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Abstract. Cosmic ray muons are a penetrating component of extensive air showers created in
the Earth atmosphere by the interaction of highly energetic primary particles, mostly protons,
which continuously bombard our Planet. The secondary cosmic radiation is the result of the
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complex interplay between the production cross section and the interaction mechanisms with the
atmosphere (including the energy loss, multiple scattering and particle decay). Cosmic muons
have been considered since several decades as a powerful probe to exploit our environment,
from muography of volcanoes to absorption radiography of possible hidden rooms inside large
structures, such as Pyramids, to the detection of high-Z illicit nuclear materials inside containers
and many other applications of social interest.
This paper discusses the possibility to employ the Multigap Resistive Plate Chambers (MRPC)
of the Extreme Energy Events (EEE) Project as muon tracking detectors to monitor the
long term stability of civil buildings and structures when used in conjunction with additional
detectors. For this application the average direction of the cosmic muon tracks passing through
the MRPC telescope and an additional detector located some distance apart in the same building
may be reconstructed with good precision and any small variation over long time acquisition
periods may be monitored. The performance of such setup is discussed and experimental results
from first coincidence measurements obtained with a 40 x 60 cm2 scintillator detector operated
in the same building with one of the EEE telescopes, at about 15 m vertical distance from it,
are presented. Simple Monte Carlo and GEANT simulations were also carried out to evaluate
typical acceptance values for the operating conditions employed so far, to extrapolate to other
geometrical configurations, and to evaluate multiple scattering effects.

1. Introduction
Cosmic ray muons are created by high energy primary cosmic radiation, mostly made of protons,
coming from the Sun and from the outer Galaxy when striking the Earth’s atmosphere. The
properties of the secondary cosmic radiation are studied since their discovery a long time ago.
As it is well known, in fact, the flux reaching the surface of the Earth is about 10 000 µ/(min
m2) and the mean muon energy a.s.l. is around 3-4 GeV. Besides the common use of cosmic
rays in nuclear and elementary particle physics for detector testing and calibration and for the
alignment of detectors in the very complex apparata used in this field, cosmic muons have also
been considered since several decades as a powerful probe to many applications in physics and
engineering fields. Muons are heavy particles and do not undergo nuclear interactions, so they
are highly penetrating in matter and their average energy is sufficient to penetrate tens of meters
of rock. Thanks to this peculiarity, cosmic muons are used for muography of volcanoes and for
absorption radiography of possible hidden rooms inside large structures, such as Pyramids,
but also for the detection of high-Z illicit nuclear materials inside containers [?]. One of the
most recent applications is the muon tomography, in which the angular scattering that every
muon undergoes when crossing matter is exploited. While the absorption technique requires the
measurement of the muon position and direction only downstream of the object to be inspected,
the technique based on muon scattering requires the measurement of muon position and direction
both upstream and downstream, to measure the single muon angular deviation.
Recently, it has been suggested [?] that muons may also provide a way to monitor alignment and
possible long term deformations of large structures, such as historical buildings or other large civil
structures. The basic idea behind this possibility is to employ a set of position-sensitive detectors
fixed to different parts of the structure and reconstruct the muon tracks passing through them.
Any misalignment between the positions measured in all detection planes with respect to the
original alignment condition could signal a mechanical shift of a part of the structure with respect
to other parts. A possible shift in the relative position of the two devices can be investigated
on a long-term data acquisition basis, thus allowing to evidence long term instability of the
structure.
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2. The method: advantages and limitations
The possibility of using cosmic muons to monitor long-term stability of civil structures is
particularly useful when traditional methods, for instance based on laser alignment or metal
wires stretched between various points in the structure, cannot be easily employed. This may be
the case when the regions undergoing possible shifts are not optically in view due to interposed
materials or being located in different floors of the building. A detailed study of this method
has been pursued over the last years by the Brescia-Pavia group [?, ?, ?, ?] and applied to
the problem of monitoring an important historical building, namely Palazzo della Loggia in
Brescia (Italy), as a case study. Simulation studies for this application have demonstrated that
resolutions of the order of 1 mm could be achieved in about one week data taking with a proper
experimental setup, and prototype detectors have also been tested [?].
Possible disadvantages of this technique are associated with the limitations of the tracking
detector (space and angular resolution) and with the unavoidable physics mechanisms affecting
muon propagation between the two detectors, especially multiple scattering effects. This limits
the effective sensitivity of the method, even in presence of an ideal reconstruction of muon
tracks by the detectors, and it is an important aspect to be considered when a large amount
of heavy material is interposed between the detectors. The effective solid angle subtended by
the additional detector with respect to the main tracking device and the detection efficiency of
such detectors are also points of concern, since they largely determine the overall acquisition
time needed to reach a given angular resolution, hence the sensitivity of the method. Also
the intrinsic stability of all main detection components (detector tracking efficiency, electronics
stability, ...) over long measurement periods has to be checked, since small variations of the
detector parameters could result in a slight change of the angular distribution of the tracks,
thus being indistinguishable from real mechanical movements of the detector position.
The Extreme Energy Events Collaboration [?] has built and operated since more than ten years
a large number of cosmic ray telescopes based on Multi-gap Resistive Plate Chambers in the
framework of a project with both educational and scientific aspects. Most of these detectors,
built at CERN by high school teams, are presently installed in high school sites over the Italian
territory, whereas few of them are located at CERN and in Physics Departments and INFN
sites. Due to the good tracking capability of the EEE MRPC detectors, we recently made a
preliminary investigation of the possibility to employ such detectors, in conjunction with an
additional scintillator, for applications in this area [?], as described above. To this aim, a set
of measurements was carried out with one of the EEE telescopes, located in the underground
floor of the Physics Department in Catania and the POLA-01 detector [?], based on two layers
of scintillators covering a 40 x 60 cm2 sensitive area, which was located at the third floor of the
bulding, at a vertical distance of about 15.6 m from the EEE telescope, with a large amount of
material between the two detectors, due to the concrete layers separating the different floors.
Figure ?? shows a sketch of the detector setup used for this purpose. Measurements were
performed in various locations during a period of approximately two months.

3. The experimental setup
The cosmic ray telescopes employed by the EEE Collaboration have been described in detail
in many previous papers [?, ?, ?, ?, ?, ?]. The basic structure of each telescope includes three
Multi-gap Resistive Plate Chambers (MRPC), with 158 x 82 cm2 sensitive area. MRPCs are a
development of Resistive Plate Chambers (RPC), where the gas gap is divided into sub-gaps.
Particles passing through the detector may create avalanches in several or all gaps and the signal
collected on the external cathode and anode is the analogue sum of avalanches in all gaps, with
a time jitter in the rise time smaller than that expected from a single gap. As a consequence, a
much better time resolution and detection efficiency are obtained by the use of multi-gap devices.
The EEE MRPC chambers have been specifically designed for the requirement of the project,
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Figure 1. Sketch of the configuration of two detectors used to investigate long-term stability
of civil structures. The MRPC-based tracking detector of the EEE project is coupled to an
additional one, which is a scintillator-based detector, built in the framework of the Polarquest
project.

with a low construction cost and easy assembling procedures, which are carried out at CERN by
high school teams under the supervision of EEE researchers. The detector structure has six gas
gaps, obtained by a stack of glass sheets, separated by narrow (300 µm) gaps, and treated with
resistive painting. A high voltage is applied only to the external sheets, while leaving the inner
sheets floating. Chambers are usually operated with a gas mixture of 98%/2% of Freon and
SF6, with a continuous flow and at the atmospheric pressure. High voltage to the chambers is
provided by DC/DC converters, with most of the chambers operating in the range 18 to 20 kV.
The (anode and cathode) strips collect the signals induced by the particles, providing position
information along one direction. The information along the other coordinate is obtained by the
time difference between the arrival of the signal at the two strip ends. Signals from left and
right front-end cards are used to build a six-fold coincidence between the three chambers to
provide the trigger to the data acquisition. Each event is time stamped by means of the GPS
information, with a time resolution of about 40 ns. Time and space resolution of the MRPC
chambers were measured by a comparison between the information provided by the bottom and
top chambers with that extracted by the middle chamber. The average time residuals (over all
the telescopes in the network) from this comparison gave a σ∆t of 238 ps. The longitudinal
(along the strip direction) space resolution is 0.84 cm, while the transverse space resolution was
found to be 0.92 cm, in agreement with the expected value, due to the strip pitch. Detection
efficiency of the chambers, which depends on the operational conditions, has been evaluated as
a function of the applied high voltage. For most of the chambers, this efficiency is better than
90%. The overall performance of these chambers is then more than adequate for a possible
use as muon tracking devices, in coincidence with smaller size detectors placed some distance
apart, as it is required by this specific application. For this investigation we employed one of
such telescopes, named CATA-01, installed and taking data since more than 10 years in the
underground floor of the Physics Department in Catania. Figure ?? (left) shows a picture of
this MRPC telescope.
A scintillator based detector, named POLA-01, was employed for these measurements as
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Figure 2. Left. Picture of CATA-01 EEE telescope, consisting in three MRPC chambers. It is
located in the underground floor of the Physics Department at the University of Catania. Right.
Scintillator-based detector built in the framework of the Polarquest project, named POLA-01.
For the measurements described in this paper, the POLA-01 detector was located in various
parts of the third floor of the Physics Department.

additional detector. POLA-01 is one of three equal detectors, built by students from Italy,
Norway and Switzerland within the Polarquest project, to carry out cosmic ray measurements
in various environments around the world. This detector is based on two parallel layers of
plastic scintillators separated by 10 cm, each segmented into four tiles with individual size
of 20 x 30 cm2, as shown in the sketch of Fig. ??. The overall dimensions of the detector,
which is enclosed in a light-tight metal box, are about 56 x 78 x 19.5 cm3, with a weight of
about 65 kg. Each scintillator tile is readout by two Silicon Photomultipliers placed on opposite
corners and operating in coincidence. Custom-made front-end and acquisition electronics for
this detector includes a discriminator, TDCs and a trigger logic based on a FPGA. The control
of the system is achieved by means of a Raspberry Pi 3+ microcomputer [?]. Several sensors to
monitor environmental pressure, temperature and humidity, as well as an accelerometer are also
included in the setup. Time tagging of the events is performed by a GPS, providing absolute
time stamp of each collected event with a resolution of about 20 ns. The average count rate of
the POLA-01 detector at the sea level is about 30 Hz. Further details on this detector and the
measurement campaigns where such detector was or will be used may be found in Ref. [?].

4. Data taking
During the set of measurements carried out in the spring 2019, the MRPC telescope and the
POLA-01 scintillator were operated independently, each one taking data and time-stamping
collected events by means of the GPS time information. Time correlation was achieved by
offline analysis of the data provided by the two detectors in the same acquisition period. The
absolute time of each event in the time-stamping procedure is usually obtained by the number
of clock cycles elapsed since the last Pulse Per Second (PPS) precision signal derived from the
satellites.
Tracks due to the same particle traversing both detectors were selected by means of cuts on the
zenithal and azimuthal angles taking into account the size of the two detectors and their relative
position, within a coincidence time window of ± 600 ns. Additional track quality conditions
were also introduced, imposing realistic cuts on the χ2 of the tracks being reconstructed in the
EEE telescope and on the time-of-flight measured between the top and the bottom chambers.
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Single-track events were selected in both detectors for this analysis, to avoid the possibility to
introduce events with more than one reconstructed track. Moreover, the availability of a reliable
GPS information was also imposed in both detectors.

5. Measurements and results
For each event detected in coincidence by the two detectors, the track orientation (θ, φ) - as
reconstructed by the MRPC EEE telescope - was considered. The distribution of these variables
depends on the relative position of the movable scintillator detector with respect to the EEE
telescope, fixed to ground. We have to consider that due to the geometrical acceptance of the
EEE telescope, i.e. zenithal angles from the vertical (θ=0) to about θ = 40◦, events originating
from the same muon passing through both detectors may be detected only if the scintillator is
placed within the acceptance cone of the reference telescope. In Fig. ?? a sketch of the relative
position of detectors located in the Physics Department in Catania University is shown. In this
latter case we expect a narrow distribution of zenithal (and also of azimuthal) angles around the
most probable track direction which intersects both detectors. However, due to the possibility of
detecting also two correlated muons from the same extensive air shower, we expect an additional
broad angular distribution which spans a much larger angular range. This is actually observed
in Fig. ?? (right), which shows the zenithal angular distribution measured with the POLA-01
scintillator located within the acceptance cone of the EEE telescope (with its center at X =
-7.69 m, Y = 5.44 m, Z = 15.6 m with respect to the center of the middle chamber of the EEE
telescope). As it is seen from Fig. ?? (right), the main peak located at about 31◦ originates from
the same muon track intersecting both detectors, whereas the broad distribution which extends
from 0 to about 40 degrees is the contribution of two individual, time correlated muons from the
same shower. When the scintillator is moved outside the acceptance cone of the EEE telescope,
only the broad component may be seen, while the narrow peak disappears. An example of such
situation is shown in Fig. ?? (left), corresponding to a location of the POLA-01 scintillator in
the position X = -19.82 m, Y = 5.44 m at the same height Z = 15.6 m.
After a few preliminary tests, a first set of measurements was performed over a period of several
weeks, with the POLA-01 scintillator shifted in various positions (∆X = -5, -10 and -20 cm)
with respect to the original location (X = -7.69 m, Y = 5.44 m). For each measurement, the
number of coincident events was extracted after applying cuts in the time difference spectrum
(±600 ns with respect to the centroid), in the zenithal and azimuthal angle spectra (28◦ < θ
< 34◦, 200◦< φ < 230◦) and on the quality of tracks as reconstructed in the EEE telescope.
The average values of the zenithal and azimuthal angles were obtained by a Gaussian fit of the
narrow peaks in these spectra. To monitor possible day-to-day variations in these centroids, we

Figure 3. CAD drawing of a Polarquest detector. As described in the Text, the POLAR
detectors consist in two parallel layers of plastic scintillators, each one segmented in four tiles.
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Figure 4. Sketch of the two possible configurations for the data acquisition: on the left POLA-
01 is located outside the acceptance cone of CATA-01 whereas on the right it is located inside.

Figure 5. Zenithal angular distribution of coincident events collected using both the tracking
detector CATA-01 and the scintillator POLA-01. On the left the background due to independent
muons is shown, whereas on the right the peak due to events passing through both detectors
lays on the background.

Figure 6. Day by day variation in the zenithal angular distribution.
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Figure 7. Sketch of the relative angle estimate.

extracted the daily average values of the zenithal angle, which are shown in Figure ??. As it is
seen from Figure ??, while the day-to-day variations are not negligible (of the order of 0.2◦), the
average values obtained after only one week for each position allow to evidence some promising
difference, at least in the zenithal angle, even for a shift of the order of 5–10 cm. To combine
the zenithal and azimuthal angle differences into a single information, the vector sum of all
selected tracks for each given position was evaluated and the 3D relative angle with respect to
the reference orientation in the original position was considered (see Fig. ?? for a sketch of this
relative angle estimate). In Table ?? the results of such relative 3D shifts with respect to the
original position are reported. A clear shift is observed in the relative angle when a linear shift

Table 1. Results of the relative 3D angle shifts with respect to the original position, obtained
by moving the POLA-01 detector along the x direction.

∆x shift (cm) Acquisition time (hours) Relative 3D angle shift (deg)
-5 141.7 0.31 ± 0.16
-10 288.9 0.24 ± 0.12
-20 191.7 0.44 ± 0.12

of 10 cm is introduced (from ∆X = -10 cm to ∆X = -20 cm), while, also due to the limited
statistics (4 days) for the measurement carried out at ∆X = -5 cm, comparable values of the
relative angle are obtained for ∆X = -5 cm and -10 cm.
This first set of measurements allows then to roughly estimate the sensitivity of the method
(5–10 cm) in such (non-optimized) conditions, i.e. with a limited data taking period of the
order of one week for a given position, and with a relatively small solid angle subtended by
the scintillator, due to the large vertical distance and with a large X- and Y-offset between the
geometrical centers of the two detectors.
The possible increase in statistics (hence improved sensitivity) which can be obtained by a proper
positioning of the two detectors was further investigated by means of geometrical simulations
and an additional measurement carried out in a different position of the POLA-01 scintillator,
still keeping the same vertical distance, as discussed in the next Section.

6. Optimisation of relative position
Basic geometrical simulations of the correlated passage of particles through both detectors,
located at various relative positions, were carried out in order to better understand the detection
conditions and improve the sensitivity of the method. Muon tracks were generated with a
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Figure 8. Detection acceptance as a function of the position of POLA-01 (along the X-direction)
with respect to the EEE tracking telescope, for two different Y positions (Y = 0 and Y = 5
m). A vertical distance of 15.6 m was assumed in the simulation. The black stars show the two
positions exploited during the measurements, showing an increase of roughly a factor 8 between
the two acceptance values.

realistic dN/dθ = sinθ cos2θ dependence upon the zenithal angle [?], and a generation vertex
uniformly distributed along the active surface area of 1.58 x 0.82 m2 of the middle chamber of
the EEE telescope, whose center was assumed as the origin. For each location, the geometrical
acceptance, defined as the ratio between the number of tracks passing through both detectors
and the number of generated tracks, was extracted. Typical examples are shown in Figure ??,
which reports values obtained as a function of the shift along the X-position, for two different
Y-positions (Y = 0 and Y = 5 m). Also marked in the same plot (black stars) are the locations
of the two experimental measurements, which are coherent with the expected increase in the
geometrical acceptance. Choosing an even closer (X-Y) position of the scintillator with respect
to the EEE telescope, i.e. closer to the vertical, could easily result in a factor 10 increase in the
acceptance with respect to the original exploited position. In terms of sensitivity, this means
the possibility to reach a sensitivity of a few cm in just one day data taking, hence of a few mm
in data taking periods of the order of months, even at a non-negligible vertical distance between
the two detectors.
In order to test the predictions of the simulations, increasing the statistics of the measurement
and the sensitivity of the method, an additional measurement was carried out moving the POLA-
01 detector in a different position but in the same floor, thus keeping the same vertical distance.
In the original location (X = -7.69 m, Y = 5.44 m) several small shifts in X (-5, -10, and -20
cm) were considered, while the second measurement was carried out for a single position (X =
0, Y = -2.5 m) of the scintillator with respect to the geometrical center of the EEE telescope,
again at Z = 15.6 m (third floor of the building). Comparing the result of this measurement,
which gave a number of coincident tracks of 4030 in a time interval of about 6 · 105 s, i.e. a
rate of 6.72 mHz, with that obtained at (X = -7.69 m, Y = 5.44 m), giving an overall number
of 2720 events in a time interval of about 3.4 · 106 s, i.e. a rate of 0.81 mHz, roughly a factor
of 8 increase in the coincidence rate was obtained, in agreement with expectations from simple
geometrical simulations.
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7. Conclusions
In this work the possibility of monitoring the stability of civil structures on a long-time scale
with the use of a tracking detector coupled to an additional one is investigated. For this purpose
one of the MRPC telescopes of the EEE project has been used as tracking detector and coupled
to the scintillator detector built in the framework of the Polarquest project, i.e. POLA-01.
The performance of such method has been evaluated with a first set of measurements carried
out in the Physics Department of the University of Catania. Additionally, geometrical Monte
Carlo simulations have been carried out in order to estimate the effect of the relative position
between the detectors. It turned out that the optimal position between detectors is such that
the additional detector is located closer to the vertical of the fixed tracking detector. This allows
to increase the statistics by a factor at least 8 and therefore to improve the sensitivity of the
method even for shorter data taking periods. In conclusion, the sensitivity of the method has
been roughly estimated of the order of few mm for a data taking period of several weeks, if the
relative position between the detectors has been optimized.
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