

Collisions of nuclei - creation of Quark-Gluon Plasma

Large energy released in collisions of nuclei leads to creation of strongly interacting dense matter - Quark-Gluon Plasma

Collective phenomena - particle flow

- Area of the overlap of nuclei has an elongated shape
- In this region Quark-Gluon Plasma is created
- QGP expands and its components, quark and gluons, behave collectively
- ◆ More particles are produced in the event plane Ψ this talk and the talk by Adam Trzupek

Strong interactions of partons in QGP

- Partons created in a hard scattering travel through QGP
- ◆ Interactions with the dense matter causes that even the most energetic partons loose energy and may be stopped inside QGP area

see the talk by Helena Santos

Flow harmonics in Pb+Pb collisions at 5.02 TeV

Detailed measurements of harmonics v_2 - v_7 :

- ◆ p_T dependence
 - → an increase up to ~3 GeV
 - → a decrease above ~3 GeV
- centrality dependence harmonics are the larges in mid-central (20-50%) events
- harmonics up to v₇ are non zero
- various methods of calculations of flow harmonics

ATLAS, Eur. Phys. J. C 78 (2018) 997.

Flow measurement in Xe+Xe collisions

- harmonics v₂ to v₆
- at the first look p_T dependence similar to that for other collision systems

Comparison of flow measurement in Xe+Xe and Pb+Pb collisions

- elliptic flow larger in Xe+Xe in most central collisions and smaller in peripheral collisions
- similar, but less strong trend with centrality for v₃ and v₄
- slightly lower v₅ in Xe+Xe than in
 Pb+Pb collisions in all centralities

Flow in Xe+Xe collisions

Scaling of flow harmonics

• scaling by $\mathbf{v_2}$: $\mathbf{v_n}/(\mathbf{v_2})^{n/2}$

◆ constant as a function of p_⊤

Scaling of flow harmonics

- scaling by v_2 $v_n/(v_2)^{n/2}$
- scaling by v_3 $v_n/(v_3)^{n/3}$
- → constant as a function of p_T
- similar values of v_n/(v₃)^{n/3} for different v_n

Scaling of flow harmonics

- scaling by v_2 $v_n/(v_2)^{n/2}$
- scaling by $\mathbf{v_3}$ $v_n/(v_3)^{n/3}$
- ◆ constant as a function of p_T
- scaling by v₃ gives almost the same value for all higher harmonics

ATLAS, Phys. Rev. C 101 (2020) 024906

Longitudinal flow decorrelations

Measurement of flow harmonics fluctuations as a function of pseduprapidity

Change of flow magnitude

Change of event plane (twist)

Correlators using flow vectors calculated in different η intervals

$$r_{n|n;k} = \frac{\langle \boldsymbol{q}_{n}(-\boldsymbol{\eta})^{k} \boldsymbol{q}_{n}^{*k}(\boldsymbol{\eta}_{ref}) \rangle}{\langle \boldsymbol{q}_{n}(\boldsymbol{\eta})^{k} \boldsymbol{q}_{n}^{*k}(\boldsymbol{\eta}_{ref}) \rangle}; \qquad \boldsymbol{q}_{n} = \sum_{i} w_{i} e^{in\phi_{i}} / \sum_{i} w_{i}$$

$$r_{n|n;k} = \frac{\langle [v_{n}(-\boldsymbol{\eta})v_{n}(\boldsymbol{\eta}_{ref})]^{k} \cos(k n (\Phi_{n}(-\boldsymbol{\eta}) - \Phi_{n}(\boldsymbol{\eta}_{ref}))) \rangle}{\langle [v_{n}(\boldsymbol{\eta})v_{n}(\boldsymbol{\eta}_{ref})]^{k} \cos(k n (\Phi_{n}(\boldsymbol{\eta}) - \Phi_{n}(\boldsymbol{\eta}_{ref}))) \rangle}$$

$$R_{n,n|n,n} = \frac{\langle \boldsymbol{q}_{n}(-\boldsymbol{\eta}_{ref})\boldsymbol{q}_{n}(-\boldsymbol{\eta})\boldsymbol{q}_{n}^{*}(+\boldsymbol{\eta})\boldsymbol{q}_{n}^{*}(\boldsymbol{\eta}_{ref}) \rangle}{\langle \boldsymbol{q}_{n}(-\boldsymbol{\eta}_{ref})\boldsymbol{q}_{n}(+\boldsymbol{\eta})\boldsymbol{q}_{n}^{*}(-\boldsymbol{\eta})\boldsymbol{q}_{n}^{*}(\boldsymbol{\eta}_{ref}) \rangle}$$

Note:

in the absence of any systematic modifications of flow harmonics r = 1 and R = 1

Measured in Pb+Pb and Xe+Xe collisions

ATLAS, Eur. Phys. J. C 76 (2018) 142 and arxiv:2001.04201

Longitudinal flow decorrelations in Pb+Pb collisions

Correlator r

- flow decorrelations are approximately linear in η
- ◆ elliptic decorrelation r_{2|2:1} depends on centrality - it deviates from 1 more in central and peripheral collisions than in semicentral collisions
- ◆ higher order correlators, r_{3|3:1} and $r_{4|4:1}$, departure from 1 is even larger but similar for all centralities
- no difference for two Pb+Pb collision energies

ATLAS, Eur. Phys. J. C 76 (2018) 142

Longitudinal flow decorrelations in Pb+Pb collisions

Correlator R

- flow decorrelations are approximately linear in η
- elliptic decorrelation R_{2|2;1} depends on centrality - it deviates from 1 more in central and peripheral collisions than in semicentral collisions
- higher order correlator, R_{3|3;2}, deviates from 1 even more but in a similar way for different centralities
- no difference for two collision energies

Longitudinal flow decorrelations

Similar trends in Xe+Xe collisions:

- flow decorrelations are approximately linear in η
- r_{2|2;1} depends on centrality it is larger in central and peripheral collisions
 than in semi-central collisions
- decrease of higher order correlators, $r_{3|3;1}$ and $r_{4|4;1}$, are larger then for $r_{2|2;1}$

ATLAS, arxiv:2001.04201

Longitudinal flow decorrelations in Pb+Pb collisions

 flow decorrelations are approximately linear in η

$$r_{n|n;k} = 1 - 2 F_{n;k}^r \eta$$

 $R_{n|n;k} = 1 - 2 F_{n;k}^R \eta$

decorrelation "strength" parameters:

$$F_n^r = \frac{\sum_i (1 - r_{n|n}(\eta_i)) \eta_i}{2 \sum_i \eta_i^2}$$

$$F_n^R = \frac{\sum_i (1 - R_{n|n}(\eta_i)) \eta_i}{2 \sum_i \eta_i^2}$$

 F^r₂ and F^R₂ strongly depend on centrality (here N_{part})

13

decorrelation "strength" parameter:

$$F_{n} = \frac{\sum_{i} (1 - r_{n|n}(\eta_{i})) \eta_{i}}{2 \sum_{i} \eta_{i}^{2}}$$

- ▶ F₂ larger in Xe+Xe collisions
 than in Pb+Pb collisions
- ◆ F₃ smaller in Xe+Xe collisions than in Pb+Pb collisions

ATLAS, arxiv:2001.04201

14

Longitudinal flow decorrelations in Pb+Pb collisions

decorrelation "strength" parameters:

$$F_n^r = \frac{\sum_i (1 - r_{n|n}(\eta_i)) \eta_i}{2\sum_i \eta_i^2}$$

$$F_n^R = \frac{\sum_i (1 - R_{n|n}(\eta_i)) \eta_i}{2 \sum_i \eta_i^2}$$

connection with twist and asymmetry fluctuations:

$$F_{n;2}^{twi} = F_{n;2}^{R}$$
 $F_{n;2}^{asy} = F_{n;2}^{r} - F_{n;2}^{R}$

similar size of these two types of decorrelations

Fluctuations of anizotropic flow in Pb+Pb collisions

- study of event-by-event fluctuations of harmonics, $p(v_n)$ and $p(v_n, v_m)$, using multiparticle cumulants calculated for different centralities and p_⊤ ranges
- negative c₁{4} (thus positive v₁{4}) found
- → negative c₄{4} implicates a non-linear contribution to v_4 proportional to v_2^2
- negative asymmetric cumulant nsc₂₃{4} reflects anticorrelation between v_2 and v_3 , while positive $nsc_{24}\{4\}$ is consistent with non-linear contributions to v_a
- centrality fluctuations lead to additional v_n fluctuations

ATLAS, JHEP 01 (2020) 51.

Flow of charm and bottom hadrons

Reconstruction of muons from charm and bottom hadron decays and separation from those from π/K background using:

- imbalance between momentum measured in the inner detector and in the muon spectrometer
 ρ = (p^{ID}-p^{MS})/p^{ID}
- transverse impact parameter d₀

Different distributions of these variables enable separation of muons from different decays

ATLAS, arxiv:2003.03565

V₂:

- elliptic flow of bottom muons is smaller than that of charm muons
- v₂ increases in more peripheral collisions

V₃:

 also triangular flow of bottom muons is smaller than that of charm muons

ATLAS, arxiv:2003.03565

19

Flow of charm and bottom hadrons

Transverse momentum dependence of v₂ has similar trend as predicted by the models, differences may shred the light on details of QGP expansion and the energy-loss mechanism.

ATLAS, arxiv:2003.03565

Summary

Correlation studies in Pb+Pb and Xe+Xe collisions:

- detailed analysis of azimuthal correlations in Pb+Pb and Xe+Xe collisions,
- > scaling of $v_n / (v_k)^{n/k}$ ratio,
- fluctuations of harmonics as a function of pseudorapididty (longitudinal decorrelations),
- analysis of event-by-event fluctuations with multiparticle cumulants,
- flow of charm and bottom hadrons.

Deeper insight into properties and expansion of QGP and the effects of fluctuations of initial conditions in the collisions

Backup

Backup

v_n - $[p_T]$ correlations

Pearson correlation coefficient R, substituted by ρ to be not distorted at small multiplicity

$$R = \frac{cov(v_n\{2\}^2, [p_T])}{\sqrt{Var(v_n\{2\}^2)}\sqrt{Var([p_T])}}$$

$$\rho = \frac{cov(v_n\{2\}^2, [p_T])}{\sqrt{Var(v_n\{2\}^2)_{dvn}}\sqrt{c_k}}$$

in which dynamical variances are used

Harmonics are calculated in different psedurapidity intervals (0.75<| η |<2.5) than the mean p_{τ} of the event (| η |<0.5)

- Negative correlation in peripheral collisions
- Positive correlation for more central collisions
- Qualitatively in agreement with hydrodynamics 1+3D

(P. Bożek, Phys. Rev. C93 (2016) 044908)

Suppresion of contributions from non-flow effects

Flow estimation methods

- event plane
- two-particle correlations
- scalar product

Multi-particle correlations

- standard cumulants
- symmetric cumulants
- asymmetric

$$v_n = \langle \cos(n(\phi - \Phi_n)) \rangle$$

$$v_{n,n} = \langle \cos(n(\phi_a - \phi_b)) \rangle$$

$$v_n = \text{Re}(\langle q_n^N Q_n^{P^*} \rangle / \sqrt{\langle Q_n^N Q_n^{P^*} \rangle}); q_n, Q_n = (1/\Sigma_j w_j) \Sigma_j w_j e^{in\phi_j}$$

$$\langle \langle \{2k\}_n \rangle \rangle = \langle \langle e^{in(\phi_1 + \dots + \phi_k - \phi_{k+1} - \dots - \phi_{2k})} \rangle \rangle = \langle v_n^{2k} \rangle$$
$$\langle \langle \{4\}_{n,m} \rangle \rangle = \langle \langle e^{in(\phi_1 - \phi_2) + \Im(\phi_3 - \phi_4)} \rangle \rangle = \langle v_n^2 v_m^2 \rangle$$

$$c_n\{4\} = \langle\langle\{4\}_n\rangle\rangle - 2\langle\langle\{2\}_n\rangle\rangle^2$$

$$sc_{n,m}\{4\} = \langle\langle\{4\}_{n,m}\rangle\rangle - \langle\langle\{2\}_{n}\rangle\rangle \langle\langle\{2\}_{m}\rangle\rangle$$

$$ac_{2}\{3\} = \langle\langle\{3\}_{n}\rangle\rangle = \langle\langle e^{i(n\phi_{1}+n\phi_{2}-2n\phi_{3})}\rangle\rangle^{2}$$

Subevent methods - particles selected from different regions in pseudorapidity

• two-subevents
$$sc_{n,m}^{2a|2c}\{4\} = \langle\langle\{4\}_{n,m}\rangle\rangle_{2a|2c} - \langle\langle\{2\}_n\rangle\rangle_{a|b} \langle\langle\{2\}_m\rangle\rangle_{a|b}$$

• three-subevents
$$sc_{n,m}^{a,b|2c}\{4\} = \langle\langle\{4\}_{n,m}\rangle\rangle_{a,b|2c} - \langle\langle\{2\}_n\rangle\rangle_{a|c} \langle\langle\{2\}_m\rangle\rangle_{b|c}$$

• four-subevents
$$sc_{n,m}^{a,b|c,d}\{4\} = \langle\langle\{4\}_{n,m}\rangle\rangle_{a,b|c,d} - \langle\langle\{2\}_n\rangle\rangle_{a|c} \langle\langle\{2\}_m\rangle\rangle_{b|d}$$

Many different methods tested in order to obtain "real" flow

24