.5)

anti-hardcollinear p2 ∼ Q(λ2, λ, 1) p2
2 ∼ λ2Q2 , (4.6)

hardcollinear p ∼ Q(1, λ, λ2) p2 ∼ λ2Q2 , (4.7)

with component notation l ∼ (n+l, l⊥, n−l). With off-shell external momenta all three

integrals are IR and UV finite. When the off-shell regulator is set to zero, this computa-

tion corresponds to standard one-loop matching of the B1 operator in SCETI. Note that

we choose the momentum p to have hardcollinear rather than collinear virtuality here to

facilitate the interpretation of the result as a SCETI matching computation — only subse-

quently the hardcollinear modes shall be matched on the collinear modes corresponding to

the external initial-state momentum in DIS as discussed before. In the following, we focus

only on the pole parts of contributing regions.

We begin with the I2 integral. This is a standard vertex integral exhibiting a double

logarithmic enhancement, which can be decomposed into the following loop momentum

regions:

• hard k ∼ (n+k, k⊥, n−k) ∼ Q (1, 1, 1)

I2|h =
i

16π2

[
− 1

ε2
+

1

ε
ln
Q2

µ2

]
+O

(
ε0
)

(4.8)

• hardcollinear k ∼ Q
(
1, λ, λ2

)
I2|hc =

i

16π2

[
1

ε2
+

1

ε
ln

µ2

−p2

]
+O(ε0) (4.9)

• anti-hardcollinear k ∼ Q
(
λ2, λ, 1

)
I2|hc =

i

16π2

[
1

ε2
+

1

ε
ln

µ2

−p2
2

]
+O(ε0) (4.10)

• soft k ∼ Q
(
λ2, λ2, λ2

)
I2|s =

i

16π2

[
− 1

ε2
− 1

ε
ln

Q2µ2(
−p2

2

)
(−p2)

]
+O(ε0) (4.11)

As expected, I2|h + I2|hc + I2|hc + I2|s = O(ε0), and this integral is reproduced by the

standard SCETI modes. The soft modes appear here because we assumed that momentum
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p has hardcollinear virtuality. The complete EFT description must take into account that

the external momentum p has collinear virtuality, and in this case, the soft modes ought

to be replaced by the softcollinear modes.

The integral I1 has a similar mode structure, but in this case the hard mode results

in a scaleless expression and gives a vanishing contribution. Instead, a new z-hardcollinear

mode appears. It is obtained by combining z-anti-softcollinear (4.5) and hardcollinear (4.7)

momenta, in analogy with the hard mode being a sum of hardcollinear (4.7) and anti-

hardcollinear (4.6) momenta. We find following decomposition of the I1 integral into modes:

• z-hardcollinear k ∼ Q
(
1, z1/2, z

)
I1|z-hc =

i

16π2

[
− 1

ε2
+

1

ε
ln
zQ2

µ2

]
+O(ε0) (4.12)

• hardcollinear k ∼ Q
(
1, λ, λ2

)
I1|hc =

i

16π2

[
1

ε2
+

1

ε
ln

µ2

−p2

]
+O(ε0) (4.13)

• z-anti-softcollinear k ∼ Q
(
λ2, z1/2λ, z

)
I1|z-sc =

i

16π2

[
1

ε2
+

1

ε
ln

µ2

−p2
1

]
+O(ε0) (4.14)

• soft k ∼ Q
(
λ2, λ2, λ2

)
I1|s =

i

16π2

[
− 1

ε2
− 1

ε
ln

zQ2µ2(
−p2

1

)
(−p2)

]
+O(ε0) (4.15)

These results show the emergence of the new scale
√
zQ related to the endpoint singularity

in the z-integral (2.8). The new scale is not directly related to the scales present in the

factorization of the DIS process at LP. Rather, it is generated dynamically at NLP, due to

the breakdown of näıve factorization for the B1 current with a singular matching coefficient.

As the momentum fraction of a collinear quark becomes parametrically small, the scalar

product p1 · p cannot be treated as being of the same order as p2 · p.
The presence of the new scale manifests itself in a particularly subtle manner for the

I12 integral. Before we proceed to consider the relevant regions for I12, let us look at the

on-shell result. For I1 and I2, the on-shell results are equal to the hard and z-hardcollinear

contributions, respectively. Thus, they are both single scale integrals, though the scale for

I1 is zQ2, while for I2 it is Q2. On the contrary, the on-shell result for I12 contains a large

logarithm

I12|on-shell =
i

16π2

[
−1

ε
ln z

]
+O(ε0), (4.16)

which cannot be removed by any choice of µ. This observation is troublesome as the on-

shell integral is already a two-scale object, and it needs to be factorized to achieve a proper

EFT interpretation of the result. Returning to the case of off-shell external momenta, we

find contributions from the following integration regions:
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• hard k ∼ Q (1, 1, 1)

I12|h =
i

16π2

[
− 1

ε2
+

1

ε
ln
Q2

µ2

]
+O(ε0) (4.17)

• z-hardcollinear k ∼ Q
(
1, z1/2, z

)
I12|z-hc =

i

16π2

[
1

ε2
− 1

ε
ln
zQ2

µ2

]
+O(ε0) (4.18)

• anti-hardcollinear k ∼ Q
(
λ2, λ, 1

)
I12|hc =

i

16π2

[
1

ε2
+

1

ε
ln

µ2

−p2
2

]
+O(ε0) (4.19)

• z-anti-softcollinear k ∼ Q
(
λ2, z1/2λ, z

)
I12|z-sc =

i

16π2

[
− 1

ε2
− 1

ε
ln

µ2

−zp2
2

]
+O(ε0) (4.20)

We observe that I12|on-shell = I12|h+ I12|z-hc, and the large logarithm appears as the result

of a cancellation between the hard and z-hardcollinear contributions. When considering

the limit z → 0 it is thus crucial to factorize (2.22) into these two contributions. The

cusp anomalous dimension governing the LL resummation should not itself contain large

logarithms, which cannot be removed by some choice of the scale µ. If that is not the

case, then the anomalous dimension should itself be resummed or factorized. In the fol-

lowing, we perform a refactorization such that the logarithms from the hard scale may be

resummed independently of the logarithms whose origin is the z-hardcollinear scale. Such

refactorization is necessary to correctly sum all the logarithms of z.

4.2 Resummation

Having understood the scales relevant to the one-loop result, we attempt to construct the

EFT framework to derive (2.22). At this point, we restrict ourselves to LL accuracy and

do not claim that the construction presented here could be used to perform resummation

at NLL accuracy or beyond. As the analysis of regions showed, we must distinguish the

hard scale Q2 and the z-hardcollinear scale zQ2. This suggests that the matching of QCD

to SCETI should be separated into two steps: first we integrate out the hard modes, then

we the remove z-hardcollinear modes to obtain the EFT at the hardcollinear scale λ2Q2.

The intermediate gluon propagator in the tree diagram shown in figure 1 has z-

hardcollinear virtuality and thus it must be associated with the dynamical degrees of

freedom at the z-hardcollinear scale. The matching equation at the hard scale reads

FµνA FAµν = CA0(Q2, µ2) JA0 , (4.21)

where the LP SCETI current

JA0 = 2gµνn−∂AA,z-hc⊥µ n+∂AA,z-hc⊥ν (4.22)
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represents the point-like coupling of the Higgs boson to two gluons in SCET, and

CA0(Q2, µ2) = 1 at tree level. In this theory, the diagram in figure 1 is represented by the

matrix element of the time-ordered product

CA0
(
Q2, µ2

)
〈q(p1)g(p2)|

∫
ddx T

{
JA0,L(1)

ξqz-sc
(x)
}
|q(p)〉 . (4.23)

The Lagrangian mediating the z-anti-softcollinear quark interaction with z-hardcollinear

modes is

L(1)
ξqz-sc

(x) = qz-sc (x−)W †z-hci /D⊥,z-hcξz-hc + h.c. (4.24)

Let us note a peculiarity which distinguishes this problem from the one discussed in [24].

The z-anti-softcollinear quark is generated by a subleading-power Lagrangian insertion in

the collinear sector. This observation suggests that the endpoint-singular contribution in a

collinear sector should be combined with a time-ordered product in the corresponding anti-

collinear sector, while in [24], the time-ordered product and the singular current belong to

the same direction. The hard matching coefficient CA0 of the operator (4.22) satisfies a

standard RGE (3.24), which at LL accuracy reads

d

d lnµ
CA0(Q2, µ2) = ΓA0C

A0(Q2, µ2) =
αsCA
π

ln
Q2

µ2
CA0(Q2, µ2) . (4.25)

After this first matching, the SCET with z-hardcollinear modes is defined at the zQ2

scale. To describe DIS factorization in the limit x→ 1, we need an EFT at the scale λ2Q2

where λ2 ∼ 1 − x. This EFT should contain only modes with hardcollinear virtuality or

lower, as is the case for SCET factorization of DIS at LP. Besides, we need to include

z-anti-softcollinear modes as separate entities represented in the EFT by their own set of

fields. The detailed construction of this EFT is left for future work. Fortunately, it is not

needed to perform LL resummation, since we already possess all the essential ingredients.

We discuss the resummation in the following, and then provide some partly speculative

comments on the SCET with z-anti-softcollinear modes in the following subsection.

We assume the existence of an operator JB1, such that we can match the time-ordered

product (4.23) ∫
ddx T

{
JA0,L(1)

ξqz-sc
(x)
}

= DB1(zQ2, µ2) JB1 (4.26)

to this JB1, which must be composed of a hardcollinear quark, a z-anti-softcollinear quark

and an anti-hardcollinear gluon field. While the matching of the z-hardcollinear quark

field to the hardcollinear quark field is trivial, the non-trivial content of this equation is

the reinterpretation of the anti-collinear sector, where zQ2 now appears as the large scale

on which the matching coefficient and anomalous dimension of the operator can depend.

As this operator is supposed to reproduce the IR poles of the QCD amplitude, its renor-

malization factor can be deduced from our previous computation of the amplitude (4.1) in

the on-shell limit. Using (4.8), (4.12) and (4.16) we find that the LL UV divergence of this

operator can be removed by the counterterm

ZB1,B1 = 1− αs
2π

[(
CF −

CA
2

)[
1

ε2
− 1

ε
ln
zQ2

µ2

]
+
CA
2

[
1

ε2
− 1

ε
ln
Q2

µ2

]
+

1

ε

CA
2

ln z

]
.

(4.27)
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We implicitly assumed that there is no operator mixing at the LL level involved in the

matching equation (4.26), i.e. the complete IR pole in QCD is reproduced in the EFT by

ZB1,B1. Using
d

d lnµ
CA0

(
Q2, µ2

)
DB1

(
zQ2, µ2

)
JB1 = 0 , (4.28)

we find that the matching coefficient obeys at LL accuracy the RGE

d

d lnµ
DB1

(
zQ2, µ2

)
= −

[(
d

d lnµ
ZB1,B1

)
Z−1

B1,B1 + ΓA0

]
DB1

(
zQ2, µ2

)
=
αs
π

(CF − CA) ln
zQ2

µ2
DB1

(
zQ2, µ2

)
≡ ΓB1D

B1
(
zQ2, µ2

)
.

(4.29)

It is pivotal that ΓB1 depends only on the scale zQ2. The fact that the other logarithms

dropped out serves as a consistency check of this construction. The anomalous dimension

of the DB1 coefficient is proportional to CF −CA, reflecting earlier observations that double

logarithmic enhancement [25] and endpoint divergence [15] vanish in N = 1 supersymmet-

ric QCD.

It is straightforward to solve (4.25) and (4.29). Recalling that we work with bare,

d-dimensional objects for the boundary terms for the d-dimensional consistency relations,

we solve for the bare coefficients, and find

[
CA0

(
Q2, µ2

)]
bare

= CA0
(
Q2, Q2

)
exp

[
−αsCA

2π

1

ε2

(
Q2

µ2

)−ε]
,

[
DB1

(
zQ2, µ2

)]
bare

= DB1
(
zQ2, zQ2

)
exp

[
−αs

2π
(CF − CA)

1

ε2

(
zQ2

µ2

)−ε]
. (4.30)

The product of the square of these two coefficients gives (2.22), proving the exponentiation

of soft-quark Sudakov logarithms conjectured in [15].

4.3 Tentative EFT interpretation

While it was not essential to know the exact form of the operator JB1 to achieve LL

resummation, we nonetheless comment on the possible structure of SCET with z-anti-

softcollinear modes. We expect that the operator JB1 has the form8

JB1 = χhcγµ

[
in−∂hcA

µ

⊥hc

] [ 1

in−∂z-sc
χz-sc

]
. (4.31)

In this theory, we must decompose the large component of the momentum in the anti-

collinear sector into a hardcollinear part, which is of the order of Q, and a residual mo-

mentum of the order of zQ. Above we accordingly decomposed the anti-hardcollinear

derivative as in−∂ = in−∂hc + in−∂z-sc. Unlike in SCETII, where the soft modes do not

8For aestethic reasons we write the Hermitian conjugate operators corresponding to antiquark scattering

here and in appendix D.
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interact with the collinear modes, here the z-anti-softcollinear modes can still interact with

the anti-hardcollinear modes. This interaction is responsible for the part of the anomalous

dimension proportional to T1 ·T2.

To compute the anomalous dimension of (4.31), one would need to derive the La-

grangian for this z-SCET, which we leave for future work. Instead, extending the notion

of singular SCETI operators in [24], we consider the family of SCETI operators

J
(n)
B1 = χhc(0)γµ

[
(in−∂)1+nεAµ⊥hc

[(
1

in−∂

)1+nε

χhc

]]
(0), (4.32)

which are defined at a single point x = 0, but contain the singular part of the matching

coefficient in its definition through the inverse derivative. Computing the mixing of these

operators into themselves together with the assumption that the relevant scale is zQ2,

we find again the product of the resummed coefficient functions in (4.30). We provide

this alternative derivation in appendix D. In addition, we recover the renormalization

factor (4.27) as the standard MS renormalization constant of J
(0)
B1 , if we expand in ε, in

which case all J
(n)
B1 collapse to J

(0)
B1 . This gives us confidence that a SCET operator whose

anomalous dimension is equal to the QCD IR poles can in principle be constructed.

The next step of the EFT construction involves integrating out the hardcollinear scale

and matching hardcollinear fields onto the collinear fields which describe the modes inside

the PDF. The hierarchy of scales is such that soft modes are also integrated out, and instead

softcollinear modes appear. Similar to the leading power, the anti-hardcollinear fields in the

operator (4.31) give rise to the so-called jet function at the level of the amplitude squared.

Besides, the cross-section contains a contribution due to the time-ordered product of the

LP current and subleading-power soft-collinear Lagrangian, as shown in figure 4.

5 Conclusion

Contrary to the expectation that the resummation of large logarithms in 1 − x in the

expansion of the off-diagonal parton scattering channels in deep-inelastic scattering or

Drell-Yan production near threshold ought to be simpler than for the diagonal channels,

since the former vanish at leading power in the expansion in 1 − x, the converse is true.

This can already be seen from the fact that even the DGLAP splitting functions contain

an infinite series of double logarithms for quark-gluon or gluon-quark transitions, for which

the formula (1.1) was found [10] a decade ago, but a method for systematic improvements

beyond leading logarithms is still missing. The difficulty appears to be related to the

emission of a soft quark rather than gluon in the parton splitting, or more generally to the

change of colour charge of the energetic partons in the splitting.

The present work was motivated by the desire to understand (1.1) from the perspective

of scale separation and effective field theory as a necessary step towards a general resum-

mation formalism at next-to-leading power. In the first part of the paper, we showed that

given that the relevant modes are hard, collinear, softcollinear and anti-hardcollinear, the

leading-logarithmic resummation of off-diagonal deep-inelastic parton scattering as x→ 1

follows from the resummation of the purely hard virtual contribution to the process. The
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condition that all 1/ε poles in dimensional regularization cancel between the various re-

gions is sufficient to bootstrap the full solution. For the resummed purely hard contribution,

which acts as a “boundary condition” to solve these consistency conditions, we adapted the

“soft-quark Sudakov” exponentiation conjecture [15] from event shapes in e+e− collisions

to DIS. In this way we derived the expression for the resummed off-diagonal DGLAP kernel

in terms of the series of Bernoulli numbers found previously [10] directly from algebraic all-

order expressions, that is, without extrapolating the structure of an iteratively generated

finite series of terms.

The second part of the paper is concerned with the derivation of the “soft-quark

Sudakov” exponentiation of the hard function. The hard function can be alternatively

interpreted either as the light-cone momentum distribution amplitude of the final-state

qg pair in the off-diagonal 2 → 2 scattering process, or the matching coefficient of a B1-

type collinear operator in SCET. The crucial feature is that the amplitude is singular

as 1/z when the quark momentum fraction z → 0. The failure of standard Sudakov

resummation or SCET factorization is caused by the divergence of the convolution of the

hard amplitude with the final-state jet function and the emergence of the new scale
√
zQ.

Based on this observation, we derive the previously conjectured exponentiation formula

through the refactorization of certain power-suppressed operators in SCET which have

endpoint-singular matching coefficients. The renormalization group equations then exhibit

the origin of the peculiar CF −CA colour factor through an additional exponent related to

the scale
√
zQ.

We cannot offer a precise effective field theory formulation for this refactorization at

this point, and, furthermore must note that in this treatment, the problem of endpoint-

divergent convolutions is side-stepped by effectively regulating them dimensionally, since

the consistency relations and the “boundary condition” for their solution are formulated in

d dimensions for unrenormalized objects. A truly satisfactory solution would express the re-

sult as finite convolutions of properly renormalized functions. Nevertheless, we believe that

the connection between various ideas made manifest here for the first time should provide

useful insight on NLP resummations. In particular, the formalization of the refactorization

of SCET operators appears to be a promising avenue for the systematic understanding of

resummation at next-to-leading power.
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A SCET conventions and relevant modes

• We define light-like reference vectors n± with n2
± = 0, n+ · n− = 2. Any four-

momentum can be decomposed as

pµ =
1

2
n+p n

µ
− +

1

2
n−p n

µ
+ + pµ⊥ . (A.1)

Collinear modes have large n+p, anti-collinear modes large n−p.

• SCET operators are conveniently constructed from collinear quark and gluon fields,

which are invariant under collinear gauge transformations

χc(x) = (W †c ξc)(x), Aµ⊥c(x) = W †c (x)
[
iDµ
⊥c(x)Wc(x)

]
, (A.2)

where

Wc(x) = P exp

[
igs

∫ 0

−∞
ds n+Ac (x+ sn+)

]
(A.3)

is the collinear Wilson line. Similar definitions apply to hardcollinear fields. For

anticollinear fields n+ and n− are interchanged.

• In SCET operators, JXni denotes the product of collinear fields for direction i, here

collinear or anticollinear. X = A,B, . . . refers to the number 1, 2, . . . of collinear fields

from (A.2), and n to the power suppression relative to the leading term consisting

of a single field without derivative [16, 22]. In this paper, when we refer to an A0

or B1 operator, we refer to field operators involving a product of collinear fields in

directions n+ and n− with field content Aν⊥hcA
µA
⊥c , for which we employ the short-

hand notation JA0, and [Aν⊥hcχ̄hc]χc, which we refer to as JB1. Both arise in the

matching of the Higgs-gluon coupling (2.2) to SCET. The explicit forms are

JA0(t, t̄ ) = 2gµν n−∂AνAhc⊥(t̄n−)n+∂AµAc⊥(tn+) , (A.4)

JB1(t, t̄1, t̄2) =
gµν
2

[
n−∂AνAhc⊥(t̄1n−)

] [
χ̄hc(t̄2n−)

←−
1

in−∂

]
igsT

Aγµ⊥ χc(tn+) . (A.5)

The B1 operator as given is the one that appears in section 3. The one in section 4

looks similar but its precise mode content is different and the two B1 operators must

be carefully distinguished. See table 1 below for a summary of modes and their

abbreviations.

• The following scaling and power counting variables are used in this work: λ ∼√
1− x� 1 related to factorization DIS at large x; η ∼ Λ/Q� λ related to the twist

expansion. The QCD scale Λ appears in modes for the non-perturbative PDFs. We

consider large-x factorization at NLP, but always work at LP in the twist expansion

parameter η. For the refactorization of the B1 operator in section 4, we also need to

consider z ≡ n−p1/n−(p1 + p2)� 1, where p1 is the momentum of the quark, which

becomes soft.

The scalings assigned to the momentum modes used throughout the paper are

summarized in table 1.
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Name (n+l, l⊥, n−l) virtuality l2

hard [h] Q(1, 1, 1) Q2

z-hardcollinear [z-hc] Q(1,
√
z, z) z Q2

z-anti-hardcollinear [z-hc] Q(z,
√
z, 1) z Q2

z-soft [z-s] Q(z, z, z) z2Q2

z-anti-softcollinear [z-sc] Q(λ2,
√
z λ, z) z λ2Q2

hardcollinear [hc] Q(1, λ, λ2) λ2Q2

anti-hardcollinear [hc] Q(λ2, λ, 1) λ2Q2

soft [s] Q(λ2, λ2, λ2) λ4Q2

collinear [c] Q(1, η, η2) η2Q2

softcollinear [sc] Q(λ2, λ η, η2) λ2 η2Q2

Table 1. Scaling of the momentum modes relevant for DIS.

B DIS at x → 1

We briefly summarize some results and definitions for DIS off a scalar particle and factor-

ization at large x at LP here.

B.1 DIS off a virtual scalar

We consider DIS of a particle N off a Higgs boson,

φ∗(q) +N(P )→ X(P ′) , (B.1)

as represented in figure 5. The large momentum transfer Q and the Bjorken scaling variable

x are defined by

Q2 = −q2, x =
Q2

2P · q . (B.2)

Partons in particle N carry momentum fraction ξ, such that p = ξP , 0 < ξ < 1. DIS

mediated by the exchange of a scalar particle (dubbed Higgs boson) occurs via the effective

gluon-gluon-scalar coupling (2.2), where the coupling κ for an actual Higgs boson would

be given by

κ(mt, µ) =
αs(µ)

6πv
Ct(mt, µ) (B.3)

with

Ct(mt, µ) = 1 +
αs(µ)

4π

(
5CA − 3CF

)
+O(α2

s). (B.4)

The DIS structure function Wφ is defined as9

Wφ =
1

8πQ2

∫
d4x eiq·x

〈
N(P )

∣∣[GAµνGµνA](x)
[
GBρσG

ρσB
]
(0)
∣∣N(P )

〉
. (B.5)

9We define Wφ with an additional factor of 1/Q2 compared to the more common definition for DIS of

an off-shell photon, to compensate for the dimensionful coupling κ ∼ 1/v. An average over the spin and

colour of the state N(P ) is implicitly understood when taking the matrix element.
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P

q

P ′

Figure 5. DIS process mediated by a scalar boson, as in (B.1).

The QCD factorization theorem relates the structure function Wφ to the partonic short-

distance coefficients C̃φ,i(x) by means of the convolution

Wφ(x) =

∫ 1

x

dξ

ξ

{
f̃g

(
x

ξ

)
C̃φ,g(ξ) +

∑
q

f̃q

(
x

ξ

)
C̃φ,q(ξ)

}
(B.6)

with renormalized PDFs f̃i of parton i in N . The notation follows (3.1), (3.2) of the main

text. There we often refer to unfactorized (unrenormalized) partonic structure functions

Wφ,i(x) and PDFs fi, related to the above by (3.2). Eq. (B.6) also holds with f̃i ⊗ C̃φ,i →
fi ⊗Wφ,i. The equation also applies to the case when the particle N is itself a quark or

gluon, but then the left-hand side is IR divergent for massless, on-shell partons. When

the IR divergences are regulated non-dimensionally with a regulator introducing the scale

Λ, the consistency arguments based on pole cancellations used in the main text apply

to this partonic scattering. If dimensional regularization is employed, the unfactorized

partonic structure functions Wφ,i(x) do not change but the unrenormalized PDFs fi(x)

become trivial, because the loop integrals are scaleless, and the left-hand side of (B.6) is

simply Wφ,i.

The hadronic structure function is related to the phase-space integrated, initial-state

spin- and colour-averaged and final-state spin- and colour-summed scattering amplitude as∫
dΦX |MNφ∗→X |2 = 2πκ2Q2Wφ . (B.7)

The same relation applies to the partonic structure functions for the scattering of gluons

and quarks. The respective lowest order contributions in powers of the strong coupling are

obtained from ∫
dΦ1

∣∣Mφ∗g→g
∣∣2
tree

= 2πκ2Q2Wφ,g

∣∣
O(α0

s)
, (B.8)∫

dΦ2

∣∣Mφ∗q→qg
∣∣2
tree

= 2πκ2Q2Wφ,q

∣∣
O(αs)

. (B.9)

The two-particle phase space dΦ2 has been defined in (2.6), and dΦ1 denotes the d-

dimensional one-particle phase space. The tree-level contribution (see diagram (a) in

figure 6) for gluon scattering is∣∣Mφ∗g→g
∣∣2
tree

= 4κ2(1− ε) (p · q)2 , (B.10)
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p

q q

p
p1

p2

(a) (b)

Figure 6. Partonic contribution to DIS with scalar exchange: (a) LO diagram; (b) NLO contribu-

tion in the quark-gluon channel.

which inserted in (B.8) gives

Wφ,g(x) =
1− ε
x

δ(1− x) +O(αs) . (B.11)

The quark-scattering channel starts contributing at O(αs) with diagram (b) in figure 6.

The spin- and colour-averaged/summed matrix element squared expressed in terms of the

variable z defined in (2.7) reads

∣∣Mφ∗q→qg
∣∣2 = 4κ2g2

sCF
1− ε

2

Q2

x

z̄2

z
+O(α2

s) . (B.12)

Inserting this expression into (B.9), we get

Wφ,q(x)
∣∣
O(αs)

= −αsCF
2π

1

x

(
µ2

sqg

)ε (1− ε)
(
1− ε

2

)
ε(1− 2ε)

eγEε Γ(1− ε)
Γ(1− 2ε)

=
αsCF

2π

[
− 1

ε
− 1

2
− ln

(
µ2

Q2(1− x)

)
+O(ε)

]
+O(λ2) , (B.13)

with sqg as defined in (2.10).

B.2 Large x

In this paper we focus on the threshold region x→ 1. This region is characterized by the

fact that the scattering leaves a soft target nucleon (or parton, depending on whether we

consider the hadronic or partonic threshold) and a jet-like final state X with parametrically

small invariant mass squared p2
X = Q2(1 − x)/x � Q2. The existence of two scales for

x → 1 is the basis of the factorization of the partonic structure functions Wφ,i(x) into a

hard and jet function [31–33]. For the structure function Wφ, focusing on the leading gluon

scattering channel, such factorization takes the form

Wφ(x) = H(Q2, µ)

∫ 1

x

dξ

ξ
J

(
Q2 1− ξ

ξ
, µ

)
x

ξ
fg

(
x

ξ
, µ

)
, (B.14)

valid to leading power in λ ∼ (1 − x) and in η ∼ Λ/Q. We assume λ � η, in which case

the hard and jet functions in (B.14) can be calculated in perturbation theory. A similar
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equation holds for the partonic structure functions Wφ,i(x) themselves, as discussed above,

if we interpret fg as the distribution of gluons in parton i.

The factorization theorem (B.14) can also be derived within SCET [19]. Near threshold

the parton undergoing the hard scattering has collinear momentum scaling p = ξP ∼
Q(1, 0, η2) and carries away almost all momentum of the initial state N(p). The target

remnant is then made out of partons which must have softcollinear momenta, i.e. premnant ∼
Q(λ2, λη, η2). This explains the need for softcollinear modes in the PDFs, as listed in

table 1. The energetic parton scattering off the Higgs boson (or virtual photon in standard

DIS) is converted into a jet of partons with anti-hardcollinear momentum, phc ∼ Q(λ2, λ, 1).

The factorization theorem (B.14) is derived by constructing the sequence

QCD → SCET(hc, c, sc) → SCET(c, sc) (B.15)

of effective theories, where in the first matching step the hard modes are integrated out,

and the QCD gluon-gluon-scalar interaction is matched onto A0, B1 etc. SCET(hc, c, sc)

operators built from the collinear gauge-invariant building blocks (see appendix A). In

the second step, the jet function emerges as the matching coefficient containing the anti-

hardcollinear final-state, leaving a parton distribution made up of collinear modes and the

softcollinear target remnant modes. At LP, only an A0-type current is required, and the

hard function is given by the square of its short-distance coefficient,

H(Q2, µ) = |CA0(Q2, µ)|2 . (B.16)

More important for the present work is the observation [19] that the softcollinear mode

appears only through a Wilson line in the definition of the PDF for x→ 1. It is then possible

to identify this PDF with the standard PDF. The two-step matching scheme (B.15) should

be expected to hold beyond the LP. However, when (B.14) is naively generalized to NLP,

the convolutions of generalized renormalized hard and jet functions diverge. As discussed

in the main text, this requires, at least for the present, a partly d-dimensional treatment

and a refactorization within SCET(hc, c, sc) to generate the correct large-x logarithms that

would otherwise be missed.

C Alternative derivation of the LP solution (3.13)

There is a simpler way to obtain the leading-power leading-pole expression (3.13) for

(Wφ,g fg)
LP,LL, which bypasses the combinatorially involved solution for the coefficients

b
(n)
kj in the consistency relation.

At any N the DIS factorization theorem implies multiplicative factorization. At LP

in 1/N , only the gluon channel contributes. We can therefore write the expansion for the

logarithm of the DIS cross section (3.5) as

ln (Wφ,g fg) =
∑
n=1

(αs
4π

)n 1

εn+1

n∑
j=0

[
t
(n)
j (ε)

(
µ2nN j

Q2n

)ε
+ f

(n)
j (ε)

(
µ2nN j

Λ2n

)ε]

+ ln fg(Λ) +O
(

1

N

)
, (C.1)
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using that Wφ,g cannot depend on Λ, and fg cannot depend on Q. The form of this

expansion contains the non-trivial statement that for the logarithm of the cross section the

highest pole at O(αns ) is 1/εn+1.

For the leading poles, we can drop the ε-dependence of the coefficients t
(n)
j (ε), f

(n)
j (ε).

Instead of the (n + 1)2 coefficients b
(n)
kj at O(αns ), we now have only 2(n + 1). There are

2n+ 1 consistency relations from the requirement of pole cancellation,∑
j=0

jr(t
(n)
j + f

(n)
j ) = 0 for r = 0, . . . , n , (C.2)

∑
j=0

jrf
(n)
j = 0 for r = 0, . . . , n− 1 , (C.3)

leaving one undetermined coefficient per order n, which we choose to be t
(n)
0 . The solution

to the consistency relations is

t
(n)
j = (−1)j

n!

j!(n− j)! t
(n)
0 , f

(n)
j = −t(n)

j , (C.4)

resulting in

lnWLP,LL
φ,g =

∑
n=1

(αs
4π

)n 1

εn+1
(−1)n

(
µ2

Q2

)nε
(N ε − 1)n t

(n)
0 , (C.5)

and a corresponding expression for ln fLP,LL
g with Q → Λ and an overall minus sign.

Comparison with the resummed hard-only expression (3.11) implies that the logarithm

of WLP,LL
φ,g is one-loop exact, that is t

(1)
0 = −4CA and t

(n)
0 = 0, n > 1. This conclusion

can also be reached directly, without the explicit resummed result for WLP,LL
φ,g , from the

requirement that γLP
gg (N) should have at most a single power of lnN at any order in αs,

and the observation that γLP
gg (N) is related to the coefficient of the single pole in (C.5).

We then recover the previous results (3.15), (3.16).

D Alternative derivation of the resummed singular B1 current

In this appendix we present an alternative derivation of the exponentiation conjecture (2.22)

for the momentum distribution Pqg,hard(sqg, z) in the limit z → 0 that is complementary

to the presentation in section 4. Both rely on the observation made in the first part

of section 4 concerning the relevant regions for z → 0. However, instead of considering

a “refactorization” into hard and z-hardcollinear regions as in section 4, the derivation

presented here solely relies on the SCETI description of DIS for large x involving collinear,

anti-hardcollinear and softcollinear modes.

We start from the SCETI description of the qφ∗ → qg scattering process depicted in

figure 1 assuming that the incoming q has collinear scaling, and the outgoing q and g are

both anti-hardcollinear. The relevant SCET B1 current has field content χ̄cAhc,⊥χhc, and

its tree-level matching coefficient diverges as 1/z for z → 0, where z is the momentum

fraction of the anti-hardcollinear quark. The momentum distribution Pqg,hard(sqg, z) is
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related to the square of the B1 matching coefficient (note that one factor of 1/z cancels

when computing the matrix element squared for qφ∗ → qg).

As a first attempt one may naively apply RG evolution to the B1 matching coefficient.

Keeping only the cusp part of its anomalous dimension (that is diagonal in Lorentz and

spinor indices as well as with respect to the momentum fraction)

Γcusp
B1,non-singular =

αs
π

(
T1 ·T0 ln

µ2

zQ2
+ T2 ·T0 ln

µ2

z̄Q2

)
, (D.1)

and performing a d-dimensional RG evolution analogously as described in section 3.1.2

yields precisely the exponential factors involving T1 ·T0 and T2 ·T0 in (2.22) (for z → 0,

i.e. setting z̄ → 1), but misses the contribution involving T1 · T2. The reason is that the

one-loop anomalous dimension for the B1 operator with generic momentum fractions of

the anti-hardcollinear quark and gluon [16] contains contributions that would diverge in

four dimensions, when convoluted with a matching coefficient that goes like 1/z.

To avoid the problem of divergent convolutions, we retain a d-dimensional description,

and define a singular B1 current analogous to [24], that absorbs the 1/z factor

J
(0)
B1 = χc(0)γµ

[
in−∂Aµ⊥hc

[
1

in−∂
χhc

]]
(0) . (D.2)

This operator essentially agrees with the one considered in section 4. However, in the

present discussion, we do not consider a further refactorization. Also note that, in contrast

to the singular B1 current considered in [24], the inverse derivative acts on the quark build-

ing block instead of the gluon building block. For the latter case, the matching coefficient

of the singular B1 current was linked to the leading power coefficient by reparameterization

invariance, such that its anomalous dimension coincides with the one of the corresponding

LP current. This relation does not exist in the present case.

In order to find the anomalous dimension of J
(0)
B1 , we compute its off-shell regulated one-

loop matrix element in an external state with momentum fraction z of the anti-hardcollinear

quark. We are interested in the double-pole part in the limit z → 0, when counting factors

of zε as order one. Apart from the expected cusp part in accordance with (D.1), one finds

an additional piece involving a factor αs T1 · T2 (z−ε − 1)/z. When expanding for ε → 0

this gives a factor 1/z× ln z that cannot be interpreted as a renormalization of the singular

current J
(0)
B1 due to the additional factor of ln z. Instead, we may interpret this result as

an operator mixing, requiring us to introduce an additional singular operator. At higher

orders we expect contributions of the form 1/z × lnn z and a d-dimensional z-dependence

of the form z−1−nε. This prompts us to consider a tower of singular operators, defined in

d dimensions as

J
(n)
B1 = χc (0) γµ

[
(in−∂)1+nεAµ⊥hc

[(
1

in−∂

)1+nε

χhc

]]
(0) . (D.3)

The off-shell regulated one-loop matrix element, including the sum of collinear, anti-
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hardcollinear and softcollinear loops is given by

〈q̄hc(p1)ghc(p2)|J (n)
B1 |q̄c(p)〉1-loop

=
αs
2π

1

ε2

{
T1 ·T0

[(
µ2zQ2

(−p2
1)(−p2)

)ε
−
(
µ2

−p2
1

)ε
−
(
µ2

−p2

)ε ]

+T2 ·T0

[(
µ2z̄Q2

(−p2
2)(−p2)

)ε
−
(
µ2

−p2
2

)ε
−
(
µ2

−p2

)ε ]

+T1 ·T2

(
µ2

−p2
2

)ε [
1

zε
− 1

]}
1

z1+nε
gsv̄c(p)/εa⊥hct

avhc(p1) +O
(
z0
)
, (D.4)

where we used the colour neutrality relation
∑

Ti = 0 to rearrange terms and kept only the

leading double poles. The dependence on the off-shell regulator cancels in the coefficient

of the logarithmically enhanced single-pole part when expanding in ε, as expected. In

addition, we find a term involving T1 ·T2. From this point we could proceed to derive a Z-

factor for the set of singular currents. However, since all J
(n)
B1 coincide for ε→ 0 the mixing

of these currents cannot be determined unambigously in this way. Therefore, we instead

consider the product of the d-dimensional bare Wilson coefficient and the bare currents,

and use that the sum
∑

nCnJn has no UV poles for any IR regulated matrix element. For

the present case this leads to the condition∑
n

{
C

(n)
B1,O(αs)

〈J (n)
B1 〉tree + C

(n)
B1,tree〈J

(n)
B1 〉1-loop

}
1/ε2 and ln(X)/ε poles

= 0 +O
(
z0
)
. (D.5)

When matching to QCD, the first summand captures the hard one-loop contribution. The

analysis at the beginning of section 4 implies that the relevant regions contributing for

z → 0 have virtuality Q2 or zQ2. We therefore make the ansatz∑
n

C
(n)
B1,O(αs)

〈J (n)
B1 〉tree =

αs
2π

1

ε2

∑
n

[
cn

(
µ2

Q2

)ε
+ dn

(
µ2

zQ2

)ε ]
C

(n)
B1,tree〈J

(n)
B1 〉tree +O

(
1

ε

)
.

(D.6)

Inserting this ansatz along with (D.4) into (D.5) yields cn = T2 ·T0 + T1 ·T2 = −CA and

dn = T1 ·T0 −T1 ·T2 = CA − CF .

Since the building blocks in J
(n)
B1 are all evaluated at the same space-time position, the

current operator itself cannot depend on z, and therefore the same applies to the Wilson

coefficients. Nevertheless, when evaluated in the matrix element, 〈J (n)
B1 〉tree ∝ 1/z1+nε,

where z is the momentum fraction of the external anti-hardcollinear quark. Therefore,

the term involving the coefficient dn has to be interpreted as an operator mixing J
(n)
B1 →

J
(n+1)
B1 , i.e.

C
(n+1)
B1,O(αs)

=
αs
2π

1

ε2

(
µ2

Q2

)ε [
cn+1C

(n+1)
B1,tree + dnC

(n)
B1,tree

]
+O

(
1

ε

)
, (D.7)

implying for the O (αs) cusp part of the anomalous dimension matrix

ΓB1,cusp
nm =

αs
2π

ln
µ2

Q2
×


−CA n = m,

CA − CF n = m+ 1 ,

0 else .

(D.8)
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Solving the d-dimensional RG evolution (see section 3.1.2) for the corresponding Z-factor,

d

d lnµ2
Z = −ZΓ , (D.9)

yields the bare Wilson coefficients C
(n)
B1 = Znm(Q)C

(m)
B1,ren(Q) with

Znm(Q) = exp

[
−CA

αs(µ)

2π

1

ε2

(
µ2

Q2

)ε ]∑
j≥0

1

j!

(
(CA − CF )

αs
2π

1

ε2

(
µ2

Q2

)ε)j
δn,m+j ,

(D.10)

where δn,m+j is the Kronecker symbol. At LL accuracy it is sufficient to evaluate the

renormalized Wilson coefficients C
(m)
B1,ren(Q) at tree-level, such that all of them are zero,

except for m = 0, C
(0)
B1,ren(Q) = C

(0)
B1,tree = κ. In the previous equation, we can therefore

set j = n and drop the sum over j.

We are interested in the matrix element for qφ∗ → qg, with leading poles arising

from hard loops only, which is given by the hard matching coefficients multiplied with the

tree-level SCET matrix element,

Mqφ∗→qg

∣∣∣
hard loops only

=
∑
n

C
(n)
B1 〈J

(n)
B1 〉tree +O(z0)

= C
(0)
B1,tree exp

[
−CA

αs
2π

1

ε2

(
µ2

Q2

)ε
+ (CA − CF )

αs
2π

1

ε2

(
µ2

zQ2

)ε]
× 1

z
gsv̄c(p)/εa⊥hct

avhc(p1) +O(z0) . (D.11)

Inserting this result into (2.9) precisely yields the exponentiation conjecture (2.22).

E Relation between DIS at large x and event shapes in the two-jet limit

In this appendix we discuss the relation between NLP contributions to DIS for large x and

the thrust distribution in e+e− → γ∗(Q)→ jets [15]. In particular, we consider the power

expansion in the two-jet limit τ = 1− T → 0, where T is the thrust event-shape variable,

such that τ plays the role of 1−x (or 1/N in Mellin space) in DIS. The leading logarithmic

corrections to the differential cross section at NLP have the form [18]

1

σ0

dσ

dτ

∣∣∣∣NLP,LL

=
∑
n

(
αs(Q)

4π

)n
c

(n)
LL ln2n−1 τ . (E.1)

The relevant regions are hard, (anti-)hardcollinear and soft, with virtualities Q2, τQ2 and

τ2Q2, respectively. The leading poles can therefore be expanded in the form

1

σ0

dσ

dτ

∣∣∣∣NLP,LL

=
∑
n

(αs
4π

)n 1

ε2n−1

2n∑
j=1

c
(n)
j

(
µ2n

Q2nτ j

)ε
. (E.2)

Hard loops contribute a factor αs × (µ2/Q2)ε, (anti-)hardcollinear loops αs × (µ2/Q2τ)ε

and soft loops αs × (µ2/Q2τ2)ε. At NLP at least one (anti-)hardcollinear or soft loop is
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required, such that the expansion starts at j = 1. Compared to DIS, the virtualities are

composed of only two independent scales instead of three, and therefore the coefficients

c
(n)
j depend only on a single index j at each order in αs. This implies that each coefficient

can receive contributions from different combinations of regions, for example c
(2)
2 from one

hard and one soft loop or two hardcollinear loops. Pole cancellation yields 2n−1 conditions
1 1 1 . . . 1

1 2 3 . . . 2n

1 4 9 . . . (2n)2

...

1 22n−2 32n−2 . . . (2n)2n−2

 ·

c

(n)
1

c
(n)
2
...

c
(n)
2n

 =


0

0

0
...

0

 , (E.3)

that are all linearly independent. This means only one of the 2n coefficients c
(n)
j is free.

As noticed in [18], the finite part of (E.2) is completely determined by a single coefficient,

specifically

c
(n)
LL = − 1

(2n− 1)!

2n∑
j=1

j2n−1 c
(n)
j = c

(n)
1 , (E.4)

where the last equality follows from solving (E.3). The only possible combination of regions

contributing to c
(n)
1 are n− 1 hard loops and one (anti-)hardcollinear loop. More precisely,

the (anti-)hardcollinear loop arises from a phase-space integration with a three-particle final

state γ∗ → qq̄g, with two of them being either both hardcollinear or both anti-hardcollinear.

We note that, for the thrust distribution, the hardcollinear and anti-hardcollinear directions

have equal virtuality, and both refer to particles in the final state. Therefore, we are free

to choose a convention for the light-cone basis such that c
(n)
1 receives contributions from

n−1 hard loops and one anti -hardcollinear loop. This choice is made to make the analogy

to DIS as close as possible, see below.

In the following we focus exclusively on those contributions to the NLP cross section

for which no analog at LP exists (termed category II in [18]), in analogy to the off-diagonal

DIS process. Category II requires either an anti-hardcollinear qq̄ pair (IIc) or a soft q

or q̄ (IIs), respectively. In the following it is understood that c
(n)
j refers to category II

only, assuming that poles cancel separately in each category. Then c
(n)
1 receives only

contributions from virtual hard loop corrections to γ∗ → [qq̄]g, where the square bracket

denotes the anti-hardcollinear particles. Such contributions are given by

1

σ0

dσ

dτ

∣∣∣
γ∗→[qq̄]g

=

∫ 1

0
dz

(
µ2

sqq̄zz̄

)ε
Pqq̄(sqq̄, z)

∣∣∣
sqq̄=Q2τ

+O(λ2) , (E.5)

where z and z̄ are the collinear momentum fractions, sqq̄ is the virtuality of the qq̄ pair, and

Pqq̄(sqq̄, z) ≡ eγEεQ2

16π2Γ(1− ε)
|Mγ∗→[qq̄]g|2
|M0|2

, (E.6)

where |M0|2 is the LO matrix element squared for γ∗ → qq̄, and |Mγ∗→[qq̄]g|2 involves

an arbitrary number of hard loop corrections. This expression can be compared to (2.8)
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γ∗

γ∗

s
γ∗

A0 A0

hc

Figure 7. SCET representation of the content of (E.8) for the thrust distribution in e+e− →
γ∗(Q)→ jets at NLP as τ → 0. Wilson lines are set to 1.

for DIS, which has a similar structure, except that here we consider a 1 → 3 instead of a

2 → 2 process, and the anti-hardcollinear particles are a quark and an antiquark instead

of a quark and a gluon. More importantly, DIS involves an additional scale related to the

PDF, that is absent for the thrust distribution. Nevertheless, as for DIS, the tree-level

momentum distribution

Pqq̄(sqq̄, z)|tree =
αsCF

2π

eγEε(1− ε)
Γ(1− ε)

( z̄
z

+
z

z̄

)
, (E.7)

leads to endpoint divergences in (E.5) for z → 0, 1. Using the conjecture from [15] for

the all-order expression for Pqq̄ allows one to perform the z-integration in d dimensions,

and, after expanding in αs, one can read off the coefficients c
(n)
1 . Remarkably, the result

coincides with (3.42) multiplied by a factor of two. Using c
(n)
LL = c

(n)
1 one directly obtains

the LL contributions to the NLP thrust distribution from this result, which coincides with

the “soft quark Sudakov” factor given in [15].

At this point one may wonder why, despite of the similarities, the LL resummed off-

diagonal DGLAP kernel (3.69) obtained from the DIS process is considerably more complex

than the thrust distribution. To understand this difference, it is useful to separately con-

sider contributions with an anti-hardcollinear qq̄ pair (denoted by IIc) and those with a

soft quark or antiquark (denoted by IIs). The tentative SCET interpretation given in [15]

suggests that IIc is represented by diagrams involving a B1 current operator with anti-

hardcollinear qq̄ building blocks, and IIs by diagrams with an insertion of a time-ordered

product operator involving the LP current and L(1)
ξq (see figure 7). This motivates the

following ansatz for the (partial) factorization of hard, (anti-)hardcollinear and soft loop

contributions to IIs and IIc,

1

σ0

dσ

dτ

∣∣∣∣NLP,LL

II

≡ HLP
IIs · [J × S]NLP

IIs + [H × J ]NLP
IIc · SLP

IIc , (E.8)

with factorized hard and soft functions for IIs and IIc, respectively. They are governed by

the usual LP cusp anomalous dimension, with leading poles given by

HLP
IIs ≡ exp

[
− αsCF

π

1

ε2

(
µ2

Q2

)ε ]
,

SLP
IIc ≡ exp

[
− αsCA

π

1

ε2

(
µ2

Q2τ2

)ε ]
. (E.9)
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The non-trivial information resides in the combined jet and hard function for IIc, involving

a convolution in momentum fractions of the B1 operator, as well as in the combined soft

and jet function for IIs, involving convolutions related to the spatial separation of the A0

current and the Lagrangian insertion. Following the discussion above, we expect these

convolutions to feature endpoint divergences in four dimensions. The decomposition is

analogous to (3.35) in DIS, with [H × J ]NLP
IIc corresponding to the bare NLP partonic cross

section WNLP
φ,q and [J × S]NLP

IIs to the bare NLP PDF evolution factor UNLP
gq .

Here we point out that, using the results from above allows one to bootstrap the

resummed leading poles of [H × J ]IIc and [J × S]IIs in d dimensions. To see this, we note

that the consistency conditions (E.3) determine all coefficients c
(n)
j for 1 ≤ j ≤ 2n given

the result for c
(n)
1 . In addition, we use that the leading poles can be expanded in the form

[H × J ]IIc = ε
∑
nc≥1

(
−αs
π

1

ε2

(
µ2

Q2τ

)ε)nc ∑
nh≥0

(
−αs
π

1

ε2

(
µ2

Q2

)ε)nh
cIIc(nc, nh) ,

[J × S]IIs = ε
∑
nc≥0

(
−αs
π

1

ε2

(
µ2

Q2τ

)ε)nc ∑
ns≥1

(
−αs
π

1

ε2

(
µ2

Q2τ2

)ε)ns
cIIs(nc, ns) ,

(E.10)

where ns,c,h denote the number of soft, (anti-)hardcollinear and hard loops. Note that

nc > 0 for IIc and ns > 0 for IIs. Inserting this expansion into (E.8) and requiring that the

sum of IIs and IIc contributions has to reproduce (E.2) with known coefficients c
(n)
j allows

one to uniquely determine the coefficients cIIc(nc, nh) and cIIs(nc, ns). We find

[H × J ]IIc =
CF

CF − CA
ετ−ε

τ−ε − 1{
exp

[
2αsCA
π

1

ε2

(
µ2

Q2τ

)ε
− αsCA

π

1

ε2

(
µ2

Q2

)ε ]

− exp

[
αs(CF + CA)

π

1

ε2

(
µ2

Q2τ

)ε
− αsCF

π

1

ε2

(
µ2

Q2

)ε ]}
, (E.11)

[J × S]IIs =
CF

CF − CA
ετ−ε

τ−ε − 1{
− exp

[
2αsCF
π

1

ε2

(
µ2

Q2τ

)ε
− αsCF

π

1

ε2

(
µ2

Q2τ2

)ε ]

+ exp

[
αs(CF + CA)

π

1

ε2

(
µ2

Q2τ

)ε
− αsCA

π

1

ε2

(
µ2

Q2τ2

)ε ]}
. (E.12)

These expressions can be compared to (3.50) for WNLP,LL
φ,q and (3.51) for UNLP,LL

gq , respec-

tively. In particular, the last lines in each expression would lead to the appearance of

Bernoulli functions when expanding the thrust distribution in ε. Remarkably, however,

these terms precisely cancel when adding the IIc and IIs pieces in (E.8). The remaining
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terms combine to exponential factors that are finite by themselves for ε→ 0, giving

1

σ0

dσ

dτ

∣∣∣NLP,leading poles

II
=

CF
CF − CA

ετ−ε

τ−ε − 1

{
exp

[
− αsCF

π

1

ε2

(
µ2

Q2

)ε
(1− τ−ε)2

]

− exp

[
− αsCA

π

1

ε2

(
µ2

Q2

)ε
(1− τ−ε)2

]}
. (E.13)

This expression indeed has no poles in 1/ε, and approaches a finite limit for ε → 0, that

precisely agrees with the LL resummed “soft quark Sudakov” formula given in [15].

While it is reassuring to recover the result for the LL resummed NLP thrust distribution

given in [15], the main purpose of this appendix is to point out the form of the two individual

contributions (E.11), (E.12) and the formal analogy as well as difference to the DIS process.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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