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Abstract

We study unbinned multivariate analysis techniques, based on Statistical Learning, for
indirect new physics searches at the LHC in the Effective Field Theory framework. We
focus in particular on high-energy ZW production with fully leptonic decays, modeled at
different degrees of refinement up to NLO in QCD. We show that a considerable gain in
sensitivity is possible compared with current projections based on binned analyses. As
expected, the gain is particularly significant for those operators that display a complex
pattern of interference with the Standard Model amplitude. The most effective method is
found to be the “Quadratic Classifier” approach, an improvement of the standard Statistical
Learning classifier where the quadratic dependence of the differential cross section on the
EFT Wilson coefficients is built-in and incorporated in the loss function. We argue that
the Quadratic Classifier performances are nearly statistically optimal, based on a rigorous
notion of optimality that we can establish for an approximate analytic description of the ZW
process.
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1 Introduction

The amazing richness of LHC data makes searching for new physics an extremely complex

process. Three main steps can be identified, taking however into account that they are strongly

interconnected and not necessarily sequential in time. First, we need a target new physics theory.

In our case this is provided by the Standard Model (SM) itself, supplemented by operators

of energy dimension d > 4 that encapsulate the indirect effects of heavy new particles and

interactions. This setup is often dubbed the SM Effective Field Theory (EFT) in the context

of high-energy physics (see e.g. Refs. [1–3]). However the EFT approach is extremely common

and widely employed in many other domains, eminently in Flavor Physics. The methodologies

discussed in this paper could thus find applications also in other areas.

The second step is to turn the new physics theory into concrete predictions. These should

be sufficiently accurate, since the EFT operator effects are often a small correction to the pure

SM predictions. The predictions are provided by Monte Carlo generator codes, which produce

event samples that are representative of the true particles momenta distributions. Accurate

simulation of the detector response are further applied in order to obtain a representation of

the distribution as a function of the variables that are actually observed in the experiment. It

should be mentioned that this program occasionally fails. Namely it could be impossible for the

Monte Carlo codes to provide a sufficiently accurate representation of all the components of the

data distribution, for instance of reducible backgrounds from misidentification. In this case, the

artificial Monte Carlo event sample should be supplemented with natural data collected in some

control region, which model the missing component. We will not discuss this case explicitly,

however it should be emphasized that our methodology would apply straightforwardly. Namely,

the “Monte Carlo” samples we refer to in what follows might well not be the output of a Monte

Carlo code, but rather have (partially) natural origin.

The final step, i.e. the actual comparison of the predictions with the data, is often further

split in two, by identifying suitable high-level observables (e.g. cross sections in bins) that are

particularly sensitive to the EFT operators. These observables can be measured in an experimen-

tal analysis that does not target the EFT explicitly, and compared with the EFT predictions

at a later stage. This is convenient from the experimental viewpoint because the results are

model independent and thus potentially useful also to probe other new physics theories. If the

measurements are performed at the truth (unfolded) level, this is also convenient for theorists

because detector effects need not to be included in the predictions. However a strategy based

on intermediate high-level observables is unavoidably suboptimal. It would approach optimality

only if the fully differential distribution was measured for all the relevant variables, with suffi-

ciently narrow binning. However there are often too many discriminating variables to measure

their distribution fully differentially, and, even if this was feasible, one would not be able to

predict accurately the cross section in too many bins. In this situation, the sensitivity to the

presence (or absence) of the EFT operators could be strongly reduced and it could be impossible

to disentangle the effect of different operators and resolve flat directions in the parameter space

of the EFT Wilson coefficients. One should thus switch to the direct comparison of the EFT

with the data, by employing more sophisticated unbinned multivariate data analysis techniques.

Several multivariate methods have been developed and applied to the EFT or to similar

problems, including Optimal Observables [4, 5], the so-called “Method of Moments” [6–8] and

similar approaches (see e.g. Ref. [9]) based on parametrizations of the scattering amplitude.

The virtue of these techniques is that they are still based on high-level observables, making

data/theory comparison simpler. The disadvantage is that they are intrinsically suboptimal

and not systematically improvable towards optimality.
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A potentially optimal approach, which is closely analog to the one based on Machine Learn-

ing we employ in this paper, is the “Matrix Element Method” [10–14]. The main idea behind

this construction is that optimal data analysis performances are unmistakably obtained by em-

ploying the likelihood L(c |D), i.e. the probability density of the observed dataset “D” seen as

a function of the free parameters “c” of the probability model. In our case, the free parameters

coincide with the EFT Wilson coefficients.1 The LHC data consist of independent repeated

measurements of the variable “x” that describes the kinematical configuration of each observed

event. Therefore the likelihood factorizes and evaluating it requires only the knowledge of the

distribution of x. More precisely, since we are interested in L(c |D) only up to an overall c-

independent normalization, it is sufficient to know the ratio r(x, c) between the density as a

function of c (and x) and the density at some fixed value c = c. The SM point, c = 0, can be

conventionally chosen.

It should be emphasized that extracting r(x, c) is a highly non-trivial task, as nicely ex-

plained in Ref. [15] in terms of latent variables. The Monte Carlo generator code does of course

implement an analytic point-by-point representation of the density (and, in turn, of r), which is

however expressed in terms of abstract variables “z” and not of the variables x that are actually

observed. The analytic representation of r in the z variables can be used as a surrogate of r(x, c)

only if there is a faithful one-to-one correspondence between z and x. This is typically the case

at leading order, if showering and detector effects are small, and if there are not undetected

particles. However it is sufficient to have neutrinos in the final state, or to include Next to

Leading Order (NLO) corrections to spoil the correspondence between z and x. Showering,

hadronization and detector effects also wash out the correspondence. In the Matrix Element

Method, r(x, c) is obtained by a phenomenological parameterization of these effects in terms of

transfer functions that translate the knowledge of the density at the “z” level into the one at

the “x” level. The free parameters of the phenomenological modeling of the transfer functions

are fitted to Monte Carlo samples.

The Matrix Element Method is potentially optimal and improvable towards optimality. How-

ever it is not “systematically” improvable, in the sense that a more accurate reconstruction of

r(x, c) requires a case-by-case optimization of the transfer function modeling. With the alter-

native employed in this paper, based on the reconstruction of r(x, c) using Machine Learning

techniques rather than phenomenological modeling, systematic improvement is possible using

bigger Neural Networks and larger training sets. Furthermore refining the reconstruction by in-

cluding additional effects requires substantial effort and increases the computational complexity

of the Matrix Element Method, while the complexity of the Machine Learning-based recon-

struction is a priori independent of the degree of refinement of the simulations. Therefore it is

important to investigate these novel techniques as an alternative and/or as a complement to the

Matrix Element approach.

There is already a considerable literature on the reconstruction of r(x, c) using Neural Net-

works [15–21] and several algorithms exist. Here we adopt the most basic strategy, mathemat-

ically founded on the standard Statistical Learning problem of classification (see Section 2.1

for a brief review), which we improve by introducing the notion of “Quadratic Classifier”. The

relation between our methodology and the existing literature, the possibility of integrating it in

other algorithms and to apply it to different problems is discussed in details in Section 2.2 and in

the Conclusions. However it is worth anticipating that, unlike simulator-assisted techniques [19],

1The notion of “optimality” can be made fully rigorous and quantitative, both when the purpose of the analysis
is to measure the free parameters of the EFT and when it is to test the EFT hypothesis (c 6= 0) against the SM
(c = 0) one, and both from a Bayesian and from a frequentist viewpoint. The case of a frequentist hypothesis
test is discussed in more details below.
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the Quadratic Classifier only exploits Monte Carlo data samples (in the extended sense outlined

above) and no other information on the data generation process. It can thus be used as it is

with any Monte Carlo generator.

Apart from describing the Quadratic Classifier, the main aim of the paper is to investigate

the potential impact of Machine Learning methods on LHC EFT searches, from two viewpoints.

The first question we address is if and to what extent statistically optimal sensitivity to

the presence or absence of the EFT operators can be achieved. In order to answer, a rigorous

quantitative notion of optimality is defined by exploiting the Neyman–Pearson lemma [22],

namely the fact that the “best” (maximum power at fixed size, in the standard terminology of e.g.

Ref. [23]) frequentist test between two simple hypotheses is the one that employs the likelihood

ratio as test statistic. By regarding the EFT at each given value of the c Wilson coefficients as

a simple hypothesis, to be compared with the SM c = 0 hypothesis, we would thus obtain the

strongest expected 95% Confidence Level (CL) exclusion bounds on c (when the SM is true) if

the true distribution ratio r(x, c) was available and used for the test. This can be compared

with the bound obtained by employing the approximate ratio r̂(x, c) reconstructed by the Neural

Network, allowing us to quantify the approximation performances of the method in objective

and useful terms.2 Of course, the exact r(x, c) is not available in a realistic EFT problem,

therefore the comparison can only be performed on a toy problem. In order to make it as close

as possible to reality, our “Toy” problem is defined in terms of an analytical approximation

of the differential cross section of the process of interest (i.e. fully leptonic ZW, see below),

implemented in a dedicated Monte Carlo generator.

The second aim of the paper is to quantify the potential gain in sensitivity of Machine

Learning techniques, compared with the basic approach based on differential cross section mea-

surements in bins. The associated production of a Z and a W boson decaying to leptons, at high

transverse momentum (pT,Z > 300 GeV) and with the total integrated luminosity of the High

Luminosity LHC (HL-LHC), is considered for illustration. This final state has been selected

to be relatively simple, but still described by a large enough number of variables to justify the

usage of unbinned analysis techniques. Moreover it has been studied already quite extensively

in the EFT literature (see e.g. Refs. [24–31]) and a number of variables have been identified,

including those associated with the vector bosons decay products [28,32,33], with the potential

of improving the sensitivity to the EFT operators.

The comparison with the binned analysis is performed on the Toy version of the problem

mentioned above, on the exact tree-level (LO) modeling of the process and on NLO QCD plus

parton showering Monte Carlo data. By progressively refining our modeling of the problem in

these three stages, this comparison also illustrates the flexibility of the approach and the fact

that increasingly sophisticated descriptions of the data are not harder for the machine to learn.

This should be contrasted with the Matrix Element method, which would instead need to be

substantially redesigned at each step. As an illustration, we will show that employing the analyt-

ical approximated distribution ratio, that was optimal on the Toy problem, leads to considerably

worse performances than the Neural Network already at LO. At NLO the performances further

deteriorate and the reach is essentially identical to the one of the binned analysis.

The rest of the paper is organized as follows. In Section 2 we introduce the Quadratic

Classifier as a natural improvement of the standard Neural Network classifier for cases, like

the one of the EFT, where the dependence of the distribution ratio on the “c” parameters is

2It should be emphasized that we adopt this specific notion of “optimality” only because the frequentist hy-
pothesis test between two simple hypotheses is relatively easy to implement in a fully rigorous manner. The
reconstructed likelihood ratio could be employed for any other purpose and/or relying on asymptotic approxima-
tions using standard statistical techniques.
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known. The fully leptonic ZW process, the EFT operators we aim at probing and the relevant

kinematical variables, are discussed in Section 3. The Toy, the LO and the NLO Monte Carlo

generators employed in the analysis are also described. The first set of results, aimed at assessing

the optimality of the Quadratic Classifier on the Toy data, are reported in Section 4. The

results obtained with the LO Monte Carlo are also discussed, showing the stability of the Neural

Network performances as opposite to the degradation of the sensitivity observed with the Matrix

Element and with the binned analysis methods. NLO results are shown in Section 5. We

will see that the Quadratic Classifier methodology applies straightforwardly at NLO in spite

of the fact that negative weights are present in the NLO Monte Carlo samples. The only

complication associated with negative weights, which we discuss in Section 5.1, is not related

with the reconstruction of the r̂(x, c) function by the Neural Network, but with the calculation

of the distribution of the variable r̂(x, c) itself, which is needed for the hypothesis test. All

the technical details on the Neural Network design and training are summarized in Section 6,

and our conclusions are reported in Section 7. Appendices A and B contain the generalization

of the Quadratic Classifier for an arbitrary number of Wilson coefficients and the proof of its

asymptotic optimality.

2 Teaching new physics to a machine

Consider two hypotheses, H0 and H1, on the physical theory that describes the distribution of

the variable x. In the concrete applications of the following sections, H0 will be identified with

the SM EFT and H1 with the SM theory. The statistical variable x ∈ X describes the kinematical

configuration in the search region of interest X. In the following, x will describe the momenta

of 3 leptons and the missing transverse momentum, subject to selection cuts. Each of the

two hypotheses (after choosing, if needed, their free parameters) characterizes the distribution

of x completely. Namely they contain all the information that is needed to compute, in line

of principle, the differential cross sections dσ0(x) and dσ1(x). The differential cross sections

describe both the probability density function of x, which is obtained by normalization

pdf(x|H0,1) =
1

σ0,1(X)

dσ0,1
dx

, (1)

and the total number of instances of x (i.e. of events) that is expected to be found in the dataset,

denoted as N(X|H0,1). This is equal to the cross section integrated on X and multiplied by the

luminosity of the experiment, namely N(X|H0,1) = L · σ0,1(X).

The total number of observed events follows a Poisson distribution. Hence for a given

observed dataset D = {xi}, with N observed events, the H1/H0 log likelihood ratio reads

λ(D) ≡ log
L(H1|D)

L(H0|D)
= N(X|H0)−N(X|H1)−

N∑
i=1

log
dσ0(xi)

dσ1(xi)
. (2)

The statistic λ(D) is known as the “extended” log likelihood ratio [34], and it is the central object

for hypothesis testing (H0 versus H1) or for measurements (if H0 contains free parameters), both

from a Frequentist and from a Bayesian viewpoint. The “N” terms in eq. (2) can be computed

as Monte Carlo integrals. What is missing in order to evaluate λ is thus the cross section ratio

r(x) ≡ dσ0(x)

dσ1(x)
. (3)

This should be known locally in the phase space as a function of x.
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The physical knowledge of the H0 and H1 models gets translated into Monte Carlo generator

codes, which allow us to estimate σ0,1(X) and to produce samples, S0,1, of artificial events

following the pdf(x|H0,1) distributions. More precisely, the Monte Carlo generates weighted

events e = (xe, we), with xe one instance of x and we the associated weight. If the we’s are not

all equal, xe does not follow the pdf of x and the expectation value of the observables O(x) has

to be computed as a weighted average. We choose the normalization of the weights such that

they sum up to σ0,1(X) over the entire sample∑
e∈S0,1

we = σ0,1(X) . (4)

With this convention, the weighted sum of O(xe) approximates the integral of O(x) ·dσ0,1(x) on

x ∈ X. Namely ∑
e∈S0,1

weO(xe)
LS−→

∫
x∈X

dσ0,1(x)O(x) = σ0,1(X) E [O|H0,1] , (5)

in the Large Sample (LS) limit where S0,1 are infinitely large. We will see below how to construct

an estimator r̂(x) for r(x) (or, in short, to fit r(x)) using finite S0 and S1 samples.

For tree-level Monte Carlo generators the previous formulas could be made simpler by em-

ploying unweighted samples where all the weights are equal. However radiative corrections need

to be included for sufficiently accurate predictions, at least up to NLO in the QCD loop ex-

pansion. NLO generators can only produce weighted events, and some of the events have a

negative weight. Therefore the NLO Monte Carlo samples cannot be rigorously interpreted as

a sampling of the underlying distribution. However provided they consistently obey the LS

limiting condition in eq. (5), they are equivalent to ordinary samples with positive weights for

most applications, including the one described below.

2.1 The Standard Classifier

The estimator r̂(x) can be obtained by solving the most basic Machine Learning problem,

namely supervised classification with real-output Neural Networks (see Ref. [35] for an in-depth

mathematical discussion). One considers a Neural Network acting on the kinematical variables

and returning f(x) ∈ (0, 1). This is trained on the two Monte Carlo samples by minimizing the

loss function

L[f(·)] =
∑
e∈S0

we[f(xe)]
2 +

∑
e∈S1

we[1− f(xe)]
2 , (6)

with respect to the free parameters (called weights and biases) of the Neural Network. The

trained Neural Network, f̂(x), is in one-to-one correspondence with r̂(x), namely

f̂(x) =
1

1 + r̂(x)
⇔ r̂(x) =

1

f̂(x)
− 1 . (7)

The reason why r̂(x), as defined above, approximates r(x) is easily understood as follows. If the

Monte Carlo training data are sufficiently abundant, the loss function in eq. (6) approaches its

Large Sample limit and becomes

L[f(·)] LS−→
∫
x∈X

dσ0(x)[f(x)]2 +

∫
x∈X

dσ1(x)[1− f(x)]2 . (8)

Furthermore if the Neural Network is sufficiently complex (i.e. contains a large number of ad-

justable parameters) to be effectively equivalent to an arbitrary function of x, the minimum of
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the loss can be obtained by variational calculus. By setting to zero the functional derivative of

L with respect to f one immediately finds

f̂(x) ' dσ1(x)

dσ1(x) + dσ0(x)
=

1

1 + r(x)
⇒ r̂(x) ' r(x) . (9)

The same result holds for other loss functions such as the standard Cross-Entropy, which has

been found in Ref. [18] to have better performances for EFT applications, or the more exotic

“Maximum Likelihood” loss [36], which is conceptually appealing because of its connection with

the Maximum Likelihood principle. We observed no strikingly different performances with the

various options, but we did not investigate this point in full detail. In what follows we stick to

the quadratic loss in eq. (6).

The simple argument above already illustrates the two main competing aspects that control

the performances of the method and its ability to produce a satisfactory approximation of

r(x). One is that the Neural Network should be complex in order to attain a configuration

that is close enough to the (absolute) minimum, f(x) = 1/(1 + r(x)), of the loss functional in

eq. (8). In ordinary fitting, this is nothing but the request that the fit function should contain

enough adjustable parameters to model the target function accurately. On the other hand if the

Network is too complex, it can develop sharp features, while we are entitled to take the Large

Sample limit in eq. (8) only if f is a smooth enough function of x. Namely we need f to vary

appreciably only in regions of the X space that contain enough Monte Carlo points. Otherwise

the minimization of eq. (6) brings f to approach zero at the individual points that belong to S0

sample, and to approach one at those of the S1 sample. This phenomenon, called overfitting,

makes that for a given finite size of the training sample, optimal performances are obtained

by balancing the intrinsic approximation error of the Neural Network against the complexity

penalty due to overfitting. A third aspect, which is extremely important but more difficult to

control theoretically, is the concrete ability of the training algorithm to actually reach the global

minimum of the loss function in finite time. This requires a judicious choice of the minimization

algorithm and of the Neural Network activation functions.

The problem of fitting r(x) is mathematically equivalent to a classification problem. A major

practical difference however emerges when considering the level of accuracy that is required on

r̂(x) as an approximation of r(x). Not much accuracy is needed for ordinary classification,

because r̂(x) (or, equivalently, f̂(x)) is used as a discriminant variable to distinguish instances

of H0 from instances of H1 on an event-by-event basis. Namely, one does not employ r̂(x)

directly in the analysis of the data, but a thresholded version of r̂(x) that isolates regions

of the X space that are mostly H0-like (r is large) or H1-like (r is small). Some correlation

between r̂(x) and r(x), such that r̂(x) is large/small when r(x) is large/small, is thus sufficient

for good classification performances. Furthermore the region where r(x) ' 1 is irrelevant for

classification.

The situation is radically different in our case because the EFT operators are small correc-

tions to the SM. The regions where the EFT/SM distribution ratio is close to one cover most

of the phase-space, but these regions can contribute significantly to the sensitivity if they are

highly populated in the data sample. Mild departures of r(x) from unity should thus be cap-

tured by r̂(x), with good accuracy relative to the magnitude of these departures. Obviously the

problem is increasingly severe when the free parameters of the EFT (i.e. the Wilson coefficients

“c”) approach the SM value c = 0 and r(x) approaches one. On the other hand it is precisely

when c is small, and the EFT is difficult to see, that a faithful reconstruction of r(x) would be

needed in order to improve the sensitivity of the analysis.
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2.2 The Quadratic Classifier

Barring special circumstances, the EFT prediction for the differential cross section is a quadratic

polynomial in the Wilson coefficients.3 If a single operator is considered, so that a single free

parameter c is present and the SM corresponds to the value c = 0, the EFT differential cross

section reads

dσ0(x; c) = dσ1(x)
{

[1 + c α(x)]2 + [c β(x)]2
}
, (10)

where α(x) and β(x) are real functions of x. An estimator r̂(x, c) for the distribution ratio in

the entire Wilson coefficients parameters space could thus be obtained as

r̂(x, c) = [1 + c α̂(x)]2 + [c β̂(x)]2 , (11)

from estimators α̂(x) and β̂(x) of the coefficient functions α(x) and β(x). Notice that eq. (10)

parametrizes, for generic α(x) and β(x), the most general function of x and c which is quadratic

in c, which is always positive (like a cross section must be) and which reduces to the SM cross

section for c = 0. The equation admits a straightforward generalization for an arbitrary number

of c parameters, which we work out in Appendix A.

The estimators α̂(x) and β̂(x) are obtained as follows. We first define a function f(x; c) ∈
(0, 1), in terms of two neural networks nα and nβ with unbounded output (i.e. nα,β ∈ (−∞,+∞)

up to weight-clipping regularization), with the following dependence on c:

f(x, c) ≡ 1

1 + [1 + cnα(x)]2 + [cnβ(x)]2
. (12)

Next, we consider a set C = {ci} of values of c and we generate the corresponding EFT Monte

Carlo samples S0(ci). At least two distinct values of ci 6= 0 need to be employed, however using

more than two values is beneficial for the performances. Monte Carlo samples are also generated

for the H1 (i.e. c = 0) hypothesis, one for each of the S0(ci) samples. These are denoted as S1(ci)

in spite of the fact that they are all generated according to the same c = 0 hypothesis. The

samples are used to train the nα,β Networks, with the loss function

L[nα(·), nβ(·)] =
∑
ci∈C

 ∑
e∈S0(ci)

we[f(xe, ci)]
2 +

∑
e∈S1(ci)

we[1− f(xe, ci)]
2

 . (13)

We stress that in the second term in the curly brackets, the function f is evaluated on the same

value of c = ci that is employed for the generation of the S0(ci) Monte Carlo sample which we

sum over in the first term.

By taking the Large Sample limit for the loss function as in eq. (8), differentiating it with

respect to nα and nβ and using the quadratic condition (10), it is easy to show that the trained

Networks n̂α and n̂β approach α and β, respectively. Namely

α̂(x) ≡ n̂α(x) ' α(x) , β̂(x) ≡ n̂β(x) ' β(x) . (14)

More precisely, by taking the functional derivative one shows that the configuration nα = α and

nβ = β is a local minimum of the loss in the Large Sample limit. It is shown in Appendix B

that this is actually the unique global minimum of the loss.

3The only exception is when the relevant EFT effects are modifications of the SM particles total decay widths.
Also notice that the cross section is quadratic only at the leading order in the EFT perturbative expansion,
which is however normally very well justified since the EFT effects are small. Higher orders could nevertheless
be straightforwardly included as higher order polynomial terms.

9



It is simple to illustrate the potential advantages of the Quadratic Classifier, based on the

analogy with the basic binned histogram approach to EFT searches. In that approach, the

X space is divided in bins and the likelihood ratio is approximated as a product of Poisson

distributions for the countings observed in each bin. Rather than r̂(x, c), the theoretical input

required to evaluate the likelihood are estimates σ̂0(b; c) for the cross sections integrated in each

bin “b”. Employing the Standard Classifier approach to determine r̂(x, c) would correspond

in this analogy to compute σ̂0(b; c) for each fixed value of c using a dedicated Monte Carlo

simulation. By scanning over c on a grid, σ̂0(b; c) would be obtained by interpolation. Every

EFT practitioner knows that this is a is very demanding and often unfeasible way to proceed.

Even leaving aside the computational burden associated with the scan over c, the problem is that

the small values of c (say, c = c) we are interested in probing typically predict cross sections that

are very close to the SM value and it is precisely the small relative difference between the EFT

and the SM predictions what drives the sensitivity. A very small Monte Carlo error, which in

turn requires very accurate and demanding simulations, would be needed in order to be sensitive

to these small effects. In the Standard Classifier method, the counterpart of this issue is the need

of generating very large samples for training the Neural Network. Furthermore, this should be

done with several values of c for the interpolation. This approach is computationally demanding

even when a single Wilson coefficient is considered, and it becomes rapidly unfeasible if c is a

higher-dimensional vector of Wilson coefficients to be scanned over.

The strategy that is normally adopted in standard binned analyses is closely analog to a

Quadratic Classifier. One enforces the quadratic dependence of σ0(b; c) on c as in eq. (10),

and estimates the three polynomial coefficients (i.e. the SM cross section and the analog of

α and β) in each bin by a χ2 fit to σ̂0(b; c), as estimated from the Monte Carlo simulations

for several values of c. The values of c used for the fit are much larger that the reach of the

experiment c = c, so that their effects are not too small and can be captured by the Monte Carlo

simulation. The Quadratic Classifier works in the exact same way. It can learn α̂(x) and β̂(x)

using training samples generated with large values of c, for which the difference between the

S0(c) and S1(c) is sizable. The training can thus recognize this difference, producing accurate

estimates of α̂(x) and β̂(x). This accurate knowledge results in an accurate estimate of r̂(x, c)

and of its departures from unity even at the small value c = c, because our method exploits the

exact quadratic relation in eq. (10).

It should be noted that the “Quadratic Classifier” introduced in eq. (12) is “Parametrized”

in the sense that it encapsulates the dependence on the c parameters, but it is the exact opposite

of the Parametrized Neural Network (or Parametrized Classifier) of Ref. [17]. In that case, the

Wilson Coefficient c is given as an input to the Neural Network, which acts on an enlarged (x, c)

features space. The purpose is to let the Neural Network learn also the dependence on c of the

distribution ratio in cases where this is unknown. Here instead we want to enforce the quadratic

dependence of the distribution ratio on c, in order to simplify the learning task.

An alternative strategy to exploit the analytic dependence on c is the one based on “mor-

phing” [20]. Morphing consists in selecting one point in the parameter space for each of the

coefficient functions that parametrize dσ0(x; c) as a function of c, and expressing dσ0(x; c) as

a linear combination of the cross-sections computed at these points. For instance, a total of 3

“morphing basis points”, c1,2,3, are needed for a single Wilson coefficient and quadratic depen-

dence, and dσ0(x; c) is expressed as a linear combination of dσ0(x; c1,2,3). This rewriting can be

used to produce two distinct learning algorithms.

The first option is to learn the density ratios dσ0(x; c1,2,3)/dσ1(x) individually (one-by-one

or simultaneously), by using training data generated at the morphing basis points c1,2,3, and to

obtain r̂(x, c) using the morphing formula. In the analogy with ordinary binning, this would
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correspond to extracting the dependence on c of the cross-sections by a quadratic interpolation

of σ̂0(b; c1,2,3) at the selected points. Of course it is possible to reconstruct the cross sections

accurately also by using 3 very accurate simulations, rather than fitting less accurate simulations

at several points. However a judicious choice of the values of c1,2,3 is essential for a proper

reconstruction of the quadratic and of the linear term of the polynomial. For the former, it is

sufficient to take c very large, but for the latter a value of c should be selected that is neither too

large, such that the quadratic term dominates by too many orders of magnitude, nor too small

such that the constant SM term dominates. Notice that the optimal c depends on the analysis

bin because the EFT effects relative to the SM (and the relative importance of the quadratic

and linear terms) can be vastly different in different regions of the phase space. With “plain”

morphing as described above, we are obliged to employ only few values of c, which might not

be enough to cover the entire phase space accurately. With the Quadratic Classifier instead, all

values of c that are useful to learn the distribution in some region of the phase space (see e.g.

eq. (27)) can be included simultaneously in the training set.

Alternatively, one can use the morphing formula in place of eq. (10), producing a different

parameterization of the classifier than the one in eq. (12), to be trained with values of the pa-

rameters that are unrelated with the morphing basis points. The parametrization employed in

the Quadratic Classifier is arguably more convenient, as it is simpler, universal and bounded to

f ∈ (0, 1) interval owing to the positivity of eq. (10). Importantly, also the condition r̂(x, 0) ≡ 1

is built-in in the Quadratic Classifier. However this could be enforced in the morphing parame-

terization as well by selecting c = 0 as one of the basis points. If this is done, we do not expect 4

a degradation of the performances if employing the morphing-based parametrization rather then

ours. Indeed, we believe that the key of the success of the Quadratic Classifier that we observe

in this paper stems from the appropriate choice of the values of c used for training, and not

from the specific parametrization we employ. The non-optimal performances of the morphing

strategy observed in Ref. [20] (on a different process than the one we study) are probably to be

attributed to a non-optimal choice. Further investigations on this aspect are beyond the scope

of the present paper.

3 Fully leptonic ZW

Consider ZW production at the LHC with leptonic decays, namely Z → `+`− and W → `ν,

where ` = e, µ. As explained in the Introduction, this is arguably the simplest process, of

established EFT relevance, where a multivariate approach is justified and potentially improves

the sensitivity. We focus on the high-energy tail of the process, with a selection cut on the

transverse momentum of the Z-boson, pT,Z > 300 GeV, because of two independent reasons.

First, because at high energy we can approximate the differential cross section analytically and

define a realistic enough Toy problem to assess the optimality of the method. Second, because

at high-energy the statistics is sufficiently limited (less than 5× 103 expected events at the HL-

LHC, including both W charges) to expect systematic uncertainties not to play a dominant role.

The reach we will estimate in the pT,Z > 300 GeV region, on purely statistical bases, should

thus be nearly realistic.

The high-energy regime, in spite of the relatively limited statistics, is the most relevant one

to probe those EFT operators that induce energy-growing corrections to the SM amplitudes.

There are only two CP-preserving and flavor-universal operators in the ZW channel that induce

4Provided that the possibility of having f outside the (0, 1) interval is not a problem when training, for instance,
with the cross-entropy loss function.
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Figure 1: The kinematical variables in the “special’ coordinate frame [28].

quadratically energy-growing terms, namely 5

O(3)
ϕq = G(3)

ϕq

(
QLσ

aγµQL
)

(iH†
←→
DµH) , OW = GW εabcW

a ν
µ W b ρ

ν W c µ
ρ . (15)

We thus focus on these operators in our analysis.

Both O(3)
ϕq and OW contribute to the ZW production amplitudes with quadratically energy-

growing terms of order G ·s, where s is the center-of-mass energy squared of the diboson system.

However the way in which this energy growth manifests itself in the cross section is rather

different for the two operators (see e.g. Refs. [27, 28]). The O(3)
ϕq operator mainly contributes

to the “00” helicity amplitude, in which the gauge bosons are longitudinally polarized. The

SM amplitude in this channel is sizable and has a constant behavior with s at high energy.

As a consequence, a sizable quadratically-growing interference term between the SM and the

BSM amplitudes is present in the cross section. This happens even at the “inclusive” level,

i.e. when only the hard scattering variables describing ZW production (and not the decay ones)

are measured.

On the contrary, the OW operator induces quadratically-growing contributions only in the

transverse polarization channels with equal helicity for the two gauge bosons (namely, ++ and

−−). In the SM this channel is very suppressed at high energy, since its amplitude decreases

as m2
W /s. Therefore in inclusive observables the interference between OW and the SM does not

grow with the energy and is very small. In order to access (or “resurrect” [28]) the interference,

which is the dominant new physics contribution since the Wilson coefficient of the operator is

small, the vector bosons decay variables must be measured. We thus expect that the sensitivity

to OW will benefit more from an unbinned multivariate analysis technique than the one on O(3)
ϕq .

The relevant kinematical variables that characterize the four-leptons final state are defined

as in Ref. [28] and depicted in Figure 1, where V1 is identified with the Z and V2 with the W

boson. The figure displays the kinematics in the rest frame of the ZW system, obtained from

the lab frame by a boost along the direction of motion (denoted as r̂ in the figure) of the ZW

pair, followed by a suitable rotation that places the Z along the positive z axis and r̂ on the

x-z plane with positive x component. The “inclusive” variables associated with ZW production

are the center-of-mass energy squared s and Θ ∈ [0, π], which is defined as the angle between

r̂ and the Z-boson momentum. The decay kinematics is described by the polar and azimuthal

decay angles θ1,2 and ϕ1,2. The latter angles are in the rest frame of each boson and they are

defined as those of the final fermion or anti-fermion with helicity +1/2 (e.g. the `+ in the case

5We use the definition H†
←→
DµH = H†DµH − (DµH)†H.
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of a W+ and the ν for a W−), denoted as f1,2+ in the figure.6 The remaining variables that are

needed to characterize the four leptons completely are weakly sensitive to the presence of the

EFT operators and can be ignored, with the exception of the total transverse momentum of the

ZW system, pT,ZW, which is a useful discriminant at NLO [27].

The variables described above are useful for the theoretical calculation of the cross section,

but they cannot be used for our analysis because they are not experimentally accessible. The

“measured” variables we employ are defined as follows. First, since we do not measure the

neutrino (longitudinal) momentum, this needs to be reconstructed by imposing the on-shell

condition for the W. The reconstructed neutrino momentum, rather than the true one, is used

to define the kinematical variables and in particular s and Θ. Moreover, since we do not measure

the helicity of the fermions but only their charge, the decay angles of the Z boson, denoted as

θZ and ϕZ , are defined in terms of the charge-plus lepton rather than of the helicity plus lepton.

Depending on the (unobserved) leptons helicities these angles are either equal to θ1 and ϕ1, or

to π − θ1 and ϕ1 + π, respectively. The W decay angles, defined in terms of the lepton or the

reconstructed neutrino depending on the charge of the W as previously explained, are denoted

as θW and ϕW . In summary, the variables we employ in the analysis are

{s, Θ, θW , ϕW , θZ , ϕZ , pT,ZW} , (16)

where of course pT,ZW is non-vanishing only at NLO.

The on-shell condition for the W boson has no real solution if the W-boson transverse mass

is larger that the W pole mass mW . The neutrino is reconstructed in this case by assuming that

the neutrino rapidity is equal to the one of the lepton. If instead the transverse mass is smaller

than mW , the condition has two distinct real solutions, each of which produces a different

reconstructed kinematics. For our analysis we picked one of the two solutions at random on

an event-by-event basis, while for the analysis of the actual data it would be arguably more

convenient to duplicate the kinematical variables vector by including both solutions. Nothing

changes in the discussion that follows if this second option is adopted.

3.1 Analytic approximation

At the tree-level order, and based on the narrow-width approximation for the decays, it is easy to

approximate the cross section analytically in the high-energy regime. The crucial simplification

is that the reconstructed 3-momentum of the W boson (with any of the two solutions for the

neutrino) becomes exact when the W is boosted, so that the reconstructed Θ and s variables

approach the “true” ones of Figure 1. Notice that Θ is the angle between the Z and the direction

of motion of the ZW system in the lab frame, which corresponds at tree-level to the direction

of motion of the most energetic incoming parton. In the kinematical region we are interested

in, the (valence) quark is more energetic than the anti-quark in more than 80% of the events.

Therefore we can identify Θ as the angle between the Z and the u quark or the d quark in the

ud→ ZW+ and du→ ZW− processes, respectively.

With these identifications, the non-vanishing on-shell helicity amplitudes MhZhW for the

hard scattering process ud→ ZW+, at leading order in the high-energy expansion, read

M00 = −g
2 sin Θ

2
√

2
−
√

2G(3)
ϕq s sin Θ , M++ =M−− =

3gcwGW s sin Θ√
2

, (17)

M−+ = −g
2(s2w − 3 c2w cos Θ)

3
√

2cw
cot

Θ

2
, M+− =

g2(s2w − 3c2w cos Θ)

3
√

2cw
tan

Θ

2
,

6The correct definition of ϕ2 appears in version four of Ref. [28].
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where g is the SU(2)L coupling, cw and sw are the cosine and the sine of the Weak angle. An

overall factor equal to the cosine of the Cabibbo angle has not been reported for shortness. The

amplitudes for the du → ZW− process can be obtained from the ones above with the formal

substitutions Θ→ −Θ and s2w → −s2w. The amplitudes are non-vanishing only for left-chirality

initial quarks. Notice that the above formulas depend on the conventions in the definition of

the wave-function of the external particles, and that these conventions must match the ones

employed in the decay amplitude for the consistency of the final results. The wave-function

reported in Ref. [37] are employed.

Let us now turn to the vector bosons decays. The decay amplitudes assume a very simple

form in terms of the θ = θ1,2 and ϕ = ϕ1,2 variables, namely

Ah = −
√

2gVmV e
ihϕdh(θ) , (18)

where h is the helicity of the decaying vector boson (V = V1,2 = Z,W ) and dh(θ) are the

Wigner d-functions. The overall coupling factor gV depends on the nature of the boson and, in

the case of the Z, on the electric charge of the helicity-plus fermion it decays to. Specifically,

gW = g/
√

2 for the W, gZ = gL = −g(1 − 2 s2w)/2cw if the Z decays to an helicity-plus `+ and

gZ = gR = g s2w/cw if the Z decays to an helicity-plus `−. The two options for the helicity (which

are physically distinct) correspond to two terms in the cross section. In the first one the Z decay

amplitude is evaluated with the gL coupling, with θ = θ1 = θZ and ϕ = ϕ1 = ϕZ . In the second

one we employ gR, θ = θ1 = π− θZ and ϕ = ϕ1 = ϕZ + π. There is no helicity ambiguity in the

W-boson decay angles. However the reconstruction of the azimuthal decay angle is exact in the

high-energy limit only up to a twofold ambiguity [28]. Namely the reconstructed ϕW approaches

ϕ1 on one of the two solutions for the neutrino (and we do not know which one), and π−ϕ1 on

the other. Since we are selecting one solution at random, we should average the cross section

over the two possibilities ϕ = ϕ2 = ϕW and ϕ = ϕ2 = π − ϕW for the W azimuthal angle. The

polar angle is instead θ = θ2 = θW in both cases.

Production and decay are conveniently combined using the density matrix notation. We

define the hard density matrix

dρhardhZhW h′Zh
′
W

=
1

24 s
MhZhW

(Mh′Zh
′
W

)∗ dΦZW , (19)

where dΦZW is the two-body phase space and the factor 1/24s takes care of the flux and of the

averages over the colors and the helicities of the initial quarks. The decay processes are instead

encoded into decay density matrices. The one for the Z-boson, including the sum over the `±

helicities as previously explained, reads

dρZhZh
′
Z

=
1

2mZΓZ

[
AhZA

∗
h′Z

∣∣∣
gL,θZ ,ϕZ

+ AhZA
∗
h′Z

∣∣∣
gR,π−θZ ,ϕZ+π

]
dΦ`+`− , (20)

where ΓZ is the Z decay width. For the W, since we average on the neutrino reconstruction

ambiguity, we have

dρWhW h′W
=

1

2mWΓW

1

2

[
AhWA

∗
h′W

∣∣∣
g√
2
,θW ,ϕW

+ AhWA
∗
h′W

∣∣∣
g√
2
,θW ,π−ϕW

]
dΦ`ν . (21)

The complete partonic differential cross section is finally simply given by

dσ̂ = 4
∑

dρhardhZhW h′W h′Z
dρZhZh

′
Z
dρWhW h′W

, (22)

where the sum is performed on the four helicity indices and the factor of 4 takes into account

the decay channels into electrons and muons.
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3.2 Monte Carlo Generators

For our analysis we use three Monte Carlo generators, of increasing accuracy.

The first one is the Toy generator that implements the analytic approximation of the cross

section in eq. (22), with the hard amplitudes expanded up to order G ·s in the EFT contribution

and up to order s0 in the SM term, as in eq. (17). This implies, in particular, that in the Toy

Monte Carlo all the mixed transverse/longitudinal helicity channels vanish exactly, that only

the ±∓ and 00 channels are retained in the SM and that new physics is just in the 00 and ±±
channels for O(3)

ϕq and OW , respectively. The Toy Monte Carlo employs a simple fit to the (ud

or du) parton luminosities obtained from the nCTEQ15 [38] PDF set (implemented through

the ManeParse [39] Mathematica package). The variable s is sampled according to the parton

luminosity, while all the other variables are sampled uniformly. The cut pT,Z =
√
s/2 sin Θ >

300 GeV is implemented at generation level. Since the analytical distribution is extremely fast

to evaluate, this basic approach is sufficient to obtain accurate Monte Carlo integrals and large

unweighted event samples in a very short time.

The second generator is MadGraph [40] at LO, with the EFT operators implemented in

the UFO model of Ref. [41]. We simulate the 2→ 4 process pp→ µ+µ−e νe, with the Z and the

W decaying to opposite flavor leptons for a simpler reconstruction, and multiply the resulting

cross section by 4. The cut on pT,Z, defined as the sum of the µ+ and µ− momenta, is imposed

at generation level, as well as the cuts

mT,eν ≤ 90 GeV , 70 GeV ≤ mµµ ≤ 110 GeV , (23)

on the transverse mass of the virtual W and the invariant mass of the virtual Z. These are

needed to suppress non-resonant contributions to the production of the 4 leptons. Standard

acceptance cuts on the charged leptons are also applied. The unweighted events obtained with

MadGraph are further processed to compute the kinematical variables in eq. (16) after neutrino

reconstruction, as detailed at the beginning of this section.

The MadGraph LO generator is slightly more accurate than the Toy one. It contains all

the ZW helicity amplitudes and no high-energy approximation. Furthermore, it describes non-

resonant topologies and off-shell vector bosons production, which affects the reconstruction of

the neutrino and in turn the reconstruction of the Z and W decay variables [28]. Nevertheless

on single-variable distributions the Toy Monte Carlo and the LO one agree reasonably well, at

around 10%.

The third and most refined generator is MadGraph at NLO in QCD, interfaced with

Pythia 8.244 [42, 43] for QCD parton showering. The complete 2 → 4 process is generated

like at LO, but no cuts could be applied at generation level apart from default acceptance

cuts on the leptons and the lower cut on mµµ in eq. (23). At NLO, the cut on pT,Z needs to

be replaced with the cut pT,V > 300 GeV, with pT,V = min[pT,Z, pT,W]. This cut suppresses

soft or collinear vector boson emission processes, which are insensitive to the EFT. In order

to populate the pT,V > 300 GeV tail of the distribution with sufficient statistics, events were

generated with a bias. The bias function was equal to one for pT,V above 290 GeV, and equal

to (pT,V/290 GeV)4 below. The momenta of the charged leptons and the transverse momentum

of the neutrino in the generated events were read with MadAnalysis [44] and the kinematical

variables in eq. (16) reconstructed like at LO. The cut pT,V > 300 GeV and the remaining cuts in

eq. (23) were imposed on the reconstructed events. The total cut efficiency on the Monte Carlo

data, thanks to the bias, was large enough (around 17%) to allow for an accurate prediction of

the cross section and for the generation of large enough event samples.

Even if ours is an electroweak process, it is known that NLO QCD corrections can in principle

affect significantly the sensitivity to the EFT operators. Relevant effects are related with the
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tree-level zero [45] in the transverse amplitude, which is lifted at NLO, and with the appearance

of same-helicity transverse high-energy amplitudes due to real NLO radiation [46]. All these

effects are properly modeled by the MadGraph NLO generator.

4 Optimality on Toy data

Our goal is to reconstruct the EFT-over-SM cross section ratio r(x, c) as accurately as possible

using the methods introduced in Section 2. Since r is known analytically for the Toy problem,

a simple qualitative assessment of the performances could be obtained by a point-by-point

comparison (see Figures 7 and 8) of r(x, c) with its approximation r̂(x, c) provided by the

trained Neural Network. However a point-by-point comparison is not quantitatively relevant,

since the level of accuracy that is needed for r̂(x, c) can be vastly different in different regions

of the phase-space, depending on the volume of expected data and on the discriminating power

of each region (i.e. on how much r is different from one).

The final aim of the entire construction is to obtain an accurate modeling of the extended

log-likelihood ratio in eq. (2), to be eventually employed in the actual statistical analysis. A

quantitative measure of the r reconstruction performances is thus best defined in terms of the

performances of the final analysis that employs r̂, instead of r, in the likelihood ratio. Among all

possible statistical analyses that could be carried out, frequentist tests to the EFT hypothesis

H0(c) (regarded as a simple hypothesis for each given value of c), against the SM one, H1, are

considered for the illustration of the performances.

Four alternative test statistic variables are employed. One is the standard Poisson binned

likelihood ratio (see below). The others are unbinned and take the form

tc(D) = N(X|H0)−N(X|H1)−
N∑
i=1

τc(xi) , (24)

where τc(x) is either equal to the exact log[r(x, c)] or to log[r̂(x, c)], as reconstructed either

with the Standard Classifier or with the Quadratic Classifier described in Section 2.1 and 2.2,

respectively. In each case the probability distributions of t in the two hypotheses are computed

with toy experiments (or with the simpler strategy of Section 5.1), and used to estimate the

expected (median) exclusion reach on c at 95% Confidence Level if the SM hypothesis is true. In

formulas, the 95% reaches (c2σ) we quote in what follows are solutions to the implicit equation

p(tmed(c2σ); c2σ) = 0.05, with tmed(c) = Median [tc(D)|H1] , (25)

where the p-value is defined as

p(tc; c) =

∫ ∞
tc

dt′c pdf(t′c|H0(c)) . (26)

The two Wilson coefficients c = G
(3)
ϕq and c = GW are considered separately. Therefore the

results that follow are single-operator expected exclusion reaches.

Summarizing, the four methodologies we employ are

i) Matrix Element (ME)

In this case we set τc(x) = log[r(x, c)] in eq. (24), with r computed analytically using

eq. (22). Therefore t coincides with the log-likelihood ratio λ in eq. (2), which in turn
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is the optimal discriminant between H0 and H1 due to the Neyman–Pearson lemma [22].

Namely, a straightforward application of the lemma guarantees that by employing t = λ as

test statistic we will obtain the optimal (smallest) c2σ reach, better than the one we could

have obtained using any other variable. The Matrix Element Method is thus optimal in

this case, and the optimality of the other methods can be assessed by comparing their c2σ
reach with the one of the Matrix Element.

ii) Standard Classifier (SC)

The second method consists in setting τc(x) = log[r̂(x, c)] in eq. (24), with r̂ reconstructed

by the Standard Classifier as in Section 2.1. Notice that a separate training is needed to

reconstruct r̂(x, c) for each value of the Wilson Coefficient. Therefore computing c2σ, as

defined in eq. (25), requires scanning over c, performing first the Neural Network training

and next the calculation of the distributions of t by toy experiments. For the Quadratic

Classifier (and for the Matrix Element Method), the first step is not needed. The details

on the Neural Network architecture and training, and of its optimization, will be discussed

in Section 6.

iii) Quadratic Classifier (QC)

The third approach is to employ r̂(x, c) as reconstructed by the Quadratic Classifier of

Section 2.2. Implementation details are again postponed to Section 6, however it is worth

anticipating that the key for a successful reconstruction is to train using values for the

Wilson coefficients that are significantly larger than the actual reach. Specifically, we used

G(3)
ϕq : {±50,±20,±5} × 10−2 TeV−2 ,

GW : {±20,±10,±5} × 10−2 TeV−2 . (27)

These values have been selected as those that induce order one departures from the SM

cross section in the low, medium and high regions of the pT,Z distribution. If willing

to compute cross-section in each pT,Z region by quadratic interpolation, using the values

selected with this criterion can be shown to maximize the accuracy on the reconstruction

of the linear term, while still allowing for a good determination of the quadratic term. We

expect this choice to be optimal for the Quadratic Classifier training as well. Also notice

that the total number of training Monte Carlo events is the same one (6M, see Section 6)

employed for each of the separate trainings performed on the Standard Classifier.

iv) Binned Analysis (BA)

Finally, in order to quantify the potential gain of the unbinned strategy, we also perform

a binned analysis. The test statistic in this case is provided by the sum over the bins

of the log-ratio of the SM over EFT Poisson likelihoods, with the expected countings as

a function of the Wilson coefficients computed from Monte Carlo simulations. The test

statistic distributions, and in turn the reach by eq. (25), are computed with toy experiments

like for the other methods and no asymptotic formulas are employed.

For both G
(3)
ϕq and GW we considered 3 bins in pT,Z, with the following boundaries

pT,Z[GeV] : {300, 500, 750, 1200} GeV . (28)

The pT,Z variable is an extremely important discriminant because it is sensitive to the

energy growth induced by the EFT. The three bins are selected based on the studies in

Refs. [27, 28], and a narrower binning has been checked not to improve the sensitivity
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Figure 2: Expected exclusion reach on G
(3)
ϕq (left) and on GW (right). The results are also

reported in Table 1. Light-color stacked bars represent the errors.

significantly. A cut cos Θ < 0.5 is imposed in the analysis targeting G
(3)
ϕq , because this

helps [27] in isolating the longitudinal helicity channel thanks to the amplitude zero in the

transverse SM amplitudes. For OW , no cos Θ cut is performed, and each pT,Z is split in

two bins, for cos 2ϕW larger and smaller than zero. This is sufficient to partially capture

the leading EFT/SM interference term as discussed in Ref. [28].

Most likely the binned analysis could be improved by considering more (and/or better)

variables and a narrower binning. However it should be noticed that the simple strategies

described above already result from an optimization, targeted to the specific operators at

hand, and that the reach we obtain is consistent with the sensitivity projections available

in the literature.

4.1 Results

The results of the four methods are shown in Figure 2 (see also Table 1), together with the ones

obtained with the MadGraph LO description of the ZW process, to be discussed in Section 4.2.

The 2σ sensitivities reported in the figure are obtained by interpolating the median p-value as a

function of the Wilson Coefficient c, in the vicinity of the reach, and computing c2σ by solving

eq. (25). Further details on this procedure, and the associated error, are given in Section 5.1.

The figure reveals a number of interesting aspects. First, by comparing the Matrix Element

reach with the one of the Binned Analysis we can quantify the potential gain in sensitivity

offered by a multivariate strategy. The improvement is moderate (around 30%) for G
(3)
ϕq , but

it is more than a factor of 2 (of 2.4) in the case of the GW operator coefficient. The different

behavior of the two operators was expected on physical grounds, as discussed in details below.

The figure also shows that the Quadratic Classifier is nearly optimal. More precisely, the reach

is identical to the one of the Matrix Element for G
(3)
ϕq , and < 20% worse for GW . We will see

in Section 6 that the residual gap for GW can be eliminated with more training points than

the ones used to produce Figure 2. Suboptimal performances are shown in the figure in order

to outline more clearly, in Section 6, that our method is systematically improvable as long as

larger and larger Monte Carlo samples are available.

Finally, we see in the figure that the Standard Classifier is slightly less sensitive than the

Quadratic one, but still its performances are not far from optimality. This is reassuring in

light of possible applications of Statistical Learning methodologies to different problems, where
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the dependence of the distribution ratio on the new physics parameters is not known and the

Quadratic Classifier approach cannot be adopted. On the other hand, the Standard Classifier

method is rather demanding. First, because it requires separate trainings on a grid of values of

c, out of which the reach should be extracted by interpolation. In turn, this requires a much

larger number of training points than the Quadratic Classifier, since at each point of the grid

we use as many training points as those the Quadratic Classifier needs in total for its training.

Second, because we observed hyperparameters optimization depends on the specific value of c

that is selected for training. Because of these technical difficulties, we only report sensitivity

estimates for the positive Wilson coefficients reach. Furthermore these estimates (see Table 1)

are based on the p-value obtained at a given point of the c grid without interpolation. For the

same reason, we did not try to apply the Standard Classifier methodology to the LO and to the

NLO data and we focus on the Quadratic Classifier in what follows.

Let us discuss now the physical origin of the different behaviors observed for the O(3)
ϕq and

for the OW operator. The point is that the new physics effects due to O(3)
ϕq have very distinctive

features which can be easily isolated even with a simple binned analysis with few variables.

Indeed O(3)
ϕq (see eq. (17)) only contributes to the 00 polarization amplitude, which is non-

vanishing in the SM as well and proportional to sin Θ. The squared 00 amplitude thus contributes

to the cross section with a sizable interference term, which is peaked in the central scattering

region cos Θ ∼ 0. The other helicity channels play the role of background, and are peaked

instead in the forward region. They are actually almost zero (at LO) at cos Θ ' 0. Therefore

a binned analysis targeting central scattering (this is why we imposed the cut cos Θ < 0.5) is

sufficient to isolate the effects of O(3)
ϕq at the interference level and thus to probe G

(3)
ϕq accurately.

By including the decay variables as in the multivariate analysis we gain sensitivity to new terms

in the cross section, namely to the interference between the 00 and the transverse amplitudes,

however these new terms are comparable with those that are probed already in the Binned

Analysis and thus they improve the reach only slightly.

The situation is very different for the OW operator. It contributes to the ++ and −− helicity

channels, that are highly suppressed in the SM and set exactly to zero in the Toy version of

the problem we are studying here. The pT,Z (and Θ) distribution depends only at the quartic

level on GW , i.e. through the square of the BSM amplitude, because the interference between

different helicity channels cancels out if we integrate the cross section in eq. (22) over the ZW

azimuthal decay angles. Our Binned Analysis is sensitive to the interference term through the

binning in ϕW , however this is not enough to approach the optimal reach because all the other

decay variables (and Θ as well) do possess some discriminating power, from which we can benefit

only through a multivariate analysis. More specifically, one can readily see by direct calculation

that the dependence on all our kinematical variables of the GW interference contribution to the

differential cross section is different from the SM term. By integrating on any of this variables

we partially lose sensitivity to this difference, and this is why the multivariate analysis performs

much better than the binned one.

4.2 MadGraph Leading Order

The analyses performed for the Toy dataset can be easily replicated for the MadGraph LO

Monte Carlo description of the process, obtaining the results shown in Figure 2.

The most noticeable difference with what was found with the Toy Monte Carlo is the strong

degradation of the Matrix Element reach, and the fact that it gets weaker than the one of the

Quadratic Classifier. As usual, the effect is more pronounced for the OW operator. This is not

mathematically inconsistent because the analytic ratio r(x, c) we employ for the Matrix Element
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test statistic is not equal anymore to the ratio of the true distributions according to which the

data are generated. Therefore it is not supposed to give optimal performances. On the other

hand the observed degradation is quantitatively surprising for GW , especially in light of the

fact that the MadGraph LO Monte Carlo distributions seem quite similar to the ones of the

Toy data at a superficial look. The degradation is not due to the high-energy approximation in

the ZW production amplitude, indeed the results we are reporting are obtained with the exact

tree-level helicity amplitudes, which are employed in eq. (22) in place of the ones in eq. (17). It

is due to the other approximations we performed in the calculation of the cross section, namely

to the assumption that the initial quark is always more energetic than the anti-quark, which

allows us to interpret Θ as the angle between the quark and the Z, and to the one of a perfect

reconstruction (up to the ambiguity) of the neutrino momentum. We verified that this is the

case by repeating the Matrix Element analysis using the true neutrino momentum and the actual

direction of motion of the quark in the Monte Carlo events. In this case the reach on GW gets

closer to the one obtained with the Toy data.

The degradation of the Matrix Element reach should be contrasted with the relative stability

of the Quadratic Classifier method. Notice that the method is applied on the MadGraph LO

data in the exact same way as on the Toy data, namely the architecture is the same, as well as the

number of training point and the values of the Wilson coefficients in eq. (27) used for training.

The computational complexity of the distribution ratio reconstruction is thus identical in the two

cases, in spite of the fact that the MadGraph LO Monte Carlo offers a slight more complete

(or “complex”) description of the data. The total computational cost is somewhat higher in

the MadGraph LO case, but just because the process of Monte Carlo events generation is

in itself more costly. Similar considerations hold at NLO, where the cost of event generation

substantially increases.

5 The reach at Next-to-Leading Order

Including NLO QCD corrections is in general essential for an accurate modeling of the LHC data.

Therefore it is imperative to check if and to what extend the findings of the previous section

are confirmed with the MadGraph NLO Monte Carlo description of the process, introduced in

Section 3.2. As far as the reconstruction of r̂(x, c) is concerned, using MadGraph NLO does not

pose any conceptual or technical difficulty, provided of course the (positive and negative) Monte

Carlo weights are properly included in the loss function as explained in Section 2. Computing

the distribution of the test statistic variable that we obtain after the reconstruction (or of the

one we employ with the Matrix Element method, for which the exact same issue is encountered)

is instead slightly more complicated than with the Toy and MadGraph LO data. This point is

discussed in the following section, while the illustration of the results is postponed to Section 5.2.

5.1 Estimating the test statistics distributions

As soon as τc(x) is known, either as an analytic function in the case of the Matrix Element or

as a (trained) Neural Network in the case of the Quadratic Classifier, the test statistic tc(D),

as defined in eq. (24), is fully specified. Namely we can concretely evaluate it on any dataset

D = {xi}, consisting of N repeated instances of the variable x, for each given value of c. However

in order to perform the hypothesis test, and eventually to estimate the reach c2σ, we also need

to estimate the probability distribution of tc(D) under the H0 and under the H1 hypotheses.

This is the problematic step at NLO, after which the evaluation of c2σ proceeds in the exact
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same way as for the Toy and for the LO data. Specifically, once we are given with

pdf(tc|H0(c)) and pdf(tc|H1) , (29)

we obtain the p-value as a function of tc and c as in eq. (26) from the former, while from the

latter we compute the median value of tc and in turn

pmed(c) ≡ p(tmed(c); c) , (30)

as a function of c. After scanning over c and interpolating pmed(c) in the vicinity of the reach

(actually we interpolate the logarithm of pmed(c), using three points in c and quadratic in-

terpolation), we can solve the equation pmed(c2σ) = 0.05 and obtain the reach as defined in

eq. (25). Given the error on pmed(c) at the three points used for the interpolation, the error on

the estimate of c2σ is obtained by error propagation.

It is conceptually trivial (but numerically demanding) to estimate the distributions if artificial

instances of the dataset D (aka “toy” datasets) are available. In this case one can simply

evaluate tc(D) on many toy datasets following the H0(c) and the H1 hypotheses and estimate

the distributions. More precisely, one just needs the empirical cumulative in H0(c) and the

median of tc in H1. Toy datasets are readily obtained from unweighted Monte Carlo samples

by throwing N random instances of x from the sample, with N itself thrown Poissonianly

around the total expected number of events. This is impossible at NLO because the events are

necessarily weighted, therefore they are not a sampling of the underlying distribution of the

variable x. As emphasized in Section 2, NLO Monte Carlo data can only be used to compute

expectation values of observables O(x) as in eq. (5). For instance we can compute the cross

section in any region of the X space, and the mean or the higher order moments of the variable

of interest, τc(x).

This suggests two options to estimate the distributions of the test statistic at NLO. The first

one is to compute the distribution of τc(x) by means of a (weighted) histogram with many and

very narrow bins. By knowing the cross section of each bin in τc, we know how many events are

expected to fall in that bin and generate toy datasets for τc accordingly. This procedure is quite

demanding, and it relies on a careful choice of the τc binning, which can only be performed on a

case-by-case basis. It is still useful to validate the strategy we actually adopt, described below.

The second option is to approximate the distribution of tc in a “nearly Gaussian” form,

based on the Central Limit theorem. Namely we notice that tc is in a trivial linear relation (see

eq. (24)) with the variable

Tc(D) ≡ 1

N

N∑
i=1

τc(xi) , (31)

where N is Poisson-distributed with expected N, with N = N(X|H) and H = H0 or H = H1.

The xi’s are independent and sampled according to pdf(x|H). The cumulant-generating function

of Tc (which is a so-called “compound” Poisson variable [47]) is readily computed

KTc(ξ) ≡ log
{

E
[
eξTc

∣∣∣ H]} = N E
[
e
ξ
N
τc
∣∣∣ H]−N , (32)

by first taking the expectation on the xi’s conditional to N and next averaging over the Poisson

distribution of N . Therefore the cumulants of Tc,

κnTc ≡
dnKTc(ξ)
dξn

∣∣∣∣
ξ=0

= N1−nE [τnc | H] , (33)
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Toy Data LO NLO

G
(3)
ϕq

ME [−0.350(6), 0.356(8)] [−0.399(13), 0.384(12)] [−0.55(4), 0.464(14)]

SC & 0.4 (p = 0.077(5)) — —

QC [−0.357(6), 0.365(8)] [−0.401(12), 0.374(10)] [−0.426(22), 0.401(21)]

BA [−0.48, 0.47] [−0.50, 0.50] [−0.58, 0.55]

GW

ME [−0.673(14), 0.697(11)] [−1.390(21), 1.357(22)] [−1.51(7), 1.93(14)]

SC . 1 (p = 0.038(3)) — —

QC [−0.781(13), 0.822(13)] [−1.007(27), 0.987(26)] [−0.99(4), 1.08(12)]

BA [−1.67, 1.67] [−1.70, 1.85] [−1.63, 1.98]

Table 1: Bounds on the G
(3)
ϕq and GW coefficients obtained for the Toy, LO and NLO datasets.

The rows correspond to the Matrix Element (ME), Standard Classifier (SC), Quadratic Classifier
(QC) and Binned Analysis (BA) approach. Notice that the errors on the Binned Analysis bounds
are negligible. The results are given in 10−2 TeV−2 units.

are increasingly suppressed with N for larger and larger n > 1. Since N is of the order of several

thousands in our case, neglecting all cumulants apart from the first and the second one, i.e.

adopting a Gaussian distribution for Tc, might be a good approximation.

Actually it turns out that in order to model properly the 5% tail of the distribution, which we

need to probe for the exclusion limit, non-Gaussianity effects can be relevant. These are included

by using a skew-normal distribution for Tc, which contains one more adjustable parameter than

the Gaussian to model the skewness. The mean, standard deviation and skewness of Tc are

immediately obtained from eq. (33)

µ(Tc) = 〈τc〉 , σ(Tc) =
1√
N

√
〈τ2c 〉 µ3(Tc) =

1√
N

〈τ3c 〉
〈τ2c 〉

3/2
, (34)

where 〈·〉 is used to denote expectation for brevity. By computing the expectation values of τc, τ
2
c

and τ3c using the Monte Carlo data, we thus find the parameters of the skew-normal distribution

for Tc and in turn the distribution of tc. We finally obtain the median p-value from the definition

in eq. (30). The errors on the expectation values of τc are estimated from the fluctuations in

the means on subsets of the entire Monte Carlo sample. These errors are propagated to the

p-value and eventually to the c2σ estimated reach as previously explained. Accurate results (see

Table 1) are obtained with relatively small Monte Carlo samples. Namely, 500k event were used

at NLO, 1M at LO and 3M for the Toy data.

We cross-checked the above procedure in multiple ways. First, it reproduces within errors

the LO and Toy p-values obtained with the toy experiments. Second, we validated it against

the approach based on τc binning on NLO data, as previously mentioned. We also verified

that including the skewness changes the results only slightly, with respect to those obtained in

the Gaussian limit. Further improving the modeling of the non-Gaussiantiy with more complex

distributions than the skew-normal, with more adjustable parameters in order to fit higher order

moments of Tc, is therefore not expected to affect the results.
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Figure 3: Expected exclusion reach on G
(3)
ϕq (left) and on GW (right) with the various method-

ologies described in the text. The results are also reported in Table 1.

5.2 Results

Our results with the MadGraph NLO Monte Carlo are reported in Figure 3 and in Table 1.

They essentially confirm the trend we already observed in the transition from the Toy to the

MadGraph LO data. The Matrix Element keeps losing sensitivity because the analytic distri-

bution ratio is now even more faraway from the actual distribution ratio since it does not include

NLO QCD effects. The reach of the Binned Analysis deteriorates less, so that it becomes com-

parable to the one of the Matrix Element. The Quadratic Classifier reach is remarkably stable.

Actually it slightly improves with respect to the LO one for GW . This is probably due to the

appearance of same-helicity SM transverse amplitudes (see Section 3.2) and of the corresponding

interference term for the OW operators.

Notice few minor differences in the implementation of the Quadratic Classifier and of the

Binned Analysis at NLO. The Quadratic Classifier now also employs the variable pT,ZW, as

discussed in Section 3. The Binned Analysis for G
(3)
ϕq employs pT,ZW as well, through a cut

pT,ZW/pT,V < 0.5. This improves the reach [27] because it helps recovering (partially) the

background suppression due to the zero of the transverse amplitudes in the central region.

6 Neural Network implementation and validation

The strategies described in Section 2 were implemented in Pytorch [48] and run on NVIDIA

GeForce GTX 1070 graphics card. Fully connected feedforward deep Neural Networks were

employed, acting on the features vector

x = {s, Θ, θW , θZ , pT,ZW, pT,Z, sinϕW , cosϕW , sinϕZ , cosϕZ} , (35)

for a total of 10 features. Each feature is standardized with a linear transformation to have

zero mean and unit variance on the training sample. For the Quadratic Classifier training,

the Wilson coefficient employed in the parametrization (12) were scaled to have unit variance

on the training sample. Employing the redundant variables (i.e., pT,Z, and the cosines and

sines of ϕW,Z) is helpful for the performances, especially the angular ones, which enforce the

periodicity of the azimuthal angular variables. The “baseline” results presented in Figures 2,

3 and in Table 1 were all obtained with the features vector above and employing a total of

6 million training Monte Carlo points for each of the two Wilson coefficients. Training was

always performed with a single batch (which was found to perform better in all cases), even if

23



200k 3×32 Baseline 5×32

0 2000 4000 6000 8000 10000

0.04

0.06

0.08

0.10

0.12

Training epochs

p
(G

W
=

0
.8
×

1
0
-

2
T

e
V
-

2
)

5×32 6×32

0 2000 4000 6000 8000 10000

0.04

0.06

0.08

0.10

0.12

Training epochs

p
(G

W
=

0
.8
×

1
0
-

2
T

e
V
-

2
)

Figure 4: Evolution of the p-value for different architectures and training sample sizes. On the
left plot we compare the baseline setup with the baseline architecture Network trained with
200k points per value of c (for a total of 2.4M points), and with the baseline number of training
points (500k, times 12) on architectures with one less (“3×32”) and one more (“5×32”) hidden
layer. On the right plot, a similar analysis is performed, but with 3M points per value of c.

in practice the gradients calculation was split in mini-batches of 100k points in order to avoid

saturating the memory of the GPU. Apart from these common aspects, the optimization of the

Neural Network design and of the training strategy is rather different for the Quadratic and for

the Standard Classifier methods. They are thus discussed separately in what follows.

6.1 The Quadratic Classifier

For the Quadratic Classifier, best performances were obtained with ReLU activation functions

and with the Adam Pytorch optimizer. The initial learning rate (set to 10−3) does not strongly

affect the performances. Other attempts, with Sigmoid activation and/or with SGD optimizer,

produced longer execution time and worse performances. The baseline architecture for the two

Neural Networks nα and nβ in eq. (12) consists of 4 hidden layers with 32 neurons, namely the

architecture {10, 32, 32, 32, 32, 1}, including the input and the output layers. Weight Clipping

was implemented as a bound on the L1 norm of the weights in each layer, but found not to play

a significant role. The total training time, for 104 training epochs, is around 5 hours for the

baseline architecture and with the baseline number (6 million) of training points.

The Neural Network architecture was selected based on plots like those in Figure 4. The left

panel shows the evolution with the number of training epochs of the median p-value (see eq. (30))

on Toy data for c = GW = 0.8 × 10−2 TeV−2, with the baseline and with larger and smaller

Networks. We see that adding or removing one hidden layer to the baseline architecture does

not change the performances significantly. The plot also shows that 104 epochs are sufficient for

the convergence and that no overfitting occurs. The degradation of the performances with less

training point is also illustrated in the plot. Of course, the p-value is evaluated using independent

Monte Carlo samples, not employed for training. The errors on the p-value are estimated from

the error on the skew-normal distribution parameters as explained in Section 5.1. In the baseline

configuration we used 500k EFT Monte Carlo training points for each of the 6 values of GW in

eq. (27), plus 500k for each associated SM sample. Each sample consists instead of 3M points in

the extended configuration employed on the right panel of Figure 4, for a total of 36M. The same

value of GW = 0.8 × 10−2 TeV−2 is employed. The baseline architecture becomes insufficient,

and best results are obtained with the 6 hidden layers of 32 neurons each.
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Figure 5: Results of 5 different trainings of the same architecture (Baseline architecture trained
with 2.4M points) using: the same training data but different initialization seeds (red points)
and the same initialization but different training data samples (blue points).
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Figure 6: The p-value evolution during training for the Standard Classifier using different ar-
chitectures and activation functions. The value GW = 1× 10−2 TeV−2 is employed.

The figure also demonstrates that the method is systematically improvable towards optimal-

ity. The value of GW considered in the figure was not within the 95% CL reach with the baseline

setup, while it becomes visible with the extended configuration. All the reaches reported in Ta-

ble 1 would expectedly improve with the extended configuration. The GW reach on Toy data

becomes [−0.732(9), 0.764(14)] 10−2 TeV−2, which is now only less than 10% worse than the op-

timal Matrix Element reach. Training takes around 30 hours with the extended configuration,

while generating and processing the required training points with MadGraph NLO (which is

the most demanding generator) would take around 10 days on a 32-cores workstation. We could

thus try to improve also the NLO reach even with limited computing resources.

For the reproducibility of our results we also study how the performances depend on the

Neural Network initialization and on the statistical fluctuations of the Monte Carlo training

sample. This analysis is performed in a reduced setup, with a total of 2.4 million training point,

and for GW = 0.8 × 10−2 TeV−2. We see in Figure 5 that the p-value fluctuates by varying

the random seed used for training at a level comparable with the error on its determination.

Similar results are observed by employing different independent Monte Carlo training samples.

Notice that these fluctuations should not be interpreted as additional contributions to the error

on the p-value. Each individual Neural Network obtained from each individual training defines

a valid test statistic variable, on which we are allowed to base our statistical analysis. Since

the fluctuations are comparable to the p-value estimate errors, our sensitivity projections were

obtained by randomly selecting one of the seed/training set configuration.
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Figure 7: Comparison between the reconstructed (α̂) and true (α) linear term of the distribution
ratio for the GW operator.
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GW = 1 × 10−2 TeV−2. The Standard Classifier and the Quadratic one are considered in the
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6.2 The Standard Classifier

Hyperparameters optimization is rather different for the Standard Classifier. We see in Figure 6

that Networks with ReLU activation like those we employed for the Quadratic Classifier displays

overfitting, and Sigmoid activations need to be employed. The results in Figures 2 and in Table 1

were obtained with 2 hidden layers with 32 neurons each and Sigmoid activation. The figure

shows that increasing the complexity does not improve the performances.

This different behavior of the Standard Classifier compared with the Quadratic one is prob-

ably due to the fact that training is performed on small Wilson coefficient EFT data, whose

underlying distribution is very similar to the one of the SM data sample. Therefore there is not

much genuine difference between the two training sets, and the Network is sensitive to statisti-

cal fluctuations in the training samples. The Quadratic Classifier instead is trained with large

values of the Wilson coefficients. The optimizer thus drives the Neural Networks towards the

deep minimum that corresponds to a proper modeling of the distribution ratio, which is more

stable against statistical fluctuations of the training samples.

6.3 Validation

An important question is how to validate as “satisfactory” the outcome of the hyperparameters

optimization described above. This is straightforward for the Toy version of the problem, because

we have to our disposal a rigorous notion of statistical optimality, through the Neyman–Pearson
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Figure 9: Distribution log-ratio for τ̂c, for c = GW = 0.8 × 10−2 TeV−2. The accurate deter-
mination displayed in the plots is obtained by the reweighting of a single Toy SM Monte Carlo
sample. The same approach, based on reweighting, could have been adopted to asses the quality
of the distribution ratio reconstruction on MadGraph Monte Carlo data, using MadWeight.

lemma, and we do have direct access to the true distribution ratio through which the data are

generated. Therefore we know that we can stop optimization as soon as the reach of the Neural

Network becomes sufficiently close to the one of the Matrix Element method. We can also rely on

a more naive validation test, based on comparing point-by-point the distribution ratio learned by

the Neural Network with the true one, which is known analytically. For instance in Figure 7 we

compare the true linear term α(x) in eq. (10) (for the OW operator) with its estimator α̂(x) ≡
n̂α(x) provided by the trained Neural Network. The baseline architecture is employed, with

increasing number of training points. While it is impossible to extract quantitative information,

a qualitative comparison between the three scatter plots confirms that more training points

improve the quality of the reconstruction. We also show, in Figure 8, the correlation between

the true and the reconstructed ratios (for GW = 1 × 10−2 TeV−2, which corresponds to the

Standard Classifier 95% reach) obtained with the Quadratic and with the Standard Classifier.

The reconstruction obtained with the Quadratic Classifier is more accurate as expected.

Validation is of course less easy if, as it is always the case on real problems, the true distri-

bution ratio is not known. One option is to proceed like we did in the present paper. Namely to

identify a Toy version of the problem that is sufficiently close to the real one and for which the

distribution ratio is known. Since it is unlikely that the true distribution is much harder to learn

than the Toy distribution, and since we can establish optimality on the Toy data using a certain

architecture and training dataset size, we can argue heuristically that the same configuration

will be optimal also with a more refined Monte Carlo description.

Finally, one can monitor heuristically how accurately the distribution ratio is reconstructed,

as follows. The true distribution log-ratio τc(x) = log r(x, c), seen as a statistical variable for

each fixed value of c, obeys, by definition, the equation

dσ0
dτc

= eτc
dσ1
dτc

. (36)

Therefore if we computed the distribution of τc (if it was known) in the EFT hypothesis H0(c)

and in the SM hypothesis H1, and take the log-ratio, the result would be a straight line as

a function of τc. By computing the same distributions for the reconstructed distribution log-

ratio τ̂c = log r̂(x, c), we can thus get an indication of how closely r̂(x, c) approximates r(x, c).

While no quantitative information can be extracted from these plots, they clearly illustrate the

improvement achieved by enlarging the size of the training sample and the Neural Network

architecture, as Figure 9 shows.
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7 Conclusions and outlook

We studied the potential gain in sensitivity of EFT searches at the LHC from multivariate

analysis techniques. The results reported in Figure 3 show that a considerable improvement is

possible, especially for operators (like OW ) with a complex interference pattern that is difficult

to capture with a Binned Analysis.

Multivariate analyses based on Statistical Learning techniques are particularly promising,

and should be considered as an alternative to the more standard (though not yet employed for

EFT LHC searches) Matrix Element method. The advantage is eminently practical, because the

Matrix Element method is optimal in principle, as much as the Statistical Learning approach.

However the Matrix Element method needs to be designed case-by-case, and re-designed for

each new effect one is willing to add for a more accurate modeling of the distribution ratio.

It already required some effort to compute the approximate distribution in Section 3.1, which

in turn provides the simplest modeling of the distribution ratio to be employed in the Matrix

Element approach, and we saw that this modeling is inadequate to describe the LO and even

less adequate at NLO. In order to improve the modeling in the case at hand one should model

the neutrino reconstruction more accurately, for instance by performing the integral over the

neutrino momentum point-by-point in the space of the observed kinematical variables. The

integral on the radiation should be also performed if willing to add QCD NLO effects. The

predictions should be further refined including transfer functions for the detector effects, if the

method has to be employed on real data.

The situation is radically different with the Statistical Learning approach. We saw that the

exact same computational effort is required to reconstruct the distribution ratio at the Toy level,

at LO and at NLO. Furthermore the accuracy of the reconstruction can be systematically im-

proved using more training points and bigger Networks. The limiting factor is not reconstructing

the distribution ratio by the Neural Network training. That step takes a quite small fraction of

the computing time. The most time-consuming part of the procedure is the generation of the

Monte Carlo training data, which becomes increasingly demanding as the sophistication of the

Monte Carlo code increases. Even if we are still far from the limit for our analysis, it would be

worth investigating improvements on this aspect based on Monte Carlo reweighting techniques.

It should be emphasized that Machine Learning methodologies are useful for EFT studies

not only in view of the possible application to the analysis of the real data. After the conceptual

and technical framework is in place, it is very easy to run the Machine Learning algorithm on

the specific EFT problem at hand, and to get a feeling of the potential improvement of the

reach compared with other methods. For instance our results show that the Binned Analysis

we employed is inadequate for GW , and that even for G
(3)
ϕq it could be improved. Furthermore

they provide a target for the sensitivity such improvements should attain. Similarly, the results

outline the importance of neutrino reconstruction modeling and of NLO QCD corrections being

implemented in the Matrix Element method, if one is willing to adopt that strategy.

When it comes to the direct applicability of the method to the data, of the ZW process for

instance, two additional steps are needed. The first one is to further improve the level of detail

of the simulation. Detector effects could be added very easily with Delphes [49]. However the

reliability of the Delphes description of the detectors should be cross-checked with a complete

simulation by the experimental collaborations, and the Delphes simulation replaced with a full

detector simulation, which is much more demanding, if needed.

The second aspect is to include systematic uncertainties of theoretical and experimental ori-

gin. It should be stressed that this is not more problematic in the Machine Learning framework

than it is in the Matrix Element or any other multivariate approach. In particular it should
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be noticed that one has full control on the choice of the input variables that are given to the

Neural Network and from which the sensitivity emerges. For instance in our case these would

be the kinematical variables of the high-level reconstructed leptons, better if including photon

recombination, in order to reduce the sensitivity to detector effects and showering, which might

not be modeled accurately enough. Similarly if jets were used in the final state, high level IR-

safe observables would be employed to be insensitive to hadronization, exactly like one would

do for the Matrix Element method. It should also be stressed, as explained in the Introduction,

that our method can be employed also in the presence of reducible backgrounds that must be

extracted from the data because no reliable Monte Carlo generator is available.

The simplest strategy to deal with uncertainties is to merely quantify their impact on the

sensitivity, using as discriminating variable the distribution ratio reconstructed from the nominal

Monte Carlo generator that does not incorporate uncertainties. This is suboptimal, but sufficient

to obtain conservative (i.e. correct) results, and to identify the irrelevant sources of uncertainties.

For better results one can include the uncertainties in the likelihood (i.e. in the reconstructed

distribution ratio) in the form of nuisance parameters. This is perfectly compatible with the

Machine Learning approach, and already implemented in MadMiner [21] through morphing.

Actually the Quadratic Classifier we employ in this paper could be useful also for this task. We

will return to this point at the end of the Section. While conceptually straightforward, it is

quantitatively important to assess the impact of uncertainties on the sensitivities we obtained

in Figure 3 on purely statistical grounds. This is left to future work.

One interesting technical element of the present paper is the Quadratic Classifier, introduced

in Section 2.2. We have found that it performs better than the Standard Classifier, as expected

since it is designed to be sensitive to the small departures from the SM due to the EFT by

exploiting the exact knowledge of the (quadratic) functional dependence of the distribution

ratio on the Wilson coefficients. Furthermore it is computationally much more convenient and

thus feasible also when several EFT operators are considered simultaneously and the scan over

the Wilson coefficients becomes unfeasible. The Quadratic Classifier has been found to be nearly

optimal, with a rigorous notion of optimality based on the Neyman–Pearson lemma.

We described in the body of the paper the connection between the Quadratic Classifier

and other techniques based on Statistical Learning available in the literature, but we did not

yet discuss the relation with the most sophisticated such techniques, namely the ones that

exploit “hidden” information from the Monte Carlo simulator [19]. The basic idea is that the

simulator does contain the analytic information on the underlying distribution, and so it does

contain a representation of the EFT/SM distribution ratio in terms of latent variables. One

can incorporate this information in the loss function, so that the machine does not need to

learn the likelihood ratio from scratch, but only the distortions of the likelihood ratio due to the

transition between the latent and the true variables. The Quadratic Classifier trick is orthogonal

to this interesting idea, and it could be straightforwardly implemented in the simulator-assisted

methods by modifying the loss function in close analogy with eq. (13). The advantages of

parametrization in that context could be the same we observed here.

On the other hand, simulator-assisted methods have also potential limitations, in two re-

spects. First, because there is a clear benefit from exploiting the latent-space distribution ratio

if the latter is similar to the one in the space of observables, but this is not necessarily the case.

For instance in ZW we saw that a proper modeling of the neutrino reconstruction is crucial for

the performances, and this is not captured by the latent-variables ratio that involves the true

neutrino momentum. This can be a problem for the validation of the approach, due to the fact

that any additional effect we include in the simulation, which further distorts the observed ratio,

might be more and more difficult for the machine to learn. For instance a simulator-assisted
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method should be trivially optimal on the Toy data, where the latent space coincides with the

observed space and thus the likelihood ratio employed in training coincides with the true one and

the machine has nothing to learn. However this does not mean that it will work on the LO data

(using the appropriate LO latent-variables ratio) because now the machine has the non-trivial

task to integrate out the neutrino. Instead for our method, that learns the distribution ratio

using no information from the Monte Carlo apart from the event sample itself, it is arguably

equally difficult to model the distribution ratio on the Toy, on the LO and on the NLO data.

Therefore the optimality on Toy data, which we can establish rigorously because we know the

exact distribution ratio, heuristically indicates that the algorithm is optimal at LO and NLO

as well. The second problem of simulator-assisted method is that the required information on

the latent-space distribution ratio might not be made available by the Monte Carlo code. In

light of this, it is reassuring to have an alternative method that does not rely on latent-space

information, that is feasible and optimal, at least in the case at hand.

Finally, it should be noticed that the parametrization trick is not specific of the EFT and

it could be applied to any situation where the functional dependence of the distribution on

the parameters is either exactly or approximately known. One should just replace the quadratic

dependence of eq. (12) on c with the appropriate (polynomial or not) functional form. This could

be useful to include the effect of nuisance parameters in the likelihood. Nuisance parameters

effects on the distribution can be normally modeled linearly (or with an exponential, to avoid

negative distributions) to good approximation because their effects are small. However if they

are too small (but still potentially competitive with the EFT ones) it could be difficult for the

machine to learn them using simulations where the nuisances are varied within their one-sigma

interval. If the analytic dependence on the nuisance parameters is incorporated in the classifier,

we could ameliorate the situation by training with larger values of the parameters like we did in

this paper to reconstruct the small EFT effects. Exploring this direction is left to future work.
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A The general Quadratic Classifier

Any quadratic-order real polynomial of n−1 variables ci, i = 1, . . . n−1, with arbitrary constant,

linear and quadratic terms, can be written as a quadratic form in the n-dimensional variable

v(c) = (1, c1, . . . , cn−1)T . (37)

Namely, we write the polynomial as

P (c) = vT (c)Av(c) , (38)

with A a generic n-dimensional real symmetric square matrix.

If P (c) is non-negative for any value of c, it is easy to show that the matrix A must be

positive semi-definite. Being real, symmetric and positive semi-definite, it is possible to use the

Cholesky decomposition for A, and write it as

A = LTL , (39)
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where L is a upper-triangular (i.e., Lij = 0 for j < i) real matrix. Therefore the most general

positive quadratic order polynomial reads

P (c) = vT (c)LTLv(c) =

n∑
i=1

 n∑
j=1

Lijvj(c)

2

=

n∑
i=1

Li1 +

n∑
j=2

Lijcj−1

2

, (40)

which is manifestly non-negative because it is the sum of square terms. Moreover for c = 0,

since Li1 = L11δi1, we have P (0) = L2
11. The Cholesky decomposition is unique up to sign flips

of the rows of L. Rather than resolving this ambiguity, for instance by choosing the diagonal

entries of L to be positive, we adopt eq. (40) without further constraints as the most general

(though redundant) parametrization of P (c).

The EFT differential cross section is a positive quadratic polynomial in the Wilson Coefficient

ci at each phase-space point x, and it reduces to the SM cross section for c = 0. It must therefore

take the form

dσ0(x; c) = dσ1(x)
n∑
i=1

δi1 +
n∑
j=2

λ(x)ijcj−1

2

, (41)

with λ(x) an upper-triangular matrix of real functions. If only one c parameter is present (i.e.,

n = 2), this reduces to eq. (10) with the identifications

λ(x)12 = α(x) λ(x)22 = β(x) . (42)

The Quadratic Classifier that generalizes eq. (12) is thus defined as

f(x, c) ≡ 1

1 +
n∑
i=1

[
δi1 +

n∑
j=2

n(x)ijcj−1

]2 , (43)

in terms of an upper-triangular matrix n(x) of real-output Neural Networks.

B Minimization of the parametrized loss

In the Large Sample limit, the loss function in eq. (13) becomes

L[n(·)] LS
=
∑
c∈C

{∫
dσ0(x; c)[f(x, c)]2 +

∫
dσ1(x)[1− f(x, c)]2

}
, (44)

with the Quadratic Classifier f defined in eq. (43). By simple algebraic manipulations, this can

be rewritten as

L[n(·)] LS
=
∑
c∈C

{∫
dσ1(x)dσ0(x; c)

dσ1(x) + dσ0(x; c)
+

∫
[dσ1(x) + dσ0(x; c)]

[
f(x, c)− 1

1 + r(x, c)

]2}
, (45)

with r(x, c) = dσ0(x; c)/dσ1(x). The first integral is independent of f and thus it is irrelevant

for the minimization of the loss. The second one is the integral of a non-negative function of x

which attains its global minimum (i.e., it vanishes) if and only if

f(x, c) = fmin(x, c) =
1

1 + r(x, c)
, ∀ c ∈ C . (46)
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By using eq. (41), and comparing with eq. (43), we immediately conclude that the configuration

n(x)ij = λ(x)ij is a global minimum of the loss and that this minimum is unique provided

the set C contains at least two distinct non-vanishing elements. More precisely, this holds only

up to sign ambiguities, associated with those of the Cholesky decomposition. However this is

irrelevant because the ambiguity cancels out in f , and in turn it cancels out in the reconstructed

distribution ratio r̂(x, c) = 1/f̂(x, c)− 1.

We have shown that the Quadratic Classifier reconstructs the distribution ratio exactly (in

the Large Sample limit and for infinitely complex Neural Network) at the global minimum of the

loss, and that this minimum is unique. Notice however that we could not show that the Large

Sample limit loss does not possess additional local minimums, as it is instead readily proven for

the standard classifier of Section 2.1 by variational calculus.
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