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1 Introduction

Correlation functions in conformal field theories are built out of fundamental objects known
as conformal blocks. These objects are fixed perturbatively by conformal symmetries and
play a key role in various lines of research, including the AdS/CFT correspondence and
the conformal bootstrap. In two spacetime dimensions, owing to an infinite-dimensional
Virasoro symmetry, the conformal block has a rich structure. A closed form for the blocks,
however, still eludes us except in a handful of special cases.

For example, at large-c (with conformal dimensions also scaling with c) the Virasoro
blocks exponentiate [1, 2], and in this case a closed form for the blocks can be found, by
using the monodromy method or the oscillator formalism [3].1 The monodromy method
has also been used to determine blocks for heavy-light external dimensions [4], as well as
to determine the blocks for asymptotically heavy intermediate dimensions [5].

In this paper, we study Virasoro conformal blocks in the regime of heavy intermediate
exchange, i.e. we study the blocks as an expansion in inverse powers of the conformal dimen-
sion of the exchanged operator. This study is similar in spirit to other asymptotic analyses

1For contrast, when conformal dimensions are held fixed, the leading answer for blocks on the sphere in
the large-c limit is given by the global block, for which the closed form is known in terms of hypergeometric
functions.
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in physics, where various simplifications and interesting features arise when quantities of
interest are expanded in a large parameter, for example the rank of a gauge group.

Our work draws on a number of themes, each of which we now discuss.

Zamolodchikov recursion. An efficient means of computing the 4-point Virasoro block
on the plane is via the recursion relations discovered by Zamolodchikov [1, 6]. This recur-
sion is based on the structure of poles and residues of the block arising due to the presence
of degenerate representations. The block can then be written as a sum over appropriately
weighted poles of either the exchanged conformal dimension hp, or the central charge c. In
either case, the terms in the sum can be recursively evaluated, allowing for a perturbative
determination of the block as an expansion in the cross-ratio z, or in the elliptic nome
q associated to the pillow coordinates. Similar strategies have been used to derive recur-
sive representations of Virasoro blocks on the torus [7, 8] and on higher genus Riemann
surfaces [9].

In both cases, however, the full non-perturbative (in either z or in q) answer for the
block is beyond reach. It would therefore be of interest to find further constraints satisfied
by conformal blocks that, when combined with Zamolodchikov recursion, can be used
to determine the block non-perturbatively (at least in principle). This brings us to the
additional asset of modularity, to which we now turn.

Modularity. It is well-known that conformal correlators enjoy modular properties. In
the context of torus 1- and 2-point functions, this property has been used to find asymp-
totic formulae for OPE coefficients, pioneered by [10], and later adapted to various other
cases [11–14]. Additionally, since crossing symmetry of the full 4-point sphere correlator
can be expressed as a modular property, asymptotic constraints can also be obtained from
bootstrapping the high “temperature” result [15].

Conformal correlators are built out of conformal blocks weighted by OPE coefficients.
On either side of the crossing equation, blocks in dual channels (or dual tori) appear.
A remarkable fact about two-dimensional CFTs is the existence of integral kernels which
relate S-dual blocks [16, 17]. These have been used recently to bootstrap the CFT data [18–
20]. It seems unlikely, however, that the Virasoro blocks themselves (on the torus, or on
the sphere in the elliptic representation) will have any definite modular properties.2 If such
a property exists in general, even partially, one might hope that a closed form expression
for these blocks is possible. In this work we demonstrate that

• when the Virasoro blocks are expanded in a specific linear combination of the inter-
mediate conformal dimension and the central charge, the coefficients of the expansion
can be resummed into quasimodular forms of PSL(2,Z).

• Further, these coefficients are constrained to satisfy a “modular anomaly equation”
that one can use to recursively determine higher orders in this expansion, with min-
imal input from Zamolodchikov recursion.

2See, however, [21] for a recent development.

– 2 –



J
H
E
P
1
1
(
2
0
2
0
)
0
1
0

• Finally, from this expansion one can read off the coefficients of the large-hp expansion
straightforwardly.

The closed form for the 4-point block on the sphere at leading order in large-hp was
recently obtained using Zamolodchikov recursion in [22]. This was done by computing
the first few orders in the q-series explicitly and noting that it can be resummed into
the quasimodular weight-2 Eisenstein series, E2(τ). Indeed, a similar result was originally
established for both the four-point block on the sphere and the one-point block on the torus
by [23–25]. We find that in a large-hp expansion of the block, the coefficient of h−np can be
written as a linear combination of all possible quasi-modular forms of weights 2n and lower.
As a result, these coefficients do not have definite modular weight. We shall show explicitly
that a suitable reorganization of the large-hp expansion makes the modular features more
manifest. Furthermore, the closed form expressions in terms of the Eisenstein series allow
us to specify the block on the entire unit disk in the q-plane.

The fact that the coefficients of the large-hp expansion are constrained to satisfy a
modular anomaly equation is explained by appealing to the 2d/4d correspondence [26].
This is briefly discussed below.

Gauge theories, the 2d/4d correspondence, and a synthesis. Much effort has
been directed towards understanding instanton effects in N = 2 supersymmetric gauge
theories. Notably, techniques have been developed to localise path integrals onto instanton
moduli spaces, and further onto sets of isolated points, thereby allowing for their explicit
evaluation, see [27] for an expansive review. These computations were made possible by
the introduction of the Ω-background — a specific supergravity background parametrised
by (ε1, ε2) and with non-trivial graviphoton field strength — which has the effect of regu-
larising the volume of spacetime. Against this background, one can compute the deformed
instanton partition function Zinst. (ε1, ε2), from which the prepotential of the undeformed
gauge theory is given by

Finst. = − lim
ε1,ε2→0

ε1ε2 logZinst. (ε1, ε2) . (1.1)

It has been known for some time now that the instanton prepotential Finst. in a semiclassical
expansion (for large values of the Coulomb moduli) can be resummed into quasi-modular
forms of the relevant S-duality group [28–30].

Perhaps more interestingly, one can consider a deformed prepotential

Finst. (ε1, ε2) = −ε1ε2 logZinst. (ε1, ε2) =
∞∑

n,g=0
F (n,g) (ε1 + ε2)2n (ε1ε2)g , (1.2)

where the F (n,g) are amplitudes of anN = 2 topological string on a Calabi-Yau background,
see [31] and references therein. These amplitudes satisfy a holomorphic anomaly equation
which allows for them to be constructed recursively.

In its simplest avatar, the 2d/4d correspondence relates the 4-point spherical block
of a two-dimensional conformal field theory to the instanton partition function of a four-
dimensional N = 2 supersymmetric gauge theory with gauge group SU(2) and Nf = 4
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fundamental hypermultiplets [26]. Another incarnation of the same correspondence es-
tablishes a relation between the 1-point torus block and instanton partition function of
an N = 2 supersymmetric gauge theory with gauge group SU(2) and a massive adjoint
hypermultiplet [32].3 In particular, the holomorphic anomaly equation relevant to these
superconformal gauge theories, studied for example in [33–35], fixes the anomalous modular
transformation properties of the prepotential.

We are now in a position to weave together the two threads running through our
introduction — conformal blocks of two-dimensional CFTs and deformed instanton par-
tition functions of supersymmetric gauge theories — together. Specifically, we can bring
to bear results governing instanton expansions in gauge theories on the conformal blocks
we’re interested in. We observe that the Virasoro conformal blocks are related, via the
2d/4d correspondence, to the deformed prepotential of the appropriate supersymmetric
gauge theory. Since the latter is constrained (or recursively determined) by the modular
anomaly equation, it must be that the blocks themselves exhibit such a recursive struc-
ture. We show that this is indeed the case and the quasimodular structure of the blocks is
non-perturbatively captured by the KPZ differential equation or the diffusion equation.

Outline. In section 2, after a brief introduction to Zamolodchikov recursion, we deter-
mine the subleading contribution in large-hp to the block and find that it can indeed be
written as a polynomial in the Eisenstein series. We perform various checks of our results,
making contact with known exact results. We then comment on the regime of validity of
our results, and also point out that there are more profitable ways to rewrite the confor-
mal block that make quasimodular structures more apparent. Finally, we motivate the
existence of a modular anomaly equation by studying the fusion kernel and the crossing
equation.

In section 3 we elaborate on the 2d/4d correspondence in detail, and establish that
the blocks, when expanded in an appropriate combination of the intermediate exchange
dimension and central charge, do exhibit this recursive structure and are constrained to
satisfy a modular anomaly equation. Our results in this section are largely inspired by
the developments in the study of four-dimensional gauge theories in [34, 35]. Finally, an
algorithm that recursively builds up the block is also presented.

In section 4 we provide an application of our results. We note that in the bootstrap
of [10], it is desirable to have closed-form expressions of torus blocks in the internal exchange
dimension. Using the subleading results for the blocks, we show that one can systematically
find corrections to the asymptotic formula for averaged OPE coefficients.

In section 5 we summarise and discuss possible future directions.

2 Virasoro blocks in the heavy exchange regime

In this section we present the results for the torus 1-point block and the 4-point block on
the sphere in the regime of large intermediate exchanges (hp → ∞). We shall consider

3This is a mass-deformed N = 4 supersymmetric gauge theory, and is also referred to as the N = 2?

theory.
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c > 1 CFTs with Virasoro symmetry. In order to determine the Virasoro blocks, we shall
use the recursion relations discovered by Zamolodchikov [1, 6] for 4-point block and its
adaptation to torus 1-point block [7, 8]. The recursion relations are based on the observation
that when the block is analytically continued as a function of the central charge c or the
intermediate dimension hp, it has poles coming from the singularity structure of degenerate
representations. Using the former pole structures give rise to the c-recursion while using
the latter give rise to the h-recursion.

In the h-recursion, which is utilised in this section, the poles are located at hp = hp,mn,
the dimension of the degenerate representation at level mn, corresponding to a null state.
These null states make the Verma module, of which it is a part, reducible. This happens
since the null state is also a primary, and therefore generates its own Verma submodule.
Further, the descendants of null states are also null. This in turn implies that the residue
at the pole in the h-recursion is proportional to the block itself. However, the intermediate
dimension has now changed to the value at the singularity shifted by the descendant level,
i.e. to hp,mn + mn. This lends a calculable recursive structure to the blocks, allowing for
its perturbative determination as an expansion in the elliptic nome, q = eπiτ , associated
to the pillow coordinates for the 4-point block, or the elliptic nome, q = e2πiτ , associated
with the torus 1-point block.

2.1 Torus 1-point block

We consider the 1-point correlation functions of primaries on the torus. This has a decom-
position in terms of the torus-1 point blocks and OPE coefficients as〈

Oh,h̄

〉
τ,τ̄

= tr
[
Oh,h̄ q

L0−c/24 q̄L̄−c/24
]

=
∑
p

CpOpFhp(q, h, c) F̄h̄p(q̄, h̄, c) . (2.1)

Due to translation invariance, the 1-point function does not have any dependence on the
position coordinate and depends solely on the modular parameter.4

The torus block contains contributions from the Verma module of each intermediate
primary Ohp,h̄p . Its q-series can be constructed by calculating the expectation values of
the primary Oh,h̄ in descendants of Ohp,h̄p . We denote a general descendant state as∣∣∣νhp,N,{ni};h̄p,N̄ ,{n̄i}〉, where {ni} and {n̄i} correspond to specific integer partitions of the
descendant levels N and N̄ respectively. That is,

∣∣∣νhp,N,{ni};h̄p,N̄ ,{n̄i}〉 =
∞∏
i=1

(L−i)ni(L̄−i)n̄i
∣∣∣νhp;h̄p

〉
, (2.2)

and the matrix elements of the external primary operator, Oh,h, in these states is〈
νhp,N,{mi};h̄p,N̄ ,{m̄i}

∣∣∣Oh,h̄ ∣∣∣νhp,N,{ni};h̄p,N̄ ,{n̄i}〉 (2.3)

= CpOp [ρ (hp, N ;h)]{ni},{mi}
[
ρ
(
h̄p, N̄ ; h̄

)]
{n̄i},{m̄i}

.

4Functions of the modular parameter will be indicated directly by the argument τ or indirectly via the
argument q = e2πiτ for the torus 1-point block and q = eπiτ for the sphere 4-point block.
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This expectation value needs to be appropriately normalized by the inner product of the
descendant states, i.e. the elements of the Gram matrix[

Bhp,N
]
{mi},{ni}

=
〈
νhp,N,{mi}

∣∣νhp,N,{ni}〉 . (2.4)

This denotes the Gram matrix of descendant states (built from holomorphic Virasoro gen-
erators only) at level N . Therefore, the q-expansion of the conformal block is given by

Fhp(q, h, c) = qhp−c/24
∞∑
n=0

qn
∞∑
N=0

FNhp

with FNhp = B−1
hp,N

ρ (hp, N ;h) . (2.5)

Here, the FNhp is defined via matrix multiplication. Although the q-series can be obtained
systematically by computing the inner products above, a computationally faster means to
achieve the same is to use the recursive representation of the block. In this representation,
the block is written as

Fhp(q, h, c) = qhp−
c−1
24

η(q) H(hp, h, c, q) . (2.6)

Here, η(q) is the Dedekind η-function and the combination qhp−
c−1
24 /η(q) is the character

of a primary with conformal dimension hp. The factor H(hp, h, c, q) is to be determined
recursively. We avoid repeating the details of the recursion process here and refer the
reader to the original work [7, 8].

We use the recursion for H(hp, h, c, q) and reorganize the q-series into a large-hp ex-
pansion. It can be checked to sufficiently high orders in the q-series that each order in the
large-hp expansion can be resummed into polynomials in the Eisenstein series.5 The first
few orders are shown below

Hhp(q) = 1 + h(h− 1)
2hp

[1− E2(q)
24

]
+ h(h− 1)

8h2
p

{
((h− 2)(h− 5)− c)

[1− E2(q)
24

]2

+(2h+ c− 4)
[

3
320 −

E2(q)
96 − E4(q)

1440 + E2(q)2

576

]}
+O

(
1/h3

p

)
. (2.7)

The first order correction was derived analytically in [10, eq. (80)] (although it wasn’t
written in terms of Eisenstein series). The result for higher orders in the large-hp expansion
is provided in appendix B; it can be seen that each order in the large-hp expansion can be
written in as a linear combination of products of Eisenstein series. The above expression
can also be seen to be correct to very high orders in the q-expansion by using numerical
values for the external dimension h and the central charge c, and then comparing it with
the results from the recursive algorithm. The emergence of these quasimodular forms is

5Practically, the specific expressions at each order in 1/hp can be derived by making an ansatz involving
a linear combination of the Eisenstein series and its products and then comparing this with the q-series
from the recursive representation of the block.

– 6 –



J
H
E
P
1
1
(
2
0
2
0
)
0
1
0

striking. However, at the same time it is somewhat unusual that the linear combinations
involve (quasi)modular forms of different weights. We shall return to this point shortly.

There are a few immediate checks of the result (2.7) courtesy of the special points in
parameter space where the block is known exactly. For the external operator being the
identity, h = 0, the torus block is just the character and we see from (2.7) that the 1/hp
expansion terminates. Similarly for h = 1, it can be seen from conformal invariance that
the ρ factors in (2.3) are 1, i.e. the expectation value in any descendant state is given
by the OPE coefficient itself.6 Therefore, the large-hp expansion terminates in this case
as well and the block is given exactly by the character. Additionally, the expression at
O(1/h2

p) passes three tests. It vanishes for c = 0, h = 2 and c = −2, h = 3 — these cases
have been studied in [36] and it is known that the block terminates at order 1/hp. Finally,
our result (2.7) correctly reproduces the 1/h2

p term for yet another exactly known block at
c = 1, h = 4 [37].

2.2 Sphere 4-point block

We now consider the Virasoro blocks for the 4-point function on the sphere/plane. For
simplicity, we shall restrict to the special case of the correlator of identical primaries. Just
like the torus 1-point correlator, the 4-point correlator can be expanded in a sum over
Virasoro blocks as

〈O(0)O(z, z̄)O(1)O(∞)〉 =
∑
hp,h̄p

C2
OOp Vhp(z) V̄hp(z̄) . (2.8)

As alluded to earlier, the Virasoro blocks are not known in closed form but can be de-
termined recursively. The recursion is usually performed in the coordinate q adapted to
the “pillow” geometry, given by the orbifold T2/Z2 [38]. The locations of these operators
lie at the fixed points of this orbifold. The coordinate on the plane, z, is related the q
coordinate as

q = eπiτ with τ = i
K(1− z)
K(z) , (2.9)

while the inverse relation is given by z = ϑ2(q)4/ϑ3(q)4. It can then be seen that crossing
symmetry, which sends z ↔ 1 − z, maps to an S-modular transformation, which sends
τ ↔ −1/τ . Much like the torus correlator (2.1), the 4-point function in the pillow frame
transforms covariantly as a modular form under S-modular transformations. In the recur-
sive representation, the Virasoro block has the form

Vhp(z) = (16q)hp−
c−1
24 [z(1− z)]

c−1
24 −hϑ3(q)

c−1
2 −8hH(c, h, hp, q) . (2.10)

The crucial factor here is H(c, h, hp, q), which is evaluated recursively. For the details of
the recursion and some recent developments the reader is invited to consult [1, 39–41].

6This can be easily seen by considering the external operator to be a conserved current J which has
h = 1. For the diagonal elements of (2.3) the only non-vanishing contribution is from the zero-mode, J0,
and this commutes with all Ln modes.
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Using the recursion relations, it can be seen that the q-expansion can once again be
organized into a linear combination of the Eisenstein series and its various products.

H(c, h, hp, q) = 1− 1
16hp

((c+1)−32h) ((c+5)−32h)
[
E2(q)−1

24

]

+ 1
h2
p

{
−(4h−1) (c−32h+1) (c−32h+5)

1152 E2(q)

+(c−32h+1) (c−32h+5) (c−32h+9) (c−32h+13)
512

[
E2(q)−1

24

]2

+(32h (−32h (c+32h−41)+c(5c−58)−143)+c(c(17−3c)+111)+115)
92160 E4(q)

+32h (32h (−19c+352h−181)+c(5c+278)+673)+c(c(3c−97)−591)−515
92160

}
+O

(
1/h3

p

)
.

(2.11)

The appearance of E2(q) at leading order was found most recently in [22]. However, it is
observed that similar structures appear at higher orders in the large-hp expansion as well.
As before, the above expression in terms of the Eisenstein series can be checked numerically
to high orders in the q-expansion by using numerical values h and c. The expression for
the next order in large-hp expansion can be found in appendix B.

Exact results for blocks associated to the 4-point correlator are fewer in number than
those known exactly for the torus 1-point case. The only exact solutions known (for the
case of equal external dimensions) are the ones for c = 1, h = 1/16 and c = 25, h = 15/16.
In both these cases, one has H(c, h, hp, q) = 1, i.e. the expansion terminates at the zeroth
order. This can be seen to happen for the first two orders presented in (2.11) and we have
also verified the same at higher orders.

We observe that for external dimensions, h = h∗ ∈
{
c+5
32 ,

c+1
32

}
the first order correction

in (2.11) vanishes. Also the first two terms of the 1/h2
p piece in (2.11) vanishes. In fact for

h = h∗, the 1/h2
p coefficient admits a fairly simple form:

H(c, h∗, hp, q) = 1 + c∗ − c
32h2

p

[
E4(q)− 1

240

]
+O

(
1/h3

p

)
where, for h∗ = c+5

32 , c∗ = 25 while for h∗ = c+1
32 , c∗ = 1.

2.3 Further comments

As alluded to earlier, knowing the blocks as polynomials of the Eisenstein series in the 1/hp
expansion specifies them completely on the unit-disk in the q-plane. This is demonstrated
in figure 1, where we plot the recursion factor H for the blocks considered. For the torus
block we have chosen parameters, c = 1 and h = 4, to compare with the block known
exactly [37, eq. (36)]. The plot of the exact result shows almost no visible differences with
the 1/hp-expanded recursive factor to the sixth order.

In the following we further discuss the modular aspects of the expressions obtained for
the blocks and motivate developments for the next sections.
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Figure 1. Plotting arg[H(q)] — [left] for the 1-point torus block till O(1/h6
p) plotted on the unit-

disk with c = 1, h = 4, hp = 6; and [right] for the 4-point block on the sphere till O(1/h4
p) with the

parameters c = 3, h = 0.8, hp = 8.

Regime of validity. It is important to understand what the regime of validity of our
results is.7 In order to determine this, we note that all terms in the q-series are important
in the (high-temperature) limit q → 1 or Im τ → 0+. The other parameters of the system
— the central charge c, and the external dimension h — are being held fixed. We can use
the S-duality relations (A.3) for the Eisenstein series to find the behaviour of the leading
correction in (2.7) or (2.11) in the q → 1 regime:

E2(τ)− 1
hp

=
τ−2E2(−1/τ)− 6

iπτ − 1
hp

τ→i0+
≈ 1

hpτ2 . (2.12)

The same conclusion can be reached by using the lattice sum (A.2). Hence the first order
correction is small provided

hp|τ |2 � 1, (2.13)

or hp � 1/|τ |2. This is the necessary condition for which the large-hp expansion can be
trusted.

Let us define the quantity δ ≡ (hpτ2
2 )−1, in terms of which (2.13) translates to δ � 1.

It can also be seen that the higher order terms scale as δn. A similar conclusion was reached
from a slightly different perspective in [42]. We can view this restriction via the unit disk
in the complex plane of q = e2πiτ . The limit Im τ = τ2 → 0 corresponds to the edge of
the disk. The condition (2.13) implies that the analysis can be trusted anywhere within a
slightly smaller radius of exp

(
−2π

√
δ/hp

)
≈ 1− 2π

√
δ/hp .

A double scaling limit. On eyeballing (2.7) and (2.11), it appears plausible that a ju-
dicious double scaling limit will further simplify the block.8 Consider the limit of the block
in which h, hp → ∞ with the ratio h2/hp = κ held fixed. Indeed, as we will demonstrate,
the block can be determined in a closed form in this regime.

7We thank Sridip Pal for raising this question.
8We are grateful to Alexander Zhiboedov for encouraging us to explore this possibility.
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For the torus 1-point block, this double scaling limit yields

HT2 = 1 + κ

48 [1− E2(q)] + κ2

4608 [1− E2(q)]2 + · · · , (2.14)

while for the sphere 4-point block, we have

HS2 = 1 + 8κ
3 [1− E2(q)] + 32κ2

9 [1− E2(q)]2 + · · · . (2.15)

In both cases, since we have held the central charge c fixed, it has dropped out of the
final expression. While we have only presented the first two orders in the κ-expansion, one
can check that the above form persists at higher orders and the above expansions can be
resummed into:

HT2 ≈ exp
{

h2

48hp
[1− E2(q)]

}
, HS2 ≈ exp

{
8h2

3hp
[1− E2(q)]

}
. (2.16)

It is interesting that in this double scaling limit, the recursion factor of the block exponen-
tiates.

The Liouville parametrization. We have observed in (2.7) and (2.11) that the ‘re-
cursive factor’ H of the Virasoro block for both the sphere and the torus organizes itself
into polynomials of the Eisenstein series in the 1/hp expansion. However, each order in
this perturbative expansion does not have definite modular properties as we have a mix of
terms of varying modular weights. It turns out that using the Liouville parametrization for
the intermediate conformal dimension furnishes a better reorganization of the expansion.
In this parametrization, the central charge and the intermediate conformal dimension are

c = 1 + 6Q2 and hp = Q2

4 − α
2 . (2.17)

Sometimes, α is also referred to as momentum since it appears as the momentum of the
vertex operator. One motivation to consider an expansion of the blocks in large-α is
that matrix elements of light primaries in descendant states of other heavy primaries have
a natural expansion in this large parameter [43]. The Virasoro block repackages this
information about these matrix elements.

It turns out that the logarithm of H, and not H itself, has the cleanest modular
features. Consequently, we will reorganize the large-hp expansion of the blocks into a
large-α expansion of the logarithm of the recursive part of the blocks.

H(q) = 1 +
∞∑
n=1

An(q)
hnp

= e−F (α,q) = exp

 ∞∑
j=1

Aj(q)
α2j

 , (2.18)

with Aj(q) = Kj + h̃j(q)
2j+1 j

.

In the above equations, if H is likened to a partition function, then F (α, q) is analogous
to the free energy, so we will occasionally refer to it as such.9 The separation of Aj(q)

9This is like studying the effective action, which has contributions only from connected diagrams.
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into quasimodular (h̃j) and constant (Kj) pieces will be important in what follows. It is
helpful to note at this point that the abstruse normalization factors in this subsection are
conveniently chosen to relate to quantities appearing in the forthcoming section.

The expression for the free energy for the torus 1-point block is, from (2.7)

FT2(α, q) = h(1− h)
48

[
− 1
α2 + 12h+ c− 19

240α4 + · · · (2.19)

+ E2(q)
α2 + 1

α4

[(4− c− 2h)
240 E4(q) + 5(3− 2h)

240 E2(q)2
]

+ · · ·
]
.

In the two lines above, we have separated out the large-α expansion into pieces that are
independent of q and pieces that are quasimodular.10 It can be seen from the second line
that coefficients of α−2n are quasimodular forms of weight 2n. The same feature can also
be seen for the 4-point block on the sphere:

FS2(α, q) = 1
α2

(c+1−32h)(5+c−32h)
384

+ 1
α4

(145+173c+41c2+c3−6048h−32ch(5c+94)+1024h2(7c+53)−98304h3)
46080 +· · ·

− 1
α2

(c+1−32h)(5+c−32h)
384 E2(q)+ 1

α4

[(32h−c−1)(5+c−32h)(7+c−32h)
18432 E2(q)2 (2.20)

+(4576h−115−111c−17c2+3c3+32ch(58−5c)+1024h2(c−41)+32768h3)
92160 E4(q)

]
+· · · .

These observations suggest that the free energy has modular transformation properties
that are more amenable to analysis.

Hints of recursion from the fusion kernel. We can see from the first few orders in
the large-α expansion that the coefficients h̃j in (2.18) have a modular anomaly courtesy
of their dependence on the quasimodular form E2(q). This implies that the modular S-
transformation acts as

S
[
h̃j
]

= τ2j
(
h̃j +

∞∑
k=1

1
k!

1
(2πiτ)k (12∂E2)kh̃j

)
. (2.21)

The second term above is a consequence of quasimodularity. Let us consider the case of
the 1-point torus block — similar arguments apply for the 4-point block on the sphere as
well. The coefficients h̃j are further constrained by the crossing equation that the block
needs to satisfy. For the torus block one has,

e−2πiτα2

η(τ) Hα(q) =
∫ ∞
−∞

dα′ Mα,α′
e

2πiα′2
τ

η(−1/τ)Hα
′(q̃) . (2.22)

In the above, Mα,α′ is the fusion kernel for which an explicit form exists [44].11 Note
that the modular S-transformation effects the exchange α ↔ α′. It has been conjectured

10The part independent of τ is in many ways fictitious, as the terms get canceled by the q → 0 limit of
the Eisenstein series.

11For the 4-point block the explicit forms are derived in [16, 17].
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in [45, 46] that perturbatively in large-α, the S-modular transformation is exactly the
Fourier transform. In [45] this was argued for by explicit calculation of the deformed block
using matrix model technology but for specific parameters. In [46] the modular kernel
computation was generalized for arbitrary external operators and central charge till order
O
(
α−6) and on the heels of this observation, the aforementioned conjecture was made.

Assuming this simplified form of the kernel, one can show that S2[α] = −α. The leading
saddle-point in the momentum integral of the crossing equation (2.22) gives

S[α] = α′ ≈ −ατ − 1
4πi

∂F (α, q)
∂α

, (2.23)

where we used the definition in (2.18). We now act with a modular S-transformation
on the above equation and use the explicit transformation (2.21), along with the result
S2[α] = −α. We find

∞∑
k=1

12∂E2 h̃k
2k

1
α2k+1 −

∞∑
k,m=1

(2k + 1)h̃kh̃m
2k+m+1

1
α2m+2k+3 ≈ 0 . (2.24)

Finally, comparing powers of α yields the following recursion relation

∂h̃`
∂E2

≈ `

12

`−1∑
i=0

h̃ih̃`−i−1 . (2.25)

It is easy to check at low orders in the large-α expansion that this recursion relation is
almost (but not quite) satisfied. Nevertheless, it provides a plausible mechanism for how
quasimodular forms are generated at each order in the large-α expansion. Similarly, the
fusion kernel for the 4-point block on the sphere differs by a factor of 2 in the Fourier expo-
nent from the torus 1-point block kernel. This is reflected in the analogue of equation (2.25)
which now reads

∂h̃`
∂E2

≈ `

6

`−1∑
i=0

h̃ih̃`−i−1 . (2.26)

We emphasise that the simplification of the Virasoro crossing kernel to the Fourier ker-
nel [45, 46] in the large momentum expansion is an observed fact, and it is unclear as yet
how to directly relate the non-perturbative corrections to the kernel of the blocks [44].

To summarise, in this section we have observed the emergence of quasimodular forms
at all orders in the large-hp expansion of the Virasoro blocks and have tried to explain this
observation from a purely CFT standpoint. This story is, however, incomplete as we need to
go beyond the saddle point approximation and a direct approach seems beyond reach. Cer-
tain tantalising similarities with structures more commonly associated to four-dimensional
supersymmetric gauge theories, however, move us to look to the 2d/4d correspondence for
further clues. A discussion of these aspects is the subject of the section 3.

Before we discuss the import from gauge theory, however, we take a brief detour and
discuss a simple yet striking example — essentially a “toy” version of our analysis of the
conformal block — that contains within it a useful blueprint for what structures to expect.
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Intermezzo: thetas and toy blocks. We now present a simple example of a mathe-
matical function where quasimodular structures appear in a strikingly similar fashion, with
much of the structure exhibited by the conformal block and none of the complications. As
with all toy examples, the analogies presented in this section should be taken with a pinch
of salt, since the recursion factor H is far more intricate.

Consider the Jacobi theta function, ϑ1(τ, z). This object can be written in terms of
the Eisenstein series as [47, eq. (20.6.2)]

ϑ1(τ, z) = z η(τ)3 exp
[ ∞∑
k=1

z2k (−1)kB2k
2k(2k)! E2k(τ)

]
, (2.27)

where B2k are Bernoulli numbers. The form of the exponential bears a close resemblance
to (2.18). That is, (quasi)modular forms of definite weight appear at each order in the z-
expansion of log ϑ1(τ, z). By comparing the two expressions, we read off that the analogue
of the z-variable in the Virasoro conformal block is 1/α. Note, however, that in this
case z is the elliptic variable and it has a much simpler modular transformation property:
z 7→ (cτ + d)−1z. Under the S-modular transformation, ϑ1 transforms as

ϑ1 (z/τ,−1/τ) = e
πiz2
τ (−iτ)1/2ϑ1(z, τ) . (2.28)

This is essentially an analogue of the crossing equation (2.22) with the fusion kernelMzz′ =
δ(z − z′). The parallels here are quite striking, and one might be tempted to take them
more seriously. For example, note that the function ϑ1(τ, z) satisfies a heat equation:(

∂

∂τ
+ i

4π
∂2

∂z2

)
ϑ1(τ, z) = 0 . (2.29)

If we were to take this analogy seriously, one might expect that heat equations would
constrain the conformal block as well. The developments in the following section, which
draw on intuition from the literature on supersymmetric gauge theories, will allow us to
see that this is precisely the case.

3 Modular features and the 2d/4d correspondence

In the previous section, we saw that reconstituting the large-hp expansion of the block into
a large-α expansion was profitable from two different points of view. First, we saw that
this expansion of the logarithm of the block had coefficients with definite modular weight.
Second, we observed that the momentum α appeared naturally in the fusion kernel, and on
taking the large-α limit, we were able to derive a constraint satisfied by the coefficients h̃k.
It is also curious that the relation defining the saddle-point of the crossing equation (2.23)
looks strikingly similar to the relation between periods, dual periods, and the prepotential
of four-dimensional N = 2 supersymmetric gauge theories.

In this section, we will argue that (2.25) and (2.26) need to be corrected, and that the
form of this correction can be divined by appealing to the 2d/4d correspondence. We will
then use this to provide a faster algorithm for computing the conformal block in the heavy
exchange regime.
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3.1 Parameter maps

As we alluded to in the introduction, the 2d/4d correspondence establishes an equivalence
between the instanton partition function of an N = 2 supersymmetric gauge theory and the
the conformal block. The cases of interest in this paper — the 4-point block on the sphere
with equal external dimensions, and the 1-point block on the torus — each correspond to
a Ω-deformed supersymmetric gauge theory with specific matter content. For convenience,
we write the Ω-deformation parameters in terms of their sum and product as

s = ε1 + ε2 and p = ε1ε2 . (3.1)

As an aside, in the refined topological string [48], the quantity p is simply the string coupling
constant. This way, according to [26], the number Q2 that parametrises the central charge
as in (2.17) in the dual conformal field theory is given by

Q2 = s2

p
. (3.2)

In the following, we will lay out the specific parameter map in either case.

1-point block on the torus. The 1-point block on the torus, via the 2d/4d correspon-
dence, maps onto an Ω-deformed SU(2) gauge theory with an adjoint hypermultiplet of
mass m. The map of parameters is:

h = Q2

4 −
m2

p
and hp = Q2

4 −
a2

p
. (3.3)

On the left-hand side of the above equations, we have the conformal dimensions of the
external (h) and exchanged (hp) operators, while on the right-hand side we have parameters
in the gauge theory: the mass m of the adjoint hypermultiplet and the Coulomb vacuum
expectation value a of the adjoint scalar in the N = 2 vector multiplet.

4-point block on the plane. The 4-point block on the sphere with equal external
dimensions, via the 2d/4d correspondence, maps onto an Ω-deformed SU(2) gauge theory
with Nf = 4 fundamental hypermultiplets. The map of parameters is:

h = Q2

4 −
m2

4p and hp = Q2

4 −
a2

p
. (3.4)

On the left-hand side of the above equations, we have the conformal dimensions of the
external (h) and exchanged (hp) operators, while on the right-hand side we have parameters
in the gauge theory. As before, a is the Coulomb vacuum expectation value of the scalar in
the adjoint vector multiplet. For the four fundamental masses mi, we start with the more
general map relevant for arbitrary external operator dimensions hi:

h1 = Q2

4 −
(m1 −m2)2

4p h2 = Q2

4 −
(m1 +m2)2

4p ,

h3 = Q2

4 −
(m3 −m4)2

4p h4 = Q2

4 −
(m3 +m4)2

4p .

(3.5)
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In order to recover the case of equal external dimensions, we choose m1 = m4 = 0 and
m2 = m3 = m. Now that the parameter maps are explicit, we are in a position to discuss
the recursion relation that will be relevant to the conformal blocks.

3.2 From modular anomalies to the diffusion equation

First, observe that if we work in units where p = 1, we recover the Liouville parametrisation
we introduced earlier, i.e. the Liouville momentum α is identified with a. This is simply a
convenient parametrisation, and represents no loss of generality, since the factors of p can
be restored by dimensional considerations.

Second, the constraint (2.25) also arises in supersymmetric gauge theories, when at-
tempting to constrain the dependence of the prepotential on the weight-2 quasimodular
Eisenstein series [29, 49]. In these papers, however, the gauge theories are undeformed.
Since the 2d/4d correspondence requires deformations on the gauge theory side, one might
hope that an analogue of (2.25) exists for the deformed gauge theories as well. Fortu-
nately, this has been done in the deformed gauge theory context in [34], so let us review
their arguments.

Recall the amplitudes F (n,g) from the introduction. The modular anomaly equation
that constrains their dependence on the quasimodular weight-2 Eisenstein series is

∂E2F
(n,g) = − 1

24M

n∑
i=0

g∑
r=0

∂aF
(i,r)∂aF

(n−i,g−r) + 1
24M∂2

aF
(n,g−1) , (3.6)

whereM = 1 for the Nf = 4 theory (the spherical block) and M = 2 for the N = 2? theory
(the torus block). This equation is equivalent to the holomorphic anomaly equation [50, 51],
and in that context these two terms correspond to the two possible degenerations of a genus-
g Riemann surface: into two surfaces of genus (r) and (g − r), and into a surface of genus
(g−1) after a cycle is pinched. Schematically, the term ∂F∂F on the right-hand side of the
above equation is the analogue of the right-hand sides of (2.25) and (2.26). Our analysis of
the fusion kernel did not yield a linear term analogous to ∂2F , so given the correspondence
between two dimensional conformal field theories and four-dimensional gauge theories, it
is perhaps natural to guess that an analogue of this term is what we are missing.

By keeping track of powers of α, it is easy to see that the term proportional to ∂2F will
correspond to an additional term modifying (2.25) and (2.26), in each case proportional to
h̃`−1. Purely based on considerations of modular weight, of course, this term is permitted.
We find with some simple algebra that the modular anomaly equations relevant to the
conformal block take the form

Torus 1-Point Block : ∂h̃`
∂E2

= `

12

`−1∑
i=0

h̃ih̃`−i−1 + `(2`− 1)
12 h̃`−1, (3.7)

Sphere 4-Point Block : ∂h̃`
∂E2

= `

6

`−1∑
i=0

h̃ih̃`−i−1 + `(2`− 1)
6 h̃`−1. (3.8)

It will be convenient to package both these recursions into one, as

∂h̃`
∂E2

= `

6M

`−1∑
i=0

h̃ih̃`−i−1 + `(2`− 1)
6M h̃`−1 (3.9)
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with M = 1 for the spherical block and M = 2 for the torus block. For low orders in the
large-α expansion we computed in section 2, it can be checked explicitly that the above
recursion is satisfied. The seed for the recursion in both cases is

h̃0 =


c+ 1− 32h

4 for sphere block,

−h for torus block.
(3.10)

We observe, however, that h̃0 is not a part of the block, see (2.18). At this point, we also
remark that the explicit results of the previous section for the block in the 1/α expansion
are verified to be perfectly consistent with the recursion (3.9).

It is desirable to bind the recursion relations for h̃` non-perturbatively into a single
partial differential equation. This development is inspired by a study of Ω-deformed gauge
theories due to [35]. Consider the function

F(q) = −h̃0 log 2α+
∞∑
j=1

h̃j(q)
2j+1 j α2j , (3.11)

where h̃j are recursive pieces for the sphere or the torus block the case may be — cf.
equation (2.18). Indeed, using the 2d/4d correspondence it is possible to locate the origin
of the logarithmic term in (3.11) in the 1-loop contribution to the prepotential. It is then
straightforward to show that the differential equation

∂E2F = 1
24M

[
(∂αF)2 + ∂2

αF
]
, (3.12)

reproduces the recursions (3.9). This is the one-dimensional noiseless Kardar-Parisi-Zhang
equation, with the time proportional to E2 and the role of space is played by α. We
emphasise that the object F is closely related to the Virasoro block, via (2.18), and the
above differential equation provides a non-trivial constraint which suffices to completely
fix the purely E2 dependent part of the block. To make this explicit, we note that the
recursive factor of the block can be written as follows

H(q) = exp

F(q) + h̃0 log 2α+
∞∑
j=1
Kjα−2j

 = exp (F(q)−F(0)) . (3.13)

using (2.18) and (3.11).
On taking a further derivative with respect to α, one finds from (3.12) that ∂αF

satisfies the viscous Burgers equation, which by using the Hopf-Cole transformation can
be linearised into the heat/diffusion equation. That is

∂E2Z −
1

24M∂2
αZ = 0 , F(q) = logZ(q) . (3.14)

The quantity Z(q) is related then to the recursive part of the Virasoro block as H(q) =
Z(q)/Z(0). It is conceivable that heat kernel methods for solving (3.14) might be pressed
into the service of investigations into the Virasoro block in future. At a more fundamental
level, it would be valuable to derive (3.12) or (3.14) by using an entirely 2d CFT based
approach. For now, we turn to a discussion of the modular anomaly equations and how
they can be used to recursively construct the block.
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3.3 An algorithm for faster computations of Virasoro blocks

In the previous section, after drawing inspiration from the 2d/4d correspondence, we de-
termined that the Virasoro blocks under consideration, when expanded in large-α, have
coefficients h̃` that can be found recursively via modular anomaly equations: for the torus
1-point block, we have (3.7), and for the sphere 4-point block, we have (3.8). In this sec-
tion, we present an algorithm that systematically computes the large-α (and consequently,
a large-hp) expansion of the block using these anomaly equations.

It is more convenient to work with the logarithm of the block H, and only later expo-
nentiate it to required order in 1/hp. In order to keep the notation light, we will suppress
the dimensions of the external and exchanged operators, so H ≡ Hhhp .

We will start by expressing F = logH as a series in large α2 =
(
c−1
24 − hp

)
. To do

this, begin by defining the partial sums

F (m) =
m∑
j≥1

L(j)

α2j . (3.15)

If all the coefficients Lj are determined, we can recover the block by considering the series
associated to the partial sums

logH = lim
n→∞

F (n) . (3.16)

Our goal is to construct the large-α expansion recursively, which means given the partial
sum F (k−1), we want to determine the partial sum F (k) using the recursion relations.

The algorithm takes as input the partial sum F (k−1), which includes the set {h̃j}k−1
j=0 ,

which will feature in the recursion (3.9). A finite number of terms from the q-series pro-
duced by Zamolodchikov’s h-recursion will also form part of the input in order to fix the
purely modular pieces — this is a direct analogue of the use of Nekrasov’s equivariant lo-
calisation in the gauge theory deployment of the modular anomaly equation [34, 35]. The
h-recursion allows one to get the recursive block (denoted HZ) till order qn, at computa-
tional cost growing as O

(
n3(log n)2). We express the logarithm of the same as a large-α

series and it takes the following form,

logHZ =
∑
n≥1

1
α2n

∑
m≥1

a(n)
m qm

 . (3.17)

As we shall see, at a given order 2k in the large-α expansion we shall need the q-expansion
up to order dk, the dimension of the space of weight-(2k) modular forms. For low orders
in the large-hp expansion this is just a handful of coefficients.

Start with the set {h̃j}k−1
j=0 to evaluate the r.h.s. of (3.9), and integrate this with respect

to E2 to find the quasimodular part Q(k) of h̃k:

Q(k) = 1
2k+1k

∫
dE2

(
k

6M

k−1∑
i=0

h̃ih̃k−i−1 + k(2k − 1)
6M h̃k−1

)
. (3.18)

The above terms fix all E2 dependence at this order in the large-α expansion, which means
it contains all possible pieces of the form Em1

2 Em2
4 Em3

6 such that 2m1 + 4m2 + 6m3 = 2k,
with m1 ≥ 1.
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The dimension of modular forms at this order is given by integer partitions of k using
only the integers {2, 3} which is dk = k + 1 − dk/2e − dk/3e. Upto dk undetermined
coefficients, dij and a q-independent piece K(k) we have,

L(k) = K(k) +Q(k) +
∑

4i+6j=2k
dijE

i
4E

j
6. (3.19)

To fix the set d{ij} we take as input the q-expansion coefficients {a(k)
m }dkm=1 and fix these

by expanding (3.19) in a Fourier series up to O
(
qdk
)
. This gives dk equations to fix the

dk unknowns d{ij}. Let the solutions to these equations be denoted ds{ij}.
The q-independent piece at this order, K(k) is determined by demanding that the O

(
q0)

term in the Fourier expansion vanishes, which gives,

K(k) = − lim
q→0

Q(k) +
∑

4i+6j=2k
dsijE

i
4E

j
6

 . (3.20)

Therefore using results till previous order, we now can write down,

H(k) = exp
[
F (k−1) + L

(k)

α2k

]
=

k∑
j≥0

Hj

hjp
. (3.21)

Finally, note that in order to take the next step in the computation, we need to add h̃k to
the input data for computation at the next order in the large-α expansion:

{
h̃0, h̃1, . . . h̃k−1

}
→

h̃0, h̃1, . . . h̃k−1, h̃k = 2k+1k

Q(k) +
∑

4i+6j=2k
dsijE

i
4E

j
6

 . (3.22)

In this manner, the large-hp expansion can be systematically constructed, and it is in this
sense that the block is constrained to obey the recursion relation (3.9).

For arriving at the expressions (2.19) or (2.20), if we are to use just the Zamolodchikov
h-recursions then one also needs to solve for the coefficients of the E(k)

2 terms in (3.19).
Thus the number of unknowns needed to solve for equals the number of integer partitions
of k using only the integers {1, 2, 3} which we denote p1,2,3(k). This grows quadratically
with k. In contrast using the additional constraint in form of the recursion (3.7) we only
need to generate q-coefficients till order dk which is linearly bounded. In this sense, the use
of the modular anomaly equation allows us to accelerate the computation of the large-hp
expansion of the block.

4 Application: heavy-heavy-light OPE coefficients

In this section, as an application of the results derived for the Virasoro block, we compute
corrections to averaged OPE coefficients. This analysis builds on the work of [10] and is
made possible because we have resummed the q-expansions at each order in the large-hp
expansion, and consequently have access to the q → 1 (or the high temperature) regime.
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In what follows, we show how to find the corrections to the averaged heavy-heavy-light
OPE coefficient, starting from modular properties of the torus 1-point function.

The one-point function of a primary Oh on the torus (2.1), transforms as a Maass form
of weight (h, h̄) under modular transformations〈

Oh,h̄

〉
γτ

= (cτ + d)h(cτ̄ + d)~
〈
Oh,h̄

〉
τ

where γτ ≡ aτ + b

cτ + d
. (4.1)

We also recall that the above quantity can be written as a sum over torus blocks, as follows〈
Oh,h̄

〉
τ,τ̄

=
∑
p

CpOpFhp(q, h, c) F̄h̄p(q̄, h̄, c) . (4.2)

The recursive factor for torus block was evaluated perturbatively in large-hp in (2.7). For
simplicity, let us just consider just the first order correction

Fhp(q, h, c) = qhp−
c−1
24

η(q) Hhp(q) = qhp−
c−1
24

η(q)

[
1 + h(h− 1)

2hp

(1− E2(q)
24

)
+ · · ·

]
. (4.3)

We take note of the high-temperature limit (q → 1 or τ → i0+) of the torus block, this
will be useful below. Using the S-modular transformations of η(q) and E2(q) we have

Fhp(q → 1, h, c) ≈ e2πiτ(hp− c
24)e

πi
12(τ+ 1

τ )√−iτ
[
1− h(h− 1)

48hpτ2 + · · ·
]
, (4.4)

and an analogous relation for the anti-holomorphic block. As we noted above, the higher
orders are suppressed in powers of 1/(hpτ2).

Let us now specialize to the case of the rectangular torus, where the modular parameter
is τ = iβ/2π. We also take the left- and right-moving temperatures to be independent,
τ̄ = −iβ̄/2π, in order to facilitate the analysis. Equation (4.2) can be rewritten as an
integral over primaries as follows〈

Oh,h̄

〉
iβ/L

=
∫

dhp
∫

dh̄p Th,h̄(hp, h̄p)Fhp(e−β , h, c) F̄h̄p(e
−β̄ , h̄, c) , (4.5)

where, we have introduced the weighted spectral density

Th,h̄(hp, h̄p) ≡
∑
p

CpOp δ(h− hp) δ(h̄− h̄p) . (4.6)

The standard method to obtain high energy asymptotics of the OPE coefficients is via
a S-modular transformation for the low temperature result for

〈
Oh,h̄

〉
, followed by an

inverse Laplace transform to extract the weighted spectral density. For c > 1 theories,
there are an infinite number of primaries, growing exponentially at high energies. At high
temperatures, the integral (4.5) is therefore expected to be dominated by a saddle point
of a heavy primary state (hp, h̄p → ∞). This expectation is true for large c theories in
which primaries are typical states at high energies, in tune with the weak version of the
Eigenstate Thermalization Hypothesis. It is in this regime where we can use our results
for the Virasoro blocks in the 1/hp expansion.

– 19 –



J
H
E
P
1
1
(
2
0
2
0
)
0
1
0

At low temperatures, the expectation value of the primary Oh,h̄ is dominated by the
contribution from the lightest primary χ which fuses to give Oh,h̄ in the χχ OPE. Therefore

〈
Oh,h̄

〉
iβ/L→∞

≈ CχOχ exp
[
−β

(
hχ −

c

24

)
− β̄

(
h̄χ −

c

24

)]
. (4.7)

Upon using the modular property (4.1) for the S-modular transformation, we have the high
temperature version to be

〈
Oh,h̄

〉
iβ/L→0

≈ CχOχ
(
iβ

2π

)−h(
− iβ̄2π

)−h̄
exp

[
−4π2

β

(
hχ −

c

24

)
− 4π2

β̄

(
h̄χ −

c

24

)]
.

(4.8)

When the 1/hp correction to the high temperature block (4.4) is ignored we obtain the result
for the leading weighted spectral density, denoted by T (0)

h,h̄
(hp, h̄p). This is a slight variant

of the result of [10], since here we do not sum over spins. The inverse Laplace transform
leads to the following factorized version T

(0)
h,h̄

(hp, h̄p)= CχOχt
(0)
h (hp)t̄(0)

h̄
(h̄p), analogous to

the Cardy formula [52, 53], with

t
(0)
h (hp) = i−h

∮
dβ

(
β

2π

)− 1
2−h

exp
[
−4π2

β

(
hχ −

ĉ

24

)
+ β

(
hp −

ĉ

24

)]
,

≈ i−h
(
ĉ

24 − hχ
)− 1

4−
h
2
(
hp −

ĉ

24

)h
2 + 1

4
exp

[
4π
√(

ĉ

24 − hχ
)(

hp −
ĉ

24

)]
, (4.9)

and t̄
(0)
h̄

(h̄p) is given the same formula as the above but with the replacements i 7→ −i,
h 7→ h̄ and hχ 7→ h̄χ. In the above expression, we use the notation ĉ ≡ c − 1. While
arriving at the above expression, the Laplace transform was evaluated in the saddle point
approximation. The location of the saddle is

β∗
2π =

√√√√ ĉ
24 − hχ
hp − ĉ

24
+

h+ 1
2

4π
(
hp − ĉ

24

) +O
(
1/h3/2

p

)
. (4.10)

The saddle for β̄∗ is takes the same form as the above with the appropriate replacements.
Note that the saddle-point approximation is valid when

β2
∗

4π2

(
hp −

ĉ

24

)
≈ ĉ

24 − hχ � 1 . (4.11)

That is, we require the central charge, c, to be large and χ to be a light operator with
hχ � c

24 . To keep track of the correction to the weighted spectral density arising from
1/hp corrections to the block, we write Th,h̄(hp, h̄p) as T (0)

h,h̄
(hp, h̄p)[1 + δTh,h̄(hp, h̄p)]. Here

the prefactor T (0)
h,h̄

(hp, h̄p) is the leading result. Keeping in mind that T (0)
h,h̄

(hp, h̄p) comes
from the leading piece of the block without 1/hp corrections, we then have the following
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equality as a consistency condition
∫

dhp
∫

dh̄p T (0)
h,h̄

(hp, h̄p)
(
h(h− 1)π2

12hpβ2 + h̄(h̄− 1)π2

12h̄pβ̄2 + · · ·
)
e−β(hp− ĉ

24)e−β̄(h̄p− ĉ
24)

(4.12)

= −
∫

dhp
∫

dh̄p T (0)
h,h̄

(hp, h̄p)δTh,h̄(hp, h̄p) e−β(hp− ĉ
24)e−β̄(h̄p− ĉ

24),

where we have used the high temperature limit of the blocks (4.4) in (4.5). Writing the first
order correction to the spectral density as δT (1)

h,h̄
(hp, h̄p) = δt

(1)
h (hp)δt(1)

h̄
(h̄p) and evaluating

the integrals on the l.h.s., we have∫
dhp t(0)

h (hp)δt(1)
h (hp)e−β(hp− ĉ

24)
∫

dh̄p t̄(0)
h̄

(h̄p)δt̄(1)
h̄

(h̄p)e−β̄(h̄p− ĉ
24)

≈ −i−s
 h(h− 1)

48
(
ĉ

24 − hχ
) + h̄(h̄− 1)

48
(
ĉ

24 − h̄χ
)
 e 4π2

β̄
(h̄χ− ĉ

24)
(
β̄

2π

)−h̄− 1
2

e
4π2
β (hχ− ĉ

24)
(
β

2π

)−h− 1
2
.

(4.13)

Finally, the product δt(1)
h (hp)δt(1)

h̄
(h̄p) can be extracted by an inverse Laplace transform

with respect to β and β̄. The integrals are exactly same as in eq. (4.9). This leads to the
result

δT
(1)
h,h̄

(hp, h̄p) = δt
(1)
h (hp)δt(1)

h̄
(h̄p) ≈ −

 h(h− 1)
48
(
ĉ

24 − hχ
) + h̄(h̄− 1)

48
(
ĉ

24 − h̄χ
)
 . (4.14)

This shows that the 1/hp corrections to block translate into 1/c corrections to the weighted
spectral density, by virtue of saddle point approximation (4.11). The averaged heavy-
heavy-light coefficient can be obtained by dividing out the weighted spectral density by
the density of states. The final result is

CHOH ≈ C(0)
HOH

1− h(h− 1)
48
(
ĉ

24 − hχ
) − h̄(h̄− 1)

48
(
ĉ

24 − h̄χ
) + · · ·

 , (4.15)

where

C
(0)
HOH = t

(0)
h (hp)
ρ(hp)

t̄
(0)
h̄

(h̄p)
ρ(h̄p)

≈ CχOχi
−s

2π2

(
hp− ĉ

24

)h+1
2

(
ĉ

24−hχ
) 1

4 +h
2

(
h̄p− ĉ

24

) h̄+1
2

(
ĉ

24−h̄χ
) 1

4 + h̄
2

exp

−πĉ6
1−

√
1−24hχ

ĉ

√24hp
ĉ
−1



×exp

−πĉ6
1−

√
1−24h̄χ

ĉ

√24h̄p
ĉ
−1

 . (4.16)
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The corrections arising from higher orders in 1/hp can also be systematically worked out in
much the same way. As we have mentioned, the 1/hp expansion of the block corresponds
to a 1/c expansion for the averaged OPE coefficient. A similar analysis can also be carried
out for the averaged light-light-heavy OPE coefficient using the crossing symmetry of the
4-point correlator on the plane in the pillow frame.

5 Conclusions

Virasoro blocks lie at the heart of two-dimensional conformal field theories. Except in a
handful of cases, the blocks are not known in closed form. This has motivated numerous
attempts to understand them in various regimes with the hope that simplifications will
arise. Such studies has often resulted in insightful revelations about their structure.

In this work we have studied the 1-point block on the torus and the 4-point block on
the sphere in the regime of heavy intermediate exchange. Our analysis shows that each
order in the large-hp expansion can be resummed into polynomials of the Eisenstein series.
Although a partial explanation of the appearance of quasimodular forms was provided from
purely CFT methods via the fusion kernel, a clearer understanding of this arose from the
2d/4d correspondence. We established that a modular anomaly equation constrains the
block, and further that it may be used to constructively build up the Virasoro blocks non-
perturbatively (in τ) at every order in the 1/hp expansion. Moreover, it was noted that the
modular anomaly constraint in the block is compactly encoded in the KPZ equation (3.12)
and its solution is directly related to the block (3.13). We hope that connecting these dots
might allow us to pin down the CFT origin of the modular anomaly in the blocks.

It is curious that the recursion relations are of the same form for both the 1-point
block on the torus and the 4-point block on the sphere. This resemblance deserves further
attention. In fact, there are identities due to Poghossian relating these two blocks [7].
However, a direct translation of these identities to a correspondence between the recursion
relations is not known. Understanding this would shed more light on the structure of the
blocks.

The closed forms (in cross-ratio) at each order in the large-hp expansion for the 4-point
block on the sphere can provide a new window into studying the block in a Lorentzian setup
and allow one to focus on scrambling/late time behaviour. Such studies have appeared in
the past in the context of the out-of-time-ordered correlators [54–56], toy versions of the
black hole information puzzle in AdS3/CFT2 [40], relations to Wilson lines in AdS3 and
OPE inversion [57] and also entanglement entropy in quantum quenches [58]. It would
be worthwhile to apply the results of the blocks derived here to find refinements to those
investigations.

Virasoro blocks for higher-point correlation functions and those on higher genus Rie-
mann surfaces have more parameters/moduli as well as more intermediate channels. Based
on the strategies by Zamolodchikov, a general recursive representations for the blocks corre-
sponding to higher-point correlation functions on higher genus Riemann surfaces have also
been developed [9]. It would be worthwhile to investigate the regime of heavy exchanges
for these blocks and study the (quasi)modular structures that appear. The 4-point block
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treated here can also be considered in the more general case of unequal external operator
dimensions. It should be straightforward to show, for example, that Jacobi theta functions
will appear in the large-hp expansion in such cases, as the 2d/4d correspondence would
lead one to believe.

There also exist extensions of the 2d/4d story for CFTs with higher spin symme-
tries [59]. We fully expect that analogous modular features will appear for WN conformal
blocks in the heavy exchange expansion. Indeed, the corresponding results for the quantum
prepotential of N = 2? gauge theories with any classical Lie gauge algebra has already been
derived in [29, 49]. By the 2d/4d correspondence, these relations imply that the WN torus
blocks are solutions to a higher-dimensional diffusion equation. The case of WN spherical
blocks is, however, more subtle. Nevertheless, as a start one may attempt to uncover the
import of non-perturbatively exact results discovered in [30] for CFTs with WN symmetry.
For the W3 algebra, important steps in this direction have already been taken [60]. One
can also hope that super-Virasoro blocks have similar structures that can be uncovered.

An analysis complementary to that considered here would be to consider the Virasoro
blocks in the large-c expansion instead of the large-hp one. Although modular features
are not manifest, the first few orders in the large-c expansion can be written by using
a combination of hypergeometric functions [61–63]. It would be interesting to find an
analogue of the modular anomaly recursion for the terms in this expansion. However, it
is far from clear how such a mechanism would work in the absence of some additional
constraints. On the other hand, the block is known to exponentiate in the c→∞ regime.
This might offer some crucial hints on how to proceed.
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A Eisenstein series

The Eisenstein series were used extensively in the main text. In this appendix we provide
their definitions (which fixes our normalization conventions) and list few of their properties.

The q-expansions for the Eisenstein series are as follows (q = e2πiτ )

E2k(q) = 1− 4k
B2k

∞∑
n=1

σ2k−1(n)qn = 1 + 2
ζ(1− 2k)

∞∑
n=1

n2k−1qn

1− qn . (A.1)
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Figure 2. arg[E2k(q)] on the unit disk: for [left] E2(q), [centre] E4(q) and [right] E6(q). The
real and imaginary parts can also be plotted and they show similar structures. Details regarding
generating these plots can be found in [64].

Here, σn is the divisor function, Bm are the Bernoulli numbers and ζ(p) is the Riemann-zeta
function. Another representation of the Eisenstein series in terms of the lattice sums

E2k(τ) = 1
2ζ(2k)

∑
(m,n)∈Z2\(0,0)

1
(m+ nτ)2k . (A.2)

Upon modular transformations, SL(2,Z), the Eisenstein series transform as

E2

(
aτ+b
cτ+d

)
= (cτ+d)2E2(τ)+6c

iπ
(cτ+d) , E2k

(
aτ+b
cτ+d

)
= (cτ+d)2kE2k(τ) for k ≥ 2 .

(A.3)

That is, E2 is quasimodular while the other Eisenstein series are modular forms. The
modular forms E4 and E6 generate the ring of modular forms of any even weight. This
implies that E2k≥8 can be written in terms of polynomials of E4 and E6. This fact plays a
role in writing higher orders in the 1/hp expansion in terms of E2, E4 and E6 alone. The
plots of the arguments of E2,4,6(q) on the unit-disk on the q-plane are shown in figure 2.

B Higher orders in the 1/hp expansion

Torus 1-point block. The 3rd order in the 1/hp expansion of Hhp(h, q) appearing in
the 1-point torus block is the following

h(h− 1)
23224320h3

p

[
1048c2 + c(6h(77h+ 339)− 6320) + (h− 2)(h(7h(5h+ 72) + 1481)− 6236)

+ 105E2
2(h− 3)(h− 2)(4c+ (h− 1)h− 4)

− 21E2
(
(42c− 97)h2 + 6(13− 7c)h+ 40(c− 1)2 + 5h4 + 14h3

)
− 42E4(c+ 2h− 4)(4c+ (h− 1)h− 4)− 35E3

2(h− 5)(h− 4)(h− 3)(h− 2)

+ 42E2E4(h− 5)(h− 4)(c+ 2h− 4)− 8E6
(
5c2 + c(18h− 55) + 11(h− 5)(h− 2)

) ]
.

(B.1)
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The 4th order is
h(h−1)

22295347200h4
p

[
50160c3+4c2(h(7781h+41899)−136620)

+4c(h(h(3h(385h+5238)+28133)−438122)+663300)

+(h−2)(h(h(h(35h(5h+139)+43291)+35647)−1286498)+2348520)

+20E2(−1680c3+4c2(1260−703(h−1)h)−16c((h−1)h(3h(14h+59)−710)+315)

−(h−2)(h(h(h(7h(5h+67)+767)−8725)+8294)+840))

+210E2
2(h−3)(h−2)

(
120c2+c(62(h−1)h−240)+(h−1)h(h(5h+19)−98)+120

)
−700E3

2(h−5)(h−4)(h−3)(h−2)(6c+(h−3)(h+2))

+175E4
2(h−7)(h−6)(h−5)(h−4)(h−3)(h−2)

−84E4(c+2h−4)
(
120c2+c(62(h−1)h−240)+(h−1)h(h(5h+19)−98)+120

)
+840E2E4(h−5)(h−4)(c+2h−4)(6c+(h−3)(h+2))

−420E2
2E4(h−7)(h−6)(h−5)(h−4)(c+2h−4)

+12E2
4(−140c3+c2(h(7h−887)+3500)+4c(h(h(7h−421)+3134)−5635)

+4(h−7)(h−5)(h−2)(7h−127))

+160E2E6(h−7)(h−6)
(
5c2+c(18h−55)+11(h−5)(h−2)

)
−160E6(6c+(h−3)(h+2))

(
5c2+c(18h−55)+11(h−5)(h−2)

) ]
. (B.2)

In addition to vanishing for h = 0, 1, the above expressions also vanish for c = 0, h = 2 and
c = −2, h = 3 [36].

Sphere 4-point block. The 3rd order in the 1/hp expansion of H(c, h, hp, q) appearing
in the 4-point sphere block (2.10) is the following

1
11890851840h3

p

[
35c6+42c5(79−160h)+c4(1344h(400h−283)+56017)

−4c3(224h(32h(800h−513)+647)+240167)

+c2(128h(16h(1344h(200h−59)−72013)+461749)+2664021)

+c(29660102−64h(64h(96h(112h(160h+53)−9861)−3595)+7556053))

+64h(16h(128h(8h(448h(80h+99)−12207)−225177)+13419349)−20775123)+31536855

+105E2
2(c−32h+1)(c−32h+5)(c−32h+9)(c−32h+13)(c2−64(c+3)h+38c+1024h2−27)

−336E4(c2−64(c+3)h+38c+1024h2−27)(1024(c−41)h2+32c(58−5c)h+c(c(3c−17)−111)

+32768h3+4576h−115)

+21E2(c−32h+1)(c−32h+5)(−5c4+4c3(160h−87)−6c2(320h(16h−11)+513)
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+4c(32h(32h(160h−69)−317)+2669)−128h(16h(64h(40h+9)−893)+1917)+3555)

−128E6(187c4−4c3(2016h+919)+c2(128(1985−368h)h−982)

+4c(32h(32h(800h−733)−5693)+11749)+128h(16h(64h(88h−333)+13277)−20037)+63315)

+336E2E4(c−32h+17)(c−32h+21)

×(1024(c−41)h2+32c(58−5c)h+c(c(3c−17)−111)+32768h3+4576h−115)

−35E3
2(c−32h+1)(c−32h+5)(c−32h+9)(c−32h+13)(c−32h+17)(c−32h+21)

]
. (B.3)

The above expression can be seen to vanish for c = 1, h = 1/16 and c = 25, h = 15/16.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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