CERN Accelerating science

002724103 001__ 2724103
002724103 005__ 20220114155722.0
002724103 0248_ $$aoai:cds.cern.ch:2724103$$pcerncds:CERN$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT
002724103 0247_ $$2DOI$$a10.1038/s41467-020-17599-2
002724103 037__ $$9arXiv$$aarXiv:2002.11418$$cphysics.atom-ph
002724103 035__ $$9arXiv$$aoai:arXiv.org:2002.11418
002724103 035__ $$9Inspire$$aoai:inspirehep.net:1807050$$d2021-07-01T16:48:37Z$$h2021-07-14T19:27:59Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002724103 035__ $$9Inspire$$a1807050
002724103 041__ $$aeng
002724103 100__ $$aLeimbach, David$$jORCID:0000-0002-4587-1067$$uMainz U., Inst. Phys.$$uU. Gothenburg (main)$$uCERN$$vDepartment of Physics, University of Gothenburg, Gothenburg, Sweden.$$vCERN, Geneva, Switzerland.$$vInstitut für Physik, Johannes Gutenberg-Universität, Mainz, Germany.
002724103 245__ $$9submitter$$aThe electron affinity of astatine
002724103 269__ $$c2020-02-26
002724103 260__ $$c2020
002724103 300__ $$a9 p
002724103 500__ $$aThe code used to analyze the datasets of the current study are available at https://doi.org/10.5281/zenodo.3924371.
002724103 500__ $$9Inspire$$aThe code used to analyze the datasets of the current study are available at https://doi.org/10.5281/zenodo.3924371.
002724103 520__ $$9submitter$$aOne of the most important properties influencing the chemical behavior of an element is the energy released with the addition of an extra electron to the neutral atom, referred to as the electron affinity (EA). Among the remaining elements with unknown EA is astatine, the purely radioactive element 85. Astatine is the heaviest naturally occurring halogen and its isotope $^{211}$At is remarkably well suited for targeted radionuclide therapy of cancer. With the At$^-$ anion being involved in many aspects of current astatine labelling protocols, the knowledge of the electron affinity of this element is of prime importance. In addition, the EA can be used to deduce other concepts such as the electronegativity, thereby further improving the understanding of astatine's chemistry. Here, we report the first measurement of the EA for astatine to be 2.41578(7)eV. This result is compared to state-of-the-art relativistic quantum mechanical calculations, which require incorporation of the electron-electron correlation effects on the highest possible level. The developed technique of laser-photodetachment spectroscopy of radioisotopes opens the path for future EA measurements of other radioelements such as polonium, and eventually super-heavy elements, which are produced at a one-atom-at-a-time rate.
002724103 520__ $$9Nature$$aOne of the most important properties influencing the chemical behavior of an element is the electron affinity (EA). Among the remaining elements with unknown EA is astatine, where one of its isotopes, $^{211}$At, is remarkably well suited for targeted radionuclide therapy of cancer. With the At− anion being involved in many aspects of current astatine labeling protocols, the knowledge of the electron affinity of this element is of prime importance. Here we report the measured value of the EA of astatine to be 2.41578(7) eV. This result is compared to state-of-the-art relativistic quantum mechanical calculations that incorporate both the Breit and the quantum electrodynamics (QED) corrections and the electron–electron correlation effects on the highest level that can be currently achieved for many-electron systems. The developed technique of laser-photodetachment spectroscopy of radioisotopes opens the path for future EA measurements of other radioelements such as polonium, and eventually super-heavy elements.
002724103 540__ $$3publication$$aCC-BY-4.0$$uhttp://creativecommons.org/licenses/by/4.0/
002724103 540__ $$3preprint$$aarXiv nonexclusive-distrib. 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002724103 542__ $$3publication$$f© The Author(s) 2020
002724103 65017 $$2arXiv$$aphysics.atom-ph
002724103 65017 $$2SzGeCERN$$aOther Fields of Physics
002724103 693__ $$eCERN ISOLDE
002724103 690C_ $$aCERN
002724103 690C_ $$aARTICLE
002724103 700__ $$aKarls, Julia$$uU. Gothenburg (main)$$vDepartment of Physics, University of Gothenburg, Gothenburg, Sweden.
002724103 700__ $$aGuo, Yangyang$$uU. Groningen, VSI$$vVan Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands.
002724103 700__ $$aAhmed, Rizwan$$uNCP, Islamabad$$vNational Centre for Physics (NCP), Islamabad, Pakistan.
002724103 700__ $$aBallof, Jochen$$uMainz U., Inst. Kernchem.$$uCERN$$vInstitut für Kernchemie, Johannes Gutenberg-Universität, Mainz, Germany.$$vCERN, Geneva, Switzerland.
002724103 700__ $$aBengtsson, Lars$$uU. Gothenburg (main)$$vDepartment of Physics, University of Gothenburg, Gothenburg, Sweden.
002724103 700__ $$aPamies, Ferran Boix$$uCERN$$vCERN, Geneva, Switzerland.
002724103 700__ $$aBorschevsky, Anastasia$$uU. Groningen, VSI$$vVan Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands.
002724103 700__ $$aChrysalidis, Katerina$$uMainz U., Inst. Phys.$$uCERN$$vInstitut für Physik, Johannes Gutenberg-Universität, Mainz, Germany.$$vCERN, Geneva, Switzerland.
002724103 700__ $$aEliav, Ephraim$$uTel Aviv U. (main)$$vSchool of Chemistry, Tel Aviv University, Tel Aviv, Israel.
002724103 700__ $$aFedorov, Dmitry$$uSt. Petersburg, INP$$vPetersburg Nuclear Physics Institute - NRC KI, Gatchina, Russia.
002724103 700__ $$aFedosseev, Valentin$$uCERN$$vCERN, Geneva, Switzerland.
002724103 700__ $$aForstner, Oliver$$uHelmholtz Inst., Jena$$uU. Jena (main)$$vHelmholtz-Institut Jena, Jena, Germany.$$vInstitut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Jena, Germany.
002724103 700__ $$aGalland, Nicolas$$uCEISAM, Nantes$$vCEISAM, Université de Nantes, CNRS, Nantes, France.
002724103 700__ $$aRuiz, Ronald Fernando Garcia$$uMIT$$uCERN$$vMassachusetts Institute of Technology, Cambridge, MA, USA.$$vCERN, Geneva, Switzerland.
002724103 700__ $$aGranados, Camilo$$uCERN$$vCERN, Geneva, Switzerland.
002724103 700__ $$aHeinke, Reinhard$$uMainz U., Inst. Phys.$$vInstitut für Physik, Johannes Gutenberg-Universität, Mainz, Germany.
002724103 700__ $$aJohnston, Karl$$uCERN$$vCERN, Geneva, Switzerland.
002724103 700__ $$aKoszorus, Agota$$uLeuven U.$$vKU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven B-3001, Belgium.
002724103 700__ $$aKöster, Ulli$$uLaue-Langevin Inst.$$vInstitut Laue-Langevin, Grenoble, France.
002724103 700__ $$aKristiansson, Moa K.$$uStockholm U.$$vDepartment of Physics, Stockholm University, Stockholm, Sweden.
002724103 700__ $$aLiu, Yuan$$uOak Ridge$$vPhysics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
002724103 700__ $$aMarsh, Bruce$$uCERN$$vCERN, Geneva, Switzerland.
002724103 700__ $$aMolkanov, Pavel$$uSt. Petersburg, INP$$vPetersburg Nuclear Physics Institute - NRC KI, Gatchina, Russia.
002724103 700__ $$aPašteka, Lukáš F.$$uComenius U.$$vDepartment of Physical and Theoretical Chemistry & Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
002724103 700__ $$aRamos, João Pedro$$uSCK-CEN, Mol$$vPresent address: SCK CEN, Research Centre Mol, Boeretang 200, 2400 Mol, Belgium.
002724103 700__ $$aRenault, Eric$$uCEISAM, Nantes$$vCEISAM, Université de Nantes, CNRS, Nantes, France.
002724103 700__ $$aReponen, Mikael$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Jyväskylä, Finland.
002724103 700__ $$aRingvall-Moberg, Annie$$uU. Gothenburg (main)$$uCERN$$vDepartment of Physics, University of Gothenburg, Gothenburg, Sweden.$$vCERN, Geneva, Switzerland.
002724103 700__ $$aRossel, Ralf Erik$$uCERN$$vCERN, Geneva, Switzerland.
002724103 700__ $$aStuder, Dominik$$uMainz U., Inst. Phys.$$vInstitut für Physik, Johannes Gutenberg-Universität, Mainz, Germany.
002724103 700__ $$aVernon, Adam$$uManchester U.$$vSchool of Physics and Astronomy, The University of Manchester, Manchester, UK.
002724103 700__ $$aWarbinek, Jessica$$uMainz U., Inst. Phys.$$uU. Gothenburg (main)$$vInstitut für Physik, Johannes Gutenberg-Universität, Mainz, Germany.$$vDepartment of Physics, University of Gothenburg, Gothenburg, Sweden.
002724103 700__ $$aWelander, Jakob$$uU. Gothenburg (main)$$vDepartment of Physics, University of Gothenburg, Gothenburg, Sweden.
002724103 700__ $$aWendt, Klaus$$umainz, ins$$vInstitut für Physik, Johannes Gutenberg-Universität, Mainz, Germany.
002724103 700__ $$aWilkins, Shane$$uCERN$$vCERN, Geneva, Switzerland.
002724103 700__ $$aHanstorp, Dag$$uU. Gothenburg (main)$$vDepartment of Physics, University of Gothenburg, Gothenburg, Sweden.
002724103 700__ $$aRothe, Sebastian$$uCERN$$vCERN, Geneva, Switzerland.
002724103 700__ $$aRothe, Sebastian$$uCERN$$vCERN, Geneva, Switzerland.
002724103 773__ $$c3824$$pNature Commun.$$v11$$y2020
002724103 8564_ $$82238536$$s303572$$uhttps://cds.cern.ch/record/2724103/files/GANDALPH_V5.png$$y00000 Schematic diagram of the experimental setup. From left to right: A beam of negative astatine ions is guided into the Gothenburg ANion Detector for Affinity measurements by Laser PHotodetachment (GANDALPH)\cite{iodine128,Leimbach_EMIS}, where the ion beam is overlapped with a frequency tuneable laser beam in the interaction region in either co- or counter-propagating geometry. By absorbing a photon (Inset 1), an electron can gain enough energy to be ejected from the ion, thereby creating a neutral atom (Inset 2). After the interaction region, the charged particles are deflected into an ion detector, while neutralized atoms continue moving straight to the graphene-coated glass plate downstream and create secondary electrons, which are detected by a channel electron multiplier\cite{Warbinek}.
002724103 8564_ $$82238537$$s3406809$$uhttps://cds.cern.ch/record/2724103/files/2002.11418.pdf$$yFulltext
002724103 8564_ $$82238538$$s26846$$uhttps://cds.cern.ch/record/2724103/files/Graph1.png$$y00001 Threshold scan of the photodetachment of astatine. Neutralization cross section is measured as a function of the photon energy. The data points are the experimental measurements with one standard error represented with error bars, and the solid line is a fit of Eq. \ref{eq:cross_section2}. The onset corresponds to the EA of $^{211}$At.
002724103 8564_ $$82241816$$s1801955$$uhttps://cds.cern.ch/record/2724103/files/s41467-020-17599-2.pdf$$yFulltext from publisher
002724103 8564_ $$82241816$$s13801$$uhttps://cds.cern.ch/record/2724103/files/s41467-020-17599-2.gif?subformat=icon$$xicon$$yFulltext from publisher
002724103 8564_ $$82241816$$s153488$$uhttps://cds.cern.ch/record/2724103/files/s41467-020-17599-2.jpg?subformat=icon-700$$xicon-700$$yFulltext from publisher
002724103 8564_ $$82241816$$s16531$$uhttps://cds.cern.ch/record/2724103/files/s41467-020-17599-2.jpg?subformat=icon-180$$xicon-180$$yFulltext from publisher
002724103 960__ $$a13
002724103 980__ $$aARTICLE