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We consider the extension of the transverse–momentum (qT ) subtraction method at next-
to-next-to-next-to-leading order (N3LO) in perturbative QCD. While all the qT -subtraction
ingredients at qT 6= 0 are known in analytical form, the third-order collinear functions and
helicity-flip functions, which contribute only at qT = 0, are approximated using a prescription
which uses the known result for the total Higgs boson cross section at this order. As a
first application of the third-order qT -subtraction method, we present the N3LO rapidity
distribution of the Higgs boson at the LHC.

1 Introduction

Measurements at the LHC present an impressive and continuously improving quality, making
even the next-to-next-to-leading order (NNLO) QCD perturbative accuracy not sufficient to
match the demands of the LHC data. Processes which manifest such necessity to be computed
beyond NNLO, exhibit next-to-leading order (NLO) corrections comparable in size with the
leading order (LO), and where their NNLO corrections still exhibit large effects such that the
size of the theoretical uncertainties remains larger than the experimental uncertainties.

This motivated a new theoretical effort to go beyond NNLO, in order to include the next
perturbative term: the next-to-next-to-next-to-leading order (N3LO). Sum rules, branching frac-
tions1 and deep inelastic structure functions2 have been known to this order for quite some time.
At present, the only hadron collider observables for which N3LO QCD corrections have been
calculated are the total cross section for Higgs boson production in gluon fusion 3,4, bb̄ fusion
5, in vector boson fusion 6 and Higgs boson pair production 7 in vector boson fusion. Recently,
first steps have been taken towards more differential observables by computing several N3LO
threshold expansion terms to the Higgs boson rapidity distribution in gluon fusion 8,9. In addi-
tion, the projection-to-Born method has been recently extended to N3LO 10 for jet production
in deep inelastic scattering.

In this proceeding we present the first extension of the qT -subtraction method 11 at N3LO
12 and we will apply it, to compute Higgs boson production differentially in the Higgs boson
rapidity at N3LO accuracy. The proceeding is organized as follows: in Sec. 2 we recall briefly
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the main ideas of the qT -subtraction formalism and we present the necessary ingredients up to
N3LO, specifying which elements are known analytically and identifying the missing coefficients
at N3LO. Results for the N3LO Higgs boson rapidity distribution and the associated theoretical
uncertainty is presented in Sec. 3. Finally, in Sec. 4 we summarize our results.

2 The qT -subtraction formalism at N3LO

We consider the inclusive hard scattering reaction

h1(p1) + h2(p2)→ F ({qi}) +X , (1)

where h1 and h2 denote the two hadrons which collide with momenta p1 and p2 producing the
identified colourless final-state system F , accompanied by an arbitrary and undetected final state
X. The colliding hadrons have centre-of-mass energy

√
s, and are treated as massless particles

s = (p1 + p2)
2 = 2p1 · p2 . The observed final state F consists of a generic system of non-QCD

partons composed of one or more colour singlet particles (such as vector bosons, photons, Higgs
bosons, Drell–Yan (DY) lepton pairs and so forth) with total invariant mass M (M2 = q2 ),
transverse momentum qT with respect to the direction of the colliding hadrons, and rapidity in

the centre-of-mass system of the hadronic collision, Y (Y = 1
2 ln

(
p2·q
p1·q

)
).

Our strategy is based on the following steps: we first note that, at LO, the transverse
momentum qT =

∑
i qTi of the triggered final state F is exactly zero. As a consequence, as

long as qT 6= 0, the NiLO contributions a are actually given by the Ni−1LO contributions to the
triggered final state F + jet(s).

Therefore, the cross section can be written as dσFNiLO|qT 6=0 = dσF+jets
Ni−1LO

, implying that, in the

limit qT 6= 0, the infrared (IR) divergences in our NiLO calculation are those in dσF+jets
Ni−1LO

. Since
we are interested in N3LO cross sections, NNLO IR singularities can be handled and cancelled
by using available NNLO formulations of subtraction methods (in our case, antenna subtraction
13).

The only remaining singularities of N3LO type are associated to the limit qT → 0, and we
treat them by an additional subtraction (qT -subtraction method at N3LO) presented in Ref. 12.

The following sketchy presentation is illustrative; for more details, we recommend the foun-
dational papers 11,14,12. We use a shorthand notation that mimics the notation of Ref. 14. We
define our counter term b as

dσCT = dσFLO⊗ΣF (qT /Q) d2qT , ΣF (qT /Q)→
∞∑
n=1

(
αs

π

)n 2n∑
k=1

ΣF (n;k) Q
2

q2T
lnk−1 Q

2

q2T
. (2)

The function ΣF (qT /Q) reproduces the singular behaviour of dσF+jets in the small qT regime.
In this limit it can be expressed in terms of qT -independent coefficients ΣF (n;k). All the single
coefficient functions which are taking part in the counter term up to N3LO are known analyt-
ically, which ensures a correct and precise numerical cancellation of the IR divergencies (from
real contributions) associated to the small-qT limit. Considering the contribution at qT = 0,
which restores unitary regarding total cross section, the master formula of the qT -subtraction
method is finally:

dσFNiLO = HF
NiLO ⊗ dσ

F
LO +

[
dσF+jets

Ni−1LO
− dσCT

NiLO

]
. (3)

The coefficient HF
NiLO does not depend on qT and it is obtained by the NiLO truncation of the

perturbative function

HF = 1 +
αs

π
HF (1) +

(
αs

π

)2

HF (2) +

(
αs

π

)3

HF (3) + . . . . (4)

aNiLO stands for LO if i = 0, NLO if i = 1, NNLO for i = 2 and finally, N3LO for i = 3 obviously.
bThe symbol ⊗ understands convolutions over momentum fractions and sum over flavour indeces of partons.



At N3LO the hard–virtual functions HF (i), with i = 1, 2, 3 are required by the qT -subtraction
method. The general structure of HF (1) and HF (2) (and their specific coefficient functions which
are part of them) is explicitly known 15,16,17,18,19. The general structure of HF (3) is known 12 but
some of its ingredients are still missing. Nevertheless, within the qT -subtraction formalism, all
these missing coefficients can be inferred for any hard scattering process whose corresponding
total cross section is known at N3LO. This point is discussed in detail in Sec. 3 of Ref. 12.

3 The rapidity distribution of the Higgs boson at N3LO

In this section we present our predictions for the Higgs boson rapidity distribution at the LHC,
applying the N3LO qT -subtraction method presented in Sec. 2 for F = H.

We consider Higgs boson production (M ≡ MH = 125 GeV) in proton–proton collisions
at a centre-of-mass energy of

√
s = 13 TeV in the large-mt limit (mt → ∞). In this limit,

the production of the Higgs boson is described through an effective gluon-gluon-Higgs boson
vertex. Note that we systematically employ the same order in the PDFs (in particular the set
PDF4LHC15_nnlo_mc20) for the LO, NLO, NNLO and N3LO results presented in this proceeding.
The central factorization and renormalization scale is chosen as µ ≡ µR = µF = MH/2. The
theoretical uncertainty is estimated by varying the default scale choice independently for µR
and µF by factors of {1/2, 2} while omitting combinations with µR/µF = 4 or 1/4, resulting in
the common seven-point variation of scale combinations. The contributions dσH+jets in Eq. 3
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Figure 1 – Rapidity distribution of the Higgs boson computed using the qT -subtraction formalism up to N3LO.
The seven-point scale variation bands of the LO, NLO, NNLO and N3LO results are as follows: LO (pale grey fill),
NLO (green fill), NNLO (blue hatched) and N3LO (red cross-hatched). The central scale (µ = MH/2) at each
perturbative order (except LO) is shown with solid lines. In the lower panel, the ratio to the NNLO prediction
is shown. While the bands for the predictions at LO, NLO and NNLO are computed with the seven scales as
detailed in the text, the N3LO band is obtained after considering also the uncertainties due to the variation of
the qcutT and the HH(3) coefficient in the N3LO-only contribution.

are computed with the parton-level event generator NNLOJET, 21 which provides the necessary
infrastructure for the antenna subtraction method up to NNLO. 13 The contributions HH and
dσCT (in Eq. 3) are calculated using a new Monte Carlo generator HN3LO. 22



Figure 1 shows the rapidity distribution of the Higgs boson at LO (pale grey fill), NLO (green
fill), NNLO (blue hatched) and N3LO (red cross-hatched). The central scale (µ = MH/2) is
shown as a solid line while the bands correspond to the envelope of seven-point scale variation.
At N3LO, the band additionally includes the uncertainties due to qcutT and HH(3) as described in
Sec. 4.2 of Ref. 12 Going from LO to NNLO, the scale µ = MH/2 is always at the center of the
respective scale variation band in Fig. 1. The central prediction at N3LO, on the other hand,
almost coincides with the upper edge of the band, as was already observed for the total cross
section 3,4, see Table 2 and Fig. 3 of Ref. 12 Figure 1 shows a substantial reduction in the size of
the scale variation band at N3LO, both in the total cross section and in differential distributions.
Comparing Fig. 1 with the results obtained in Ref. 9 we observe very good agreement between
the two calculations.

4 Conclusions and outlook

In this proceeding we have presented the extension of the qT -subtraction method at N3LO applied
(for first time) to the rapidity distribution of the Higgs boson at the LHC. We calculate the
yH distribution at N3LO employing a seven-point scale variation and carefully assess systematic
errors arising form different qcutT and the approximation made on HH(3). Compared to the
NNLO yH distributions, we observe a large reduction of theory uncertainties by more than 50%
at N3LO. The scale variation band at N3LO stays within the NNLO band with a flat K-factor of
about 1.034 in the central rapidity region (|yH | ≤ 3.6). Both the systematic error analysis and
the phenomenological predictions confirm that our calculations at N3LO using qT -subtraction
formalism are well under control. The approximation related to some of the coefficients functions
of HH(3) in our approach, can be easily replaced by the full analytical results once available.
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